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 a b s t r a c t

The ∆-edge stability number es∆(G) of a graph G is the minimum
number of edges of G whose removal results in a subgraph H
with ∆(H) = ∆(G)−1. Sets whose removal results in a subgraph
with smaller maximum degree are called mitigating sets. It is
proved that there always exists a mitigating set which induces
a disjoint union of paths of order 2 or 3. Minimum mitigating
sets which induce matchings are characterized. It is proved that
to obtain an upper bound of the form es∆(G) ≤ c|V (G)| for an
arbitrary graph G of given maximum degree ∆, where c is a given
constant, it suffices to prove the bound for ∆-regular graphs.
Sharp upper bounds of this form are derived for regular graphs.
It is proved that if ∆(G) ≥

|V (G)|−2
3  or the induced subgraph

on maximum degree vertices has a ∆(G)-edge coloring, then
es∆(G) ≤ ⌈|V (G)|/2⌉.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G be a non-empty graph and let ∆(G) denote its maximum degree. The ∆-edge stability 
number, es∆(G), of G, is the minimum number of edges of G whose removal results in a subgraph 
H with ∆(H) = ∆(G) − 1. This graph invariant has been for the first time investigated by Borg and 
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Fenech in [7]. The vertex version of the problem, that is, the ∆-vertex stability number, has been 
studied in [5,6]. Furthermore, over the last few years, the corresponding problems for the chromatic 
number and the chromatic index were respectively investigated in [3,8] and [1,2,14–16].

The above discussion naturally falls under the following broader framework recently proposed 
in [12] and further elaborated in [4,13]. For an arbitrary graph invariant τ , the τ -vertex stability 
number (the τ -edge stability number) is the minimum number of vertices (edges) whose removal 
results in a subgraph H with τ (H) ̸= τ (G). The corresponding minimum number of vertices and 
edges are respectively denoted by vsτ (G) and esτ (G). Following this general framework, in this paper 
we use the notation es∆(G), although we should add that the ∆-edge stability number and the ∆-
vertex stability number of a graph G were respectively also denoted by λe(G) in [7] and by λ(G)
in [6].

In the seminal paper [7], the focus was on the upper bounds of the ∆-edge stability number 
in terms of the size of the graph, the maximum degree, and the number of vertices of maximum 
degree. In this paper, we continue with the exploration of the ∆-edge stability number. Our main 
goal is to find tight bounds for es∆(G) based on the order of the graph.

The paper is organized as follows. In the rest of the introduction, we briefly define notations 
used in the paper and recall a result to be used later on. In the subsequent section, we prove several 
general properties for sets of edges whose removal decreases the maximum degree. In particular, 
we prove that there always exists such a set which induces a disjoint union of paths of order 2 or 
3, and characterize smallest such sets which are matchings. In Section 3, we prove that to obtain 
an upper bound of the form es∆(G) ≤ c|V (G)| for an arbitrary graph G of given maximum degree 
∆, where c is a given constant, it suffices to prove the bound for ∆-regular graphs. This result is 
an analogue of [5, Theorem 3], the ∆-vertex stability version. In Section 4, sharp upper bounds 
for regular graphs are derived. In the final section, we prove that the ∆-edge stability number is 
bounded from the above by one-half of the order for each graph in which vertices of maximum 
degree induce a Class 1 graph, as well as for graphs G with ∆(G) ≥

|V (G)|−2
3 .

Throughout this paper, all graphs are finite and simple, that is, with no loops and multiple edges, 
and moreover, with at least one edge. Let G = (V (G), E(G)) be a graph. The degree of a vertex u of G
is denoted by dG(u). Further, δ(G) is the minimum degree of G. The subgraph of G induced by a set A
of vertices and/or edges will be denoted by G [A]. The number of edges between two disjoint sets of 
vertices S, T ⊆ V (G) is denoted by e(S, T ). The open neighborhood NG(v) of a vertex v ∈ V (G) is the 
set of neighbors of v, the closed neighborhood of v is NG[v] = NG(v)∪{v}. If S ⊆ V (G), then the open 
and the closed neighborhood of S are the respective sets NG(S) = ∪v∈SNG(v) and NG[S] = ∪v∈SNG[v]. 
If the graph G is clear from the context, we may omit the subscript G in the above notation. The 
independence number of G is denoted by α(G) and its matching number by α′(G). The odd girth of G
is the length of a shortest odd cycle in G and is denoted by og(G).

The core of G is the set of vertices of G of maximum degree and is denoted by Core(G). Clearly, 
if G is regular, then Core(G) = V (G). If S ⊆ E(G) is such that ∆(G− S) ≤ ∆(G)− 1, then we say that 
S is a mitigating set of G. In that case, we also say that G[S] is a mitigating subgraph of G.

Given a graph G, a function c : E(G) → {c1, . . . , ck} with c(e) ̸= c(f ) for any two adjacent edges e
and f  is a proper k-edge coloring of G. The minimum k for which G admits a proper k-edge coloring is 
the chromatic index of G, denoted by χ ′(G). We let [k] = {1, . . . , k}. For any i ∈ [χ ′(G)], let Ci denote 
the set of all edges of G that are colored by ci in the proper edge coloring c. For any v ∈ V (G), let 
c(v) denote the set of colors appearing in v. Vizing’s Theorem [19] states that the chromatic index 
of an arbitrary simple graph is ∆(G) or ∆(G) + 1. Graphs with χ ′(G) = ∆(G) are said to be Class 1, 
while graphs with χ ′(G) = ∆(G) + 1 are said to be Class 2.

Throughout the following, we will use Tutte’s Theorem [17], which states that a graph has a 
perfect matching if and only if o(G − S) ≤ |S| for every S ⊆ V (G), where o(H) denotes the number 
of odd components of a graph H . We conclude the preliminaries by recalling the following result 
to be used later on.

Theorem 1.1 ([7, Theorem 2.8]).  If G is a graph, then es (G) = | Core(G)| − α′(G[Core(G)]).
∆
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2. Properties of mitigating sets

In this section, we first prove that one can always find a mitigating subgraph of G whose 
each component is P2 or P3, and give an upper bound on the ∆-edge stability number involving 
the independence number. To derive both results, Hall’s Theorem will be applied. Afterwards, we 
characterize in two ways minimum mitigating sets which are matchings.

Theorem 2.1.  If G is a graph of order n, then the following properties hold.
(i) There exists a mitigating subgraph of G whose each component is P2 or P3.
(ii) es∆(G) ≤ n − α(G), and the bound is sharp.

Proof.  (i) Let M be a maximum matching of G[Core(G)], and let A ⊆ Core(G) be the set of vertices 
of Core(G) which are not saturated by M . As M is a maximum matching of G[Core(G)], the set A
is independent. Furthermore, since the vertices in A are of maximum degree, |N(A′)| ≥ |A′

| holds 
for each A′

⊆ A. Therefore, by Hall’s Theorem, there exists a matching M ′ in G that saturates A. By 
applying Theorem  1.1 we have

es∆(G) ≤ |M ∪ M ′
| ≤ |M| + |M ′

|

= α′(G[Core(G)]) + (| Core(G)| − 2α′(G[Core(G)]))
= | Core(G)| − α′(G[Core(G)])
= es∆(G) ,

hence equality must hold in the first line. Therefore, M ∪ M ′ is a mitigating set of G.
Since M is a maximum matching of G[Core(G)], there is no pair of edges of M ′ which meet an 

edge of M . Thus, any component of M ∪ M ′ is P2 or P3.
(ii) Let I ⊆ V (G) be an independent set of size α(G), and A = Core(G) ∩ I . By Hall’s Theorem, 

there exists a matching M in G that saturates A. Assume B ⊆ V (G)−I is the set of vertices in V (G)−A
which are saturated by M . Let S be the set of edges containing M as well as one edge adjacent to 
each vertex in V (G) − (I ∪ B). Clearly, G − S has no vertex of degree ∆. Since

|S| = |M| + (n − |I ∪ B|) = |M| + n − (α(G) + |M|) = n − α(G) ,

the bound is proved. To see that it is sharp, consider an arbitrary regular, bipartite graph G with a 
perfect matching. Then es∆(G) = α(G) = n/2. □

To characterize minimum mitigating sets, we need a lemma which can be deduced from Tutte’s 
Theorem.

Lemma 2.2.  Let G be a graph and A ⊆ V (G). If for all S ⊆ V (G) we have
oG[A](G − S) ≤ |S|,

then there exists a matching in G that saturates A, where oG[A](G− S) is the number of odd components 
of G − S which are contained in G[A].

Proof.  Let n = |V (G)| and B = V (G)−A. Let H be the graph obtained by the disjoint union of Kn and 
G and joining each vertex of Kn to each vertex of B. Clearly, H is of order 2n. Moreover, as the order 
of H is even, we see that H has a perfect matching if and only if G has a matching that saturates A. 
Note that maybe some edges in the matching have one endpoint in A and another in B. Assume for 
the contrary that no matching in G covers A. Therefore, by Tutte’s Theorem, there exists S ⊆ V (H)
such that o(H − S) > |S|. Since |V (H)| is even, |S| and |o(H − S)| have the same parity. Therefore, 
the following inequality holds 

o(H − S) ≥ |S| + 2 . (1)

If V (Kn) ⊆ S, then |S| ≥
|V (H)|

2  and thus, (1) does not hold. Hence there exists v ∈ V (Kn) − S. 
Obviously, there are at least |S| + 1 odd components of H − S that are contained in G[A], which is 
a contradiction, and the lemma is proved. □
3
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We now characterize minimum mitigating sets which are matchings as follows.

Theorem 2.3.  If G is a graph, then the following statements are equivalent.
(1) G has a matching that saturates Core(G).
(2) G has a minimum mitigating set which is a matching.
(3) For every S ⊆ Core(G), es∆(G[N[S]]) ≤

|V (G[N[S]])|
2 .

Proof.  We first show that (1) and (2) are equivalent. It is clear that if there is a minimum mitigating 
set which is a matching, this matching saturates Core(G). For the converse, suppose M is a matching 
that saturates Core(G) and let L be a minimum mitigating set for G. We claim that L could be chosen 
as a matching using induction on es∆(G). If es∆(G) = 1, the claim is obvious. Hence, assume that 
es∆(G) ≥ 2. Clearly, |M| ≥ |L|. If L − M = ∅, L must be a matching and the claim is proved. Thus, 
assume e ∈ L−M . Since |L| ≥ 2, we have ∆(G−e) = ∆(G). Therefore, M is a matching that saturates 
Core(G − e). By the induction hypothesis, there exists a minimum mitigating set for G − e, say L′, 
which is a matching and |L′

| = es∆(G)−1. Obviously, L′′
= L′

∪{e} is a minimum mitigating set for G. 
If e is not adjacent to any edge in L′, the claim is proved. Since L′ is a matching and L′′ is a minimum 
mitigating set, e is adjacent to at most one edge in L′, say e′. Let e = uv and e′

= vw for some 
u, v, w ∈ V (G). It is easy to see that d(u) = ∆. Since uv /∈ M , there exists e1 = uy1 ∈ M . Replace 
e with e1 in L′′ and the resulting mitigating set is still minimum and is a matching, unless there 
exists e′

1 = y1x1 ∈ L′′ and d(x1) = ∆. Otherwise, if we remove e′

1 from L′′, the resulting set of edges 
is still a mitigating set. Replace e′

1 with some e2 = x1y2 ∈ M to obtain a new minimum mitigating 
set and continue this operation and in each step replace e′

i with ei+1. Note that if d(xi) < ∆ or there 
is no edge in L′ saturating yi+1, there is no need to continue the operation. Moreover, since M is 
a matching, all xi and yi are distinct. Therefore, this operation will be stopped after finitely many 
steps. So, when the replacement is done, the resulting minimum mitigating set is a matching and 
the claim is proved.

We next prove that (1) and (3) are equivalent. For any S ⊆ V (G), set H(S) = G[N[S]]. It is clear 
that if G has a matching that saturates Core(G), then (3) holds. For the converse, set n = |V (G)|. Let 
A = Core(G). By contradiction assume that G has no matching that covers A. Therefore, by Lemma 
2.2, there exists S ⊆ V (G) such that

oG[A](G − S) ≥ |S| + 1 .

Let C1, C2, . . . , C|S|+1 ⊆ A be distinct odd components contained in G[A]. Let C =
⋃

|S|+1
i=1 V (Ci). 

Clearly, |V (H(C))| ≤ |S| + |C |. Since V (Ci) has odd cardinality and consists of vertices of degree ∆, 
we have

es∆ (H(V (Ci))) ≥
|V (Ci)| + 1

2
.

Therefore,

es∆ (H(C)) ≥

|S|+1∑
i=1

|V (Ci)| + 1
2

≥
|C |

2
+

|S| + 1
2

>
|C | + |S|

2
≥

|V (H(C))|
2

,

a contradiction and we are done. □

3. Graph’s regularization and its applications

In this section, we prove that to derive an upper bound of the form es∆(G) ≤ c|V (G)| for an 
arbitrary graph, where c is a given constant, it suffices to prove the bound for regular graphs. This 
is modeled on the work in [5, Section 4]; Lemma  3.1 is an analogue of Inequality (1) in [5], and 
Theorem  3.2 is an analogue of [5, Theorem 3]. The idea is the same.

For a graph G we construct its regularization R(G) as follows. If G is regular, then set R(G) = G. 
Assume now that G is not regular and set AG = V (G)−Core(G). Then the graph G(1) is obtained from 
two disjoint copies of G, say G′ and G′′, by adding a matching between the corresponding vertices in 
4
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AG′  and AG′′ . Note that ∆(G(1)) = ∆(G) and δ(G(1)) = δ(G)+1. If G(1) is not yet regular, we repeat the 
same construction on G(1) to obtain G(2). Repeating the construction ∆(G) − δ(G) times, we arrive 
at the regularization R(G) of G:

R(G) = G(∆(G)−δ(G)) ,

which is a ∆(G)-regular graph.
A key property of R(G) is the following.

Lemma 3.1.  If G is a graph, then
|V (R(G))|
es∆(R(G))

≤
|V (G)|
es∆(G)

.

Proof.  There is nothing to prove if G is regular, hence assume in the rest that ∆(G)− δ(G) ≥ 1. We 
first claim that

|V (G(1))|
es∆(G(1))

≤
|V (G)|
es∆(G)

.

Let M be a mitigating set of G(1) and let G′ and G′′ be the two copies of G in G(1). As every edge 
between G′ and G′′ connects vertices of non-maximum degree in G′ and G′′, the sets M ∩ E(G′)
and M ∩ E(G′′) are mitigating sets of G′ and G′′ respectively. Thus, es∆(G(1)) ≥ 2 es∆(G). Since 
|V (G(1))| = 2|V (G)|, the claim is proved. Proceeding by induction we analogously infer that

|V (G(i))|
es∆(G(i))

≤
|V (G)|
es∆(G)

holds for each i ∈ {2, . . . , ∆(G) − δ(G)}. Thus the assertion. □

The announced reduction to regular graphs now reads as follows.

Theorem 3.2.  If there exists a constant 0 < c∆ < 1, such that es∆(H) ≤ c∆|V (H)| holds for every 
∆-regular graph H, then es∆(G) ≤ c∆|V (G)| holds for every graph G with ∆(G) = ∆.

Proof.  Let G be an arbitrary graph with ∆(G) = ∆. As there is nothing to prove if G is regular, 
assume this is not the case. Then by Lemma  3.1 and the theorem’s assumption we get

es∆(G) ≤ es∆(R(G))
|V (G)|

|V (R(G))|
≤ c∆|V (R(G))|

|V (G)|
|V (R(G))|

= c∆|V (G)|

and we are done. □

Another applications of Lemma  3.1 is the following bound on the ∆-edge stability number of a 
graph in terms of its odd girth.

Theorem 3.3.  If G is a graph of order n and og(G) = 2k + 1, k ≥ 1, then es∆(G) ≤
k+1
2k+1n.

Proof.  We claim that og(G(i)) ≥ 2k + 1 holds for each i ∈ [∆ − δ]. Consider first G(1) and let 
W1 be an arbitrary odd closed walk in it. Assume that W1 passes through G′ as well as through 
G′′. Let e = u′u′′ and f = v′v′′ be two edges of W1 between G′ and G′′ (where u′, v′

∈ V (G′) and 
u′′, v′′

∈ V (G′′)) occurring consecutively on W1. Let W ′′

u′′v′′  be the u′′-v′′-subwalk of W1. Then W ′′

u′′v′′  is 
contained in G′′. Now replace the u′

−u′′
−W ′′

u′′v′′ −v′′
−v′ subwalk of W1 by the walk u′

−W ′

u′v′ −v′, 
where W ′

u′v′  is the isomorphic copy of W ′′

u′′v′′  in G′. Repeating this process if necessary, we arrive at 
a closed walk of G(1) which lies completely in G′ and is shorter (or of equal length if W1 already lies 
completely in G′) than W1. As G′ is isomorphic to G, this proves the claim for G(1). The argument for 
G(i), i ∈ {2, . . . , ∆ − δ} is then analogous.

R(G) is a regular graph. From the introduction of [11] we recall that Hajnal [9] and Tutte [18] 
proved that a regular graph has a {1, 2}-factor F  (each of whose components are regular). Clearly 
5
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for any component C of F , one can remove ⌈ |V (C)|
2 ⌉ edges of C which saturate V (C). Since ⌈ |V (C)|

2 ⌉ ≤
k+1
2k+1 |V (C)|, we obtain

es∆(R(G)) ≤
k + 1
2k + 1

|V (R(G))| .

By Lemma  3.1 we then get

es∆(G) ≤ es∆(R(G))
|V (G)|

|V (R(G))|
≤

k + 1
2k + 1

|V (R(G))|
|V (G)|

|V (R(G))|
=

k + 1
2k + 1

|V (G)|

and we are done. □

4. The regular case

In view of Theorem  3.2, in this section we take a closer look at regular graphs. For this sake, we 
first recall the following fundamental result due to Henning and Yeo.

Theorem 4.1 (Henning and Yeo, [10]).  Let G be a connected, k-regular graph of order n, where k ≥ 2. 
If k is even, then

α′(G) ≥ min
{

(k2 + 4)n
2(k2 + k + 2)

,
n − 1
2

}
,

and if k is odd, then

α′(G) ≥
(k3 − k2 − 2)n − 2k + 2

2(k3 − 3k)
.

Moreover, both bounds are tight.
From Theorem  4.1 we can deduce the following consequence.

Corollary 4.2.  Let G be a connected, k-regular graph of order n, where k ≥ 2. If k is even, then

es∆(G) ≤ max
{(

1 −
k2 + 4

2(k2 + k + 2)

)
n,

n + 1
2

}
,

and if k is odd, then

es∆(G) ≤
(k3 + k2 − 6k + 2)n + 2k − 2

2(k3 − 3k)
.

Moreover, both bounds are tight.

Proof.  By Theorem  1.1 and the assumption that G is regular, we have es∆(G) = n−α′(G). Therefore, 
if k is even, then using Theorem  4.1 we can estimate as follows:

es∆(G) ≤ n − min
{

(k2 + 4)n
2(k2 + k + 2)

,
n − 1
2

}
= max

{
n −

(k2 + 4)n
2(k2 + k + 2)

, n −
n − 1
2

}
= max

{(
1 −

k2 + 4
2(k2 + k + 2)

)
n,

n + 1
2

}
.

The estimate for odd k is derived analogously.
The tightness follows by the tightness of the estimates from Theorem  4.1. □

As discussed in [10], the bound (n − 1)/2 from Theorem  4.1 is only necessary to cover some 
cases when n is very small or k = 2. In particular, it is not needed for k ≥ 4, cf. [10, Corollary 1]. 
Therefore, we can also state the following easier-to-read corollary for all ‘‘non-trivial’’ even k.
6



S. Akbari, R.H. Dolatabadi, M. Jamaali et al. European Journal of Combinatorics 127 (2025) 104167
Fig. 1. The graph Gk .

Corollary 4.3.  If G is a connected graph of order n and of even maximum degree k ≥ 4, then

es∆(G) ≤

(
1 −

k2 + 4
2(k2 + k + 2)

)
n .

If k = 4, then the bound of Corollary  4.3 reads as es∆(G) ≤
6
11n. We next construct 2-connected, 

4-regular graphs which attain this bound. Let Hi = K5 − e, i ∈ [2k], and let Gk be the graph of order 
n = 11k as shown in Fig.  1.

We claim that α′(G) = 5k and es∆(G) = 6k. Since α′(K5 − e) = 2, and every matching of G has at 
most one edge incident with vj, j ∈ [k], we infer that α′(G) ≤ 2(2k)+k = 5k. Note that a 2-matching 
of each Hi together with the bold edges from Fig.  1 represent a maximum matching of size 5k in 
G. So, α′(G) = 5k. Since G is 4-regular, by Theorem  1.1, es∆(G) = 6k and hence the conclusion is 
reached after a direct computation.

From Theorem  3.2 and the second estimate of Corollary  4.2, we can deduce also the following 
consequence.

Corollary 4.4.  For each ϵ > 0 and sufficiently large n, for every graph G of order n with odd maximum 
degree k, we have

es∆(G) ≤

(
k3 + k2 − 6k + 2

2(k3 − 3k)
+ ϵ

)
n.

We know the following function is monotone

f (k) =
k3 + k2 − 6k + 2

2(k3 − 3k)
.

Moreover,

lim
k→∞

f (k) =
1
2

,

By Corollary  4.3 for any even k > 2, we have

es∆(G) ≤
n + 1
2

.

Combining Corollaries  4.3 and 4.4 with the above discussion, and having Theorem  3.2 in mind, we 
get the following result by setting k = 3.

Corollary 4.5.  For each ϵ > 0 and sufficiently large n, for every connected graph G of order n, we have

es∆(G) ≤

(
5

+ ϵ

)
n.
9
7
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5. Graphs whose ∆-edge stability number is at most half the order

In this section, we are interested in families of graphs for which the ∆-edge stability number is 
bounded from the above by half of the order. First, as a consequence of Theorem  2.1(ii), this holds 
true for bipartite graphs.

Corollary 5.1.  If G is a bipartite graph of order n, then es∆(G) ≤ n/2.

Our next goal is to show that this bound also holds for each graph G such that G[Core(G)] is Class 
1. To this end, let us first prove the following.

Theorem 5.2.  Let G be a graph with maximum degree ∆. If G[Core(G)] has a proper ∆-edge coloring, 
then G has a matching that saturates Core(G).

Proof.  Let n = |V (G)|. Let A = G[Core(G)] and B = V (G) − V (A). Suppose that G has no matching 
that saturates A. By Lemma  2.2, there exists S ⊆ V (G) such that

oA(G − S) ≥ |S| + 1 .

Now, we claim that if C ⊆ A is an odd component of G − S, then 
eG(C, S) ≥ ∆. (2)

Consider a proper ∆-edge coloring of A and extend it to a ∆-edge coloring of G− E(B) such that for 
every u ∈ A, all edges incident to u have ∆ distinct colors.

If there are at most ∆ − 1 edges with one endpoint in V (C) and another in S, then there exists 
a color t which has not appeared on these edges. Since every vertex in C has degree ∆, the color t
appears at each vertex of C . Therefore, the edges with color t in C form a perfect matching in C , a 
contradiction, and the claim is proved.

By the claim, we have
eG(A − S, S) ≥ (|S| + 1) ∆.

Now, by the Pigeonhole Principle, there exists u ∈ S such that
eG(A, {u}) ≥ ∆ + 1 ,

which is a contradiction. □

A matching that saturates every vertex of Core(G) is clearly a mitigating set, hence from Theorem 
5.2 we immediately get:

Corollary 5.3.  If G is a graph of order n such that G[Core(G)] is Class 1, then es∆(G) ≤
n
2 . In particular, 

if G is Class 1, then es∆(G) ≤
n
2 .

In our final result, we prove that also in graphs with large maximum degree, the ∆-edge stability 
number is bounded from the above by half of the order. To prove the result, we state the following 
lemma, for which we recall that a graph is said to be factor critical if every vertex-deleted subgraph 
has a perfect matching.

Lemma 5.4.  If G does not have a perfect matching and S ⊆ V (G) is the largest set such that 
o(G − S) > |S|, (3)

then each component of G − S is factor critical.

Proof.  Suppose that C is a component of G − S of even order and v ∈ C . Note that C − {v} has 
at least one odd component. Therefore, S ∪ {v} satisfies (3), a contradiction. So, G − S has no even 
component. Suppose C is an odd component of G − S which is not factor critical. Thus, for some 
v ∈ V (C), C − {v} does not have a perfect matching. Hence, there is S ′

⊆ V (C) − {v} such that 
o
(
(C − {v}) − S ′

)
> |S ′

| + 1. Thus, S ∪ S ′
∪ {v} satisfies (3), a contradiction. □
8
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Our final result now reads as follows.

Theorem 5.5.  Let G be a connected graph of order n with maximum degree ∆. If ∆ ≥
n−2
3 , then 

es∆(G) ≤ ⌈
n
2⌉.

Proof.  Let A = V (Core(G)) and B = V (G)\A. If there exists a matching in G which saturates A, then 
we get the result. Now, assume G does not contain such matchings. So, by Lemma  2.2, there exists 
S ⊆ V (G) such that oG[A](G− S) ≥ |S| + 1. Thus, there exist at least |S| + 1 odd components in G− S
that are contained in G[A]. We name them as C1, . . . , C|S|+1. Let C = {C1, . . . , C|S|+1}.

We claim that if C ∈ C and e (V (C), S) < ∆, then |V (C)| ≥ ∆ + 1, and moreover, there exists 
v ∈ V (C) such that N[v] ⊆ V (C). First, suppose that |V (C)| ≥ ∆. If every vertex of C has a neighbor 
in S, then it is clear that e(V (C), S) ≥ ∆, a contradiction. So, there exists a vertex v ∈ C such that 
N[v] ⊆ V (C). Thus, |V (C)| ≥ ∆ + 1, as desired. Suppose |V (C)| < ∆. Since every vertex of C has 
degree ∆, e({u}, S) ≥ ∆−|V (C)|+1 for each u ∈ V (C). Hence e(V (C), S) ≥ |V (C)|(∆−|V (C)|+1) ≥ ∆, 
a contradiction. So the claim is proved.

Let L =
⋃

|S|+1
i=1 V (Ci). Note that if e(V (C), S) ≥ ∆ for every C ∈ C, then e(L, S) ≥ ∆(|S| + 1) and 

by the pigeonhole principle, there exists w ∈ S such that d(w) ≥ ∆ + 1, a contradiction.
Now, since ∆ ≥

n−2
3 , if C ∈ C and e(V (C), S) < ∆, then by the claim, we have |V (C)| ≥

n+1
3 . 

Hence, we have at most two Ci with e(V (Ci), S) < ∆, say C1 and C2. Consider two cases.
Case 1. |V (C1)| > ∆ and for every i > 1, |V (Ci)| ≤ ∆.

So, by the claim, e(L − V (C1), S) ≥ ∆|S|. On the other hand, since d(s) ≤ ∆ for every s ∈ S, 
we have e(L − V (C1), S) ≤ ∆|S|. Hence, e(L − V (C1), S) = ∆|S|, meaning that all neighbors of each 
vertex of S are in L − V (C1). So, C1 is a component of G, but this contradicts the assumption that G
is connected.
Case 2. |V (C1)| > ∆, |V (C2)| > ∆, and for every i > 2, |V (Ci)| ≤ ∆.

Since |V (C1)| ≥
n+1
3  and |V (C2)| ≥

n+1
3 , |V (G) − (V (C1) ∪ V (C2)) | < n−1

3 . If there exists a 
vertex u ∈ V (G − S) − (V (C1) ∪ V (C2)) of degree ∆, then since N[u] ⊆ V (G) − (V (C1) ∪ V (C2)) and 
|N[u]| > n

3 , we get a contradiction. So, L − (V (C1) ∪ V (C2)) = ∅ and thus, |S| = 1.  Let s be the 
member of S.

Note that if S is chosen to be of maximum size, then by Lemma  5.4, all members of C are factor 
critical. We choose two arbitrary edges su and sv such that u ∈ V (C1) and v ∈ V (C2). As C1 and 
C2 are factor critical, there exist matchings M and N that saturate vertices of C1\{u} and C2\{v}, 
respectively. Since all vertices of degree ∆ are in L∪S, it is clear that M∪N ∪{su, sv} is a mitigating 
set for G. Note that |M| + |N| + |{su, sv}| =

|L|+2
2 ≤

n+1
2 , thus es∆(G) ≤

n+1
2  and we are done. □

Remark 5.6.  To see that the bound ∆ ≥
n−2
3  of Theorem  5.5 cannot be lowered in general, consider 

the following example. For each odd t ≥ 7, let Gt be the graph constructed as follows. Take three 
vertex-disjoint copies of Kt , remove one edge from each of them, add a vertex u, and join u to the 
endpoints of the deleted edges; see Fig.  2.

In Gt we need at least t+1
2  edges to saturate the vertices of each Kt . Hence, es∆(G) ≥

3(t+1)
2 . 

Setting n = |V (Gt )|, we have n = 3t + 1. As t ≥ 7 we have ∆(Gt ) =
n−4
3 . In summary,

∆(Gt ) =
n − 4
3

<
n − 2
3

and es∆(Gt ) ≥
n
2

+ 1 ,

hence the assumption on the maximum degree in Theorem  5.5 is tight.
As in a graph G we have ∆(G) ≥

2|E(G)|
|V (G)| , Theorem  5.5 yields:

Corollary 5.7.  If G is a graph of order n and size at least n(n−2)
6 , then es∆(G) ≤ ⌈

n
2⌉.

Declaration of competing interest

The authors declare that they have no conflict of interest.

9



S. Akbari, R.H. Dolatabadi, M. Jamaali et al. European Journal of Combinatorics 127 (2025) 104167
Fig. 2. The graph Gt .
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