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Abstract

For a positive integer k ≥ 1, a graph G is k-stepwise irregular (k-SI graph) if
the degrees of every pair of adjacent vertices differ by exactly k. Such graphs are
necessarily bipartite. Using graph products it is demonstrated that for any k ≥ 1
and any d ≥ 2 there exists a k-SI graph of diameter d. A sharp upper bound
for the maximum degree of a k-SI graph of a given order is proved. The size of
k-SI graphs is bounded in general and in the special case when gcd(∆(G), k) = 1.
Along the way the degree complexity of a graph is introduced and used.
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1 Introduction

If u and v are two adjacent vertices of a graph G = (V (G), E(G)), then the imbalance

of the edge uv is |dG(u)− dG(v)|, where dG(x) denotes the degree of the vertex x of G.
The irregularity of G is then

∑

uv∈E(G) |dG(u) − dG(v)| [5]. The study of graph irreg-
ularity has been a significant research direction. Many papers have been dedicated to
investigating the measures of graph irregularity, a few examples are [1, 2, 11]. The ir-
regularity theory developed up to 2021 was then summarized in the book [6]. Moreover,
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irregularity in graphs has been extensively utilized to analyze the topological structures
and deterministic and random networks prevalent in chemistry, bio-informatics, and
social networks, cf. [17].

A graph G = (V (G), E(G)) is a stepwise irregular graph (briefly SI graph) if for
any edge uv ∈ E(G) we have |dG(u)− dG(v)| = 1, where dG(x) denotes the degree of
the vertex x of G. This class of graphs was introduced by Gutman in [18], for further
results on them, see [3, 4, 10, 12]. In particular, some sharp upper bounds on the
maximum degree and maximum size of SI graphs were posed in [10, 12].

A natural generalization of stepwise irregular graph form k-stepwise irregular graphs

(briefly k-SI graphs) which are the graphs in which the two degrees of every pair of
adjacent vertices differ by k, where k is a fixed positive integer. This generalization
was formally introduced in [15], where it was mostly investigated for the case k = 2.
In this paper, we look in more detail at the general case and proceed as follows. In
the next section, we first list some common definitions and concepts needed. Then we
introduce the degree complexity of a graph and list a series of inequalities that hold in
k-SI graphs. We also show that these graphs are bipartite. In Section 4 we use graph
products to demonstrate that for any k ≥ 1 and any d ≥ 2 there exists a k-SI graph of
diameter d. In the subsequent section we give a sharp upper bound for the maximum
degree of a k-SI graph of a given order. In Section 5 we bound the size of k-SI graphs
in general and in the special case when gcd(∆(G), k) = 1.

2 Preliminaries

Let G = (V (G), E(G)) be a graph. The order and the size of G will be denoted by
n(G) and m(G). The degree of v ∈ V (G) is denoted by dG(v), and ∆(G) and δ(G)
denote the maximum and the minimum degree in G, respectively. The distance dG(u, v)
between vertices u and v of a graph G is the minimum length between the u, v-paths.
The eccentricity εG(v) of a vertex v is the maximum distance between v and the other
vertices in G. The diameter diam(G) and the radius rad(G) are the maximum and the
minimum eccentricity of vertices in G, respectively. For a positive integer k we will use
the notation [k] = {1, . . . , k}.

We introduce the degree complexity Cd(G) of G as the number of distinct degrees
in G. (For a general approach to the concept of the complexity of a graph invariant,
see for example [7].) Note that Cd(G) = 1 if and only if G is regular. Note also that
every graph has at least two vertices of the same degree, hence Cd(G) ≤ n(G)− 1.

For a k-SI graph G we set

Ai = {u ∈ V (G) : dG(u) = ∆(G)− ik}, i ∈ {0, 1, . . . , Cd(G)− 1} .
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Since G is a k-SI graph, the sets Ai are nonempty, pairwise disjoint, and each of them
induces an edgeless graph. We now derive inequalities on ar = |Ar|, which will be
useful in the rest of the paper.

Since the sets Ai are pairwise disjoint, n(G) =
∑Cd(G)−1

r=0 ar, where Cd(G) = ∆−δ
k

+1.
Further, if u ∈ A0 and v ∈ ACd(G)−1, then a vertex adjacent to u is of degree ∆(G)−k,
and a vertex adjacent to v is of degree δ(G) + k. That is, NG(u) ⊆ A1 and NG(v) ⊆
ACd(G)−2, which in turn implies

a1 ≥ ∆(G) (1)

and
aCd(G)−2 ≥ δ(G) . (2)

Similarly, if i ∈ [Cd(G)− 2] and w ∈ Ai, then N(w) ⊆ Ai−1 ∪Ai+1, which yields

∆(G)− ik ≤ ai−1 + ai+1, i ∈ [Cd(G)− 2] . (3)

For 0 ≤ i ≤ Cd(G)− 1, let E(Ai) denote the set of edges incident with a vertex in
Ai. Since Ai is an independent set, we have |E(Ai)| = ai(∆ − ik). Furthermore, by
definition, E(Ai) ⊆ E(Ai−1 ∪Ai+1) for i ∈ [Cd(G)− 1], hence

ai(∆(G)− ik) ≤ ai−1(∆(G)− (i− 1)k) + ai+1(∆(G)− (i+ 1)k) . (4)

For the vertices of the minimum and the maximum degree we respectively have E(A0) ⊆
E(A1) and E(ACd(G)−1) ⊆ E(ACd(G)−2), therefore

a0∆(G) ≤ a1(∆(G)− k) (5)

and
aCd(G)−1δ(G) ≤ aCd(G)−2(δ(G) + k) . (6)

Note that the equalities in (5) and (6) hold if and only if Cd(G) = 2.
By (3) we have a0 + a2 ≥ ∆(G)− k. If a0 + a2 = ∆(G)− k, then

∆(G)(∆(G)− k) ≤ a1(∆(G)− k) (by (1))
≤ a0∆(G) + a2(∆(G)− 2k) (by (4))
= ∆(G)(a0 + a2)− 2ka2

= ∆(G)(∆(G)− k)− 2a2k .

We can conclude that if a0+a2 = ∆(G)−k, then a2 = 0. Hence, if a2 > 0 (equivalently
Cd(G) ≥ 3), then

a0 + a2 ≥ ∆(G)− k + 1 . (7)

To conclude the preliminaries, we prove the next basic result on k-SI graphs which
was for the case k = 1 established in [18, Lemma 3], and for the case k = 2 in [15,
Theorem 3].
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Proposition 2.1 If k ≥ 1 and G is a k-SI graph, then G is bipartite.

Proof. Suppose on the contrary that G contains on odd cycle whose consecutive ver-
tices are v0, v1, . . . , v2t. We may assume that dG(v0) = min{dG(vi) : 0 ≤ i ≤ 2t}. Since
G is a k-SI graph, dG(vi) ≡ dG(v2t−i+1) mod 2k. Thus vt ≡ vt+1 mod 2k, but this is
not possible as vtvt+1 ∈ E(G). �

Corollary 2.2 The unique k-SI graph G of diameter 2 is G ∼= Kn(G)+k

2
,
n(G)−k

2

.

Proof. Let G be a k-SI graph with diam(G) = 2. By Proposition 2.1, the graph G is
bipartite, which in turn implies that G is a complete bipartite graph. As G is a k-SI
graph, this means that G ∼= Km,m+k for some integer m. Therefore, This implies that
n(G) = 2m(G) + k, so that G ∼= Kn+k

2
,n−k

2
. �

3 Constructing k-SI graphs using graph produces

When dealing with new mathematical structures, it is a desirable to first demonstrate
that they actually exist. Several examples of k-SI graphs have been already presented
in [15], with a focus on 2-SI graphs. In this section we show that for any k ≥ 2 and
any diameter d ≥ 2 there are graphs G with diam(G) = d which are k-SI graphs. For
this sake we will use Cartesian and lexicographic products of graphs. Before we do
that, let’s look at two sporadic families of such graphs which are introduced in [8] for
a different purpose.

Let p, q ≥ 2. Then the graph Γp,q consists of q induced subgraphs K2,p arranged in
a cyclic structure as shown in Fig. 1. The graph Hp,q consists of q induced subgraphs
K2,p and q induced subgraphs K2,2 alternately arranged in a cyclic structure as shown
in Fig. 2. Then Γp,q is a (2p − 2)-SI graph of diameter q and Hp,q is a p-SI graph of
diameter 2q.

Recall that the Cartesian product G�H of two graphs G and H is the graph with
V (G�H) = V (G) × V (H), along with the condition that two vertices (g, h) and
(g′, h′) ∈ V (G) × V (H) are adjacent if g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and
h = h′. In [15, Theorem 5] it was shown that the Cartesian product of two 2-SI graphs
is a 2-SI graph; moreover, it was left as an exercise to the reader that the same holds
for two k-SI graphs. We show that a more general statement holds.

Proposition 3.1 If G and H are graphs, then G�H is a k-SI graph if and only if

both G and H are k-SI graphs.
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Figure 1: The graph Γp,q

Figure 2: The graph Hp,q

Proof. Assume that G�H is a k-SI graph. Let gg′ ∈ E(G) and h ∈ V (H). Since
G�H is a k-SI graph and by the fact dG�H((g, h)) = dG(g) + dH(h), we have

|dG�H((g, h))− dG�H((g
′, h))| = |dG(g)− dG(g

′)| = k.

Thus G is a k-SI graph. Analogously, H is a k-SI graph.
Assume now that G and H are k-SI graphs and let (g, h)(g, h′) ∈ E(G�H). Since

H is a k-SI graph, we have k = |dH(h) − dH(h
′)| = |dG�H((g, h)) − dG�H((g, h

′))|.
Similarly, since G is a k-SI graph, for an edge (g, h)(g′, h) ∈ E(G�H) we have k =
|dG(g)− dG(g

′)| = |dG�H((g, h))− dG�H((g
′, h))|. �

We next consider the lexicographic product G ◦ H of two graphs G and H which
also has V (G�H) = V (G) × V (H), and (g, h)(g′, h′) ∈ E(G) ◦ V (H) if g = g′ and
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hh′ ∈ E(H), or gg′ ∈ E(G). We recall that if G is not complete (and connected), then
diam(G ◦ H) = diam(G) [19]. Denoting by Kt the complement of Kt, we have the
following result.

Proposition 3.2 If G is a k-SI graph, then G ◦Kt is a (kt)-SI graph.

Proof. Since the second factor of the lexicographic product considered is edgeless, an
arbitrary edge of G◦Kt is of the form (g, h)(g′, h′), where gg′ ∈ E(G) and h, h′ ∈ V (Kt).
Then, by the definition of the lexicographic product and the assumption that G is a
k-SI graph, we have

|dG◦H((g, h))− dG�H((g
′, h′))| = |t · dG(g)− t · dG(g

′)|

= t · |dG(g)− t · dG(g
′)| = kt ,

which is exactly what we wanted to see. �

Theorem 3.3 For any k ≥ 1 and any d ≥ 2, there exists a k-SI graph of diameter d.

Proof. If m ≥ 2, then the complete bipartite graph Km,m+k is a k-SI graph for any
k ≥ 1. This settles the case d = 2 and all k ≥ 1.

Let next G be a 1-ST graph of diameter 3, say the graph presented in [12, Fig. 1].
Then by Proposition 3.2, the lexicographic product G ◦ Kk is a k-SI graph for any
t ≥ 1. Since diam(G ◦Kk) = 3, this settles the case d = 3 and all k ≥ 1.

Proceeding by induction, let k ≥ 1 and d ≥ 4. Select an arbitrary k-SI graph G

with diam(G) = 2 and an arbitrary k-SI graph H with diam(H) = d − 2. Then by
Proposition 3.1, the Cartesian product G�H is a k-SI graph. Since diam(G�H) =
diam(G) + diam(H) = d we are done. �

Note that the proof method of Theorem 3.3 can be used to obtain different infinite
families of k-SI graphs. Just as an example, if k ≥ 1 and t ≥ 2 are fixed, then
Km,m+k ◦Kt is a (kt)-SI graph of diameter 2 for any m ≥ 2.

However, for certain classes of graphs, not all diameters are realizable, as the fol-
lowing result shows.

Proposition 3.4 k-SI trees and k-SI unicyclic graphs are of even diameter.

Proof. Suppose that T is a k-SI tree of odd diameter with diametrical path on the
vertices v1, v2, . . . v2t. Clearly, dT (v1) = dT (v2t) = 1. Since T is a k-SI graph, d(vi) ≡
d(v2t−i+1) mod 2k. This implies that dT (vt) ≡ dT (vt+1) mod 2k, a contradiction.
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Let next G be a k-SI unicyclic graph, and let C be its unique cycle C. Let P be a
diametrical path of G. If C contains none of the end vertices of P , then end vertices
of P are of degree 1. By the above argument we get that the length of P is even.
Otherwise, one of the end vertices of P , say u, is located on C. If dG(u) = 2, then the
two neighbours of u are of degree k + 2. Thus we can find another diametrical path
whose both end vertices are of degree 1 and we can conclude as above that diam(G) is
even. Finally, if dT (u) ≥ 3, then we can prolong P with a vertex not on C and adjacent
to u. So this case cannot happen. �

4 Bounding maximum degree in k-SI graphs

In this section we give a sharp upper bound on the maximum degree of a k-SI graph
of a given order. To prove it, we will use the findings from the proof of the next result.
For it we recall that if G is a k-SI graph, then Ai is the set of vertices of G of degree
∆(G)− ik and that ai = |Ai|.

Proposition 4.1 Let G be a k-SI graph. If k ≡ ∆(G) mod 2, then m(G) is even.

Proof. By Proposition 2.1, G is bipartite. Let X, Y be the bipartition of G, where X

contains a maximum degree vertex. If ∆(G) is even, then the evenness of m(G) follows
from the equality

m(G) =
∑

u∈X

dG(u) =
∑

i≥0

a2i(∆(G)− (2i)k) . (8)

On the other hand, we also have the equality

m(G) =
∑

v∈Y

dv(v) =
∑

i≥0

a2i+1(∆(G)− (2i+ 1)k) , (9)

from which the evenness of m(G) follows when ∆(G) is odd. �

The main result of this section bounds the maximum degree of k-SI graphs and
reads as follows.

Theorem 4.2 If G is a k-SI graph, then

∆(G) ≤

⌊

n(G) + k

2

⌋

,

where the equality holds if and only if G ∼= Kn(G)+k

2
,
n(G)−k

2
.
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Proof. Using (2) we have

m(G) =
∑

i≥0

a2i+1(∆(G)− (2i+ 1)k)

= a1(∆(G)− k) +
∑

i≥1

a2i+1(∆(G)− (2i+ 1)k)

≥ a1(∆(G)− k). (10)

Using (1) and (2) and the fact
∑Cd(G)−1

i≥0 ai = n(G), we further get

2m(G) =

Cd(G)−1
∑

i≥0

ai(∆(G)− ik) = ∆(G)
∑

i≥0

ai − ka1 −

Cd(G)−1
∑

i=2

ikai

≤ ∆(G)n(G)− ka1. (11)

Hence, from (10), (11), and (1) we obtain

n(G)∆(G) ≥ a1(2∆(G)− k) ≥ ∆(G)(2∆(G)− k) , (12)

which implies ∆(G) ≤
⌊

n(G)+k

2

⌋

. This proves the theorem’s inequality. Assume now
that the equality holds. We distinguish two cases.

Case 1: n(G) ≡ k mod 2.
In this case, ∆(G) = n(G)+k

2
. Since the equalities in (10), (11) and (12) must hold, we

infer that a1 = ∆(G), a2 = 0, and a0 = n(G) − ∆(G) = n(G)−k

2
. On the other hand,

since the equality in (10) holds and ∆(G) = n(G)+k

2
, we get G ∼= Kn(G)+k

2
,
n(G)−k

2

.

Case 2: n(G) and k have different parities.
Now ∆(G) = n(G)+k−1

2
. If a1 ≥ ∆(G) + 1, then by (12),

(2∆(G)− k + 1)∆(G) = n(G)∆(G) ≥ a1(2∆(G)− k)

≥ (∆(G) + 1)(2∆(G)− k + 1) ,

and hence ∆(G) ≤ k, a contradiction. Thus a1 = ∆(G). If a2 = 0, then since
a0 + a1 = n(G), we get a0 = ∆(G)− k + 1. By (8) and (9) it follows that

(∆(G)− k + 1)∆(G) = a0∆(G) = m(G) = a1(∆(G)− k) = ∆(G)(∆(G)− k) ,

another contradiction. Therefore a2 > 0 which in turn implies that G is not a complete
bipartite graph, so we are done. �
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5 Bounding size in k-SI graphs

In this section we bound the size of k-SI graphs. In our first main result we give a
sharp general upper bound, and in the second main result we give an upper bound for
the case when gcd(∆(G), k) = 1.

Theorem 5.1 If G is a k-SI graph, then

m(G) ≤
n∆(G)(∆(G)− k)

2∆− k
,

where the equality holds if and only if Cd(G) = 2.

Proof. Combining (8) and (9) we get

2m(G) = n(G)(∆(G)− k) + a0k −
(

ka2 + 2ka3 + · · ·+ (t− 1)kat

)

,

where t = Cd(G)− 1. It follows that 2m(G) ≤ n(G)(∆(G)− k) + a0k. Hence by (5),

2m(G) ≤ (∆(G)− k)

(

n(G) +
a1k

∆(G)

)

. (13)

Using (4) we get a0 + a1 + a2 ≤ n(G) and ∆(G)a0 + (∆(G) − 2k)a2 ≥ (∆(G)− k)a1.
Using these inequalities we can estimate as follows:

∆(G)(n(G)− a1) ≥ ∆(G)(a0 + a2) ≥ ∆(G)(a0 + a2)− 2ka2

= ∆(G)a0 + (∆(G)− 2k)a2

≥ (∆(G)− k)a1 .

From here we get

a1 ≤
n(G)∆(G)

2∆(G)− k
. (14)

Combining (13) with (14) we get the required inequality.
The equalities in (13) and in (14) hold if and only if a2 = 0, that is, if and only if

Cd(G) = 2. �

In view of Proposition 2.1, the only k-SI graphs of radius 1 are stars. In the next
consequence of Theorem 5.1 we may thus restrict to graphs of radius at least 2. To
state the corollary, we recall a couple of well-established concepts.

The transmission TrG(v) of a vertex v ∈ V (G) is the sum of distances between v

and the other vertices of G. The transmission of a vertex is one of the basic concepts
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in metric graph theory, cf. [21, 22]. We note in passing that stepwise transmission
irregular graphs were extensively considered [8, 9, 13, 14, 16, 23]. The celebrated
Wiener index [20] W (G) of G can then be expressed as W (G) = 1

2

∑

v∈V (G) TrG(v).
Finally, G is d-self-centered if εG(v) holds for all vertices of G.

Corollary 5.2 If G is a k-SI graph with rad(G) ≥ 2, then

W (G) ≥ n(G)

[

n(G)−
∆(G)(∆(G)− k)

2∆(G)− k
− 1

]

.

Moreover, the equality holds if and only if G is a 2-self centered graph with Cd(G) = 2.

Proof. If v ∈ V (G), then since ε(v) ≥ 2, we have

TrG(v) ≥ dG(v) + 2(n(G)− 1− dG(v)) = 2(n(G)− 1)− dG(v) . (15)

Summing over all vertices and having in mind that 2W (G) =
∑

v∈V (G) TrG(v) we get

W (G) ≥ n(G)(n(G)− 1)−m(G) .

The desired inequality now follows from Theorem 5.1.
The equality in (15) holds if and only if G is a 2-self centered graph, while the

equality in Theorem 5.1 holds if and only if Cd(G) = 2, from which the equality
assertion of the corollary follows. �

If k ≥ 2 and n ≥ 2, then Kn+k,n is a k-SI graph which fulfills the conditions for
equality in Corollary 5.2.

To prove the announced second main result, we need the following auxiliary result.

Lemma 5.3 If G is a k-SI graph, Cd(G) = 2, and gcd(∆(G), k) = 1, then 2∆(G)− k

divides n(G).

Proof. Cd(G) = 2 implies a2 = 0. Thus a0 + a1 = n(G) and ∆(G)a0 = (∆(G)− k)a1.
It follows that

a1 =
n∆(G)

2∆(G)− k
.

Since ∆(G) and 2∆(G)− k are co-prime, 2∆(G)− k divides n(G). �

Theorem 5.4 If G is a k-SI graph, G 6= K∆(G),∆(G)−k, and gcd(∆(G), k) = 1, then

m(G) ≤ (∆(G)− k)(n(G)−∆(G) + k − 1) . (16)

Moreover, equality holds if and only if Cd(G) = 3 and |X| = ∆(G)− k+1, where X is

the bipartition part of G that contains a maximum degree vertex.
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Proof. Assume first that Cd(G) = 2. Then a2 = 0 and 2∆(G) − k divides n(G) by
Lemma 5.3. It follows that 2∆(G)−k ≤ n(G). If n(G) = 2∆(G)−k, then Theorem 4.2
implies that G is isomorphic to K∆(G),∆(G)−k, which we have excluded in the theorem’s
statement. Hence 2∆(G)− k ≤ n(G)

2
, and applying Theorem 5.1 we obtain

m(G) =
n(G)∆(G)(∆(G)− k)

2∆(G)− k
=

(

n(G)−
n(G)(∆(G)− k)

2∆(G)− k

)

(∆(G)− k)

≤

(

n(G)−
(4∆(G)− 2k)(∆(G)− k)

2∆(G)− k

)

(∆(G)− k)

= (n(G)− 2∆(G) + 2k)(∆(G)− k)

≤ (n(G)−∆(G) + k − 1)(∆(G)− k) ,

(17)

where we have used that ∆(G) ≥ k + 1. If the equalities in (17) hold, then we have
n(G) = 4∆(G)−2k and ∆(G) = k+1. Hence δ(G) = ∆(G)−k = 1. Therefore, in this
case, G is isomorphic to K∆,1. As this was excluded, we can conclude that Cd(G) = 2
is not possible.

In the rest we may thus assume that Cd(G) ≥ 3. Hence a2 > 0 and a0 + a2 ≥
∆(G)− k + 1 by (7). Then

m(G) ≥ a0∆(G) + a2(∆(G)− 2k) = (a0 + a2)(∆(G)− k) + a0k − a2k

≥ (∆(G)− k)(∆(G)− k + 1) + a0k − a2k . (18)

Moreover, we have

2m(G) = a0∆(G) + a1(∆(G)− k) + · · ·+ atδ(G)

= n(∆(G)− k) + a0k − a2k − 2a3k − · · · − (t− 1)atk ,

where t = Cd(G)− 1. Thus

2m(G) ≤ n(G)(∆(G)− k) + a0k − a2k . (19)

From (18) and (19) we get the required inequality. The equalities in (18) and (19) hold
if and only if a3 = 0 and a0 + a2 = ∆(G) − k + 1. Thus, the equality in (16) holds if
and only if Cd(G) = 3 and |X| = a0 + a2 = ∆(G)− k + 1 because a2 > 0. �
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