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Abstract

Mutual-visibility sets were motivated by visibility in distributed systems and

social networks, and intertwine with several classical mathematical areas. Mono-

tone properties of the variety of mutual-visibility sets, and restrictions of such

sets to convex and isometric subgraphs are studied. Dual mutual-visibility sets

are shown to be intrinsically different from other types of mutual-visibility sets.

It is proved that for every finite subset Z of positive integers there exists a graph

G that has a dual mutual-visibility set of size i if and only if i ∈ Z ∪ {0}, while

for the other types of mutual-visibility such a set consists of consecutive integers.

Visibility polynomials are introduced and their properties derived. As a surprise,

every polynomial with nonnegative integer coefficients and with a constant term

1 is a dual visibility polynomial of some graph. Characterizations are given for

total mutual-visibility sets, for graphs with total mutual-visibility number 1, and

for sets which are not total mutual-visibility sets, yet every proper subset is such.

Along the way an earlier result from the literature is corrected.
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1 Introduction

Let G = (V (G), E(G)) be a graph and X ⊆ V (G). Then vertices x and y of G are X-
visible, if there exists a shortest x, y-path P such that no internal vertex of P belongs
to X. The set X is a mutual-visibility set if any two vertices from X are X-visible,
while X is a total mutual-visibility set if any two vertices from V (G) are X-visible.
Let X = V (G) \ X. Then X is a dual mutual-visibility set if any two vertices from
X and any two vertices from X are X-visible. Finally, X is an outer mutual-visibility
set if any two vertices from X are X-visible, and any two vertices x ∈ X, y ∈ X
are X-visible. The cardinality of a largest mutual-visibility set (resp. total/dual/outer
mutual-visibility set) is the mutual-visibility number (resp. total/dual/outer mutual-
visibility number) µ(G) (resp. µt(G), µd(G), µo(G)) of G. A mutual-visibility set of
cardinality µ(G) is called a µ-set. We have analogous meaning for µt-sets, µd-sets, and
µo-sets. The key definitions are summarized in Table 1, where for arbitrary vertices
x, y ∈ V (G), we denote by “+” if x and y are required to be X-visible, and by “−” if
it is not required.

x ∈ X,
y ∈ X

x ∈ X,
y ∈ X

x ∈ X,
y ∈ X

maximum
cardinality

mutual-visibility + − − µ
dual mutual-visibility + − + µd

outer mutual-visibility + + − µo

total mutual-visibility + + + µt

Table 1: Varity of visibility definitions

Mutual-visibility sets were introduced by Di Stefano in [14] motivated by mutual
visibility in distributed computing and social networks. Although the motivation came
from theoretical computer science, it is a graph theoretical concept. It needs to be said
that the term mutual-visibility is also used in other contexts, for instance in robotics,
where the mutual visibility problem asks for a distributed algorithm that repositions
robots to a configuration where they all can see each other, cf. [1].

The graph theoretic mutual-visibility has received a lot of interest and was inves-
tigated in a series of papers [2, 4, 5, 8, 9, 11–13, 19, 20, 26]. In addition to being an
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interesting concept, the fact that the topic is intertwined with several other areas has
also contributed to the interest. These include the Zarankiewicz problem [11], Turán
type problems on graphs and hypergraphs [4, 6, 13], and a close relationship with the
Bollobás-Wessel theorem [3,29] as established in [5]. Also, Axenovich and Liu [2] proved
that µ(Qn) ≥ 0.186 ·2n by using a recent breakthrough result on daisy-free hypergraphs
due to Ellis, Ivan, and Leader [15].

The investigations from [12] raised the need to introduce the total mutual-visibility
which was in turn studied in [2,4,6,22,28]. The remaining two types of visibility were
introduced in [10] and further considered in [5, 20, 26].

In this paper we first consider monotone properties of the variety of mutual-visibility
sets, and restrictions of such sets to convex and isometric subgraphs. Along the way an
earlier result from the literature is corrected. In Section 3 we introduce visibility poly-
nomials, show some examples, and derive some properties of these polynomials. Since
it is observed in Section 2 that dual mutual-visibility sets are intrinsically different from
other types of mutual-visibility sets, we introduce in Section 4 the dual visibility spec-
trum as the counting vector of dual mutual-visibility sets of different sizes. The main
result of the section shows that the nonnegative entries can be arbitrarily prescribed
and a graph with this visibility spectrum exists. In other words, every polynomial
with nonnegative integer coefficients and with a constant term 1 is a dual visibility
polynomial of some graph. In the final section we consider total mutual-visibility sets.
We give a general characterization, describe graphs G with µt(G) = 1, and characterize
sets which are not total mutual-visibility sets, yet every proper subset is such.

In the rest of the introduction we give additional definitions needed. If G is a graph
and v ∈ V (G), then NG(v) denotes the set of vertices adjacent to v. The degree degG(v)
of v is |NG(v)|.

For vertices u and v of G, the length of a shortest u, v-path is the distance between u
and v and denoted by dG(u, v). A subgraph H of G is isometric, if dH(u, v) = dG(u, v)
for every two vertices u and v of H . Further, H is convex, if for every two vertices
of H , all shortest u, v-paths belong to H . A graph G is geodetic if the shortest path
between each pair of vertices is unique, cf. [16, 25, 27].

Finally, unless stated otherwise, all graphs in this paper are connected, and for a
positive integer k we use the notation [k] = {1, . . . , k}.

2 Monotonicity of mutual-visibility sets

In this section, for a given visibility set we consider monotonicity of its subsets and
monotonicity of its restriction to convex and isometric subgraphs. We recall the previ-
ous results and round off the picture so that all four variants are treated systematically.
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Applying one of our findings we also correct an earlier result from the literature.
Our starting point is the following result.

Proposition 2.1 [10, Proposition 2.5] If X is a mutual-visibility set (resp. outer,
total mutual-visibility set) of a graph G and Y ⊆ X, then Y is a mutual-visibility set
(resp. outer, total mutual-visibility set) of G.

Proposition 2.1 does not hold for dual mutual-visibility sets. For instance, if x and
y are adjacent vertices of C6, then {x, y} is a µd-set of C6, but neither {x} nor {y} is
a dual mutual-visibility set.

Dual mutual-visibility therefore stands out because in contrast to the other three
types of visibility sets, they are not necessarily closed for taking subsets. On the other
hand, all four concepts are monotone for subsets in the following sense.

Proposition 2.2 [13, Lemma 5.4] If X is a mutual-visibility set (resp. outer, dual, or
total mutual visibility set) of a graph G and x ∈ X, then X \ {x} is a mutual-visibility
set (resp. outer, dual, or total mutual visibility set) of G− x.

In the seminal paper on the mutual-visibility, the following useful property was
observed.

Lemma 2.3 [14, Lemma 2.1] Let H be a convex subgraph of G and let X be a mutual-
visibility set of G. Then X ∩ V (H) is a mutual-visibility set of H.

We now show that Lemma 2.3 extends to all the other three mutual-visibility con-
cepts.

Lemma 2.4 Let X be a dual (outer, total) mutual-visibility set of G. If H is a convex
subgraph of G, then X ∩ V (H) is a dual (outer, total) mutual-visibility set of H.

Proof. Let X ⊆ V (G) and Y = X ∩ V (H).
Assume first that X is a dual mutual-visibility set of G. We claim that Y is a

dual mutual-visibility set of H . By Lemma 2.3, Y is a mutual-visibility set of H ,
hence any two vertices from Y are Y -visible in H . Consider two vertices u and v from
V (H) \ Y . In G, there exists a shortest u, v-path P with all internal vertices from
V (G) \X. Since H is a convex subgraph of G, the path P lies completely in H . As
V (H) \ Y = V (H) \X, the vertices u and v are Y -visible in H . We can conclude that
Y is a dual-mutual-visibility set of H .

If X is an outer mutual-visibility set of G, then, using Lemma 2.3 again, we can
proceed as above to prove that Y is an outer mutual-visibility set of H . Finally, if X

4



is a total mutual-visibility set of G, then combining the above arguments we get that
Y is a total mutual-visibility set of H . �

Let Gn, n ≥ 2, be the graph obtained from n disjoint 5-cycles by selecting one
edge in each of them and identifying these n edges into a single edge uv. Note that
degGn

(u) = degGn
(v) = n + 1 while the other vertices have degree 2. In [10, Proposi-

tion 5.1] it was stated that that µd(Gn) = n + 1. We now apply Lemma 2.4 to show
that this is not the case. The correct result reads as follows.

Proposition 2.5 If n ≥ 2, then µd(Gn) = 2.

Proof. Let X be a dual mutual visibility set of Gn. Note first that a dual mutual-
visibility set of C5 is either the empty set or consists of two adjacent vertices. Since
each 5-cycle of Gn is convex, Lemma 2.4 implies that X restricted to an arbitrary
5-cycle of Gn is either empty or contains two adjacent vertices.

Let the vertices of the ith cycle ofGn, i ∈ [n], be u, xi, yi, zi, v. Assuming thatX 6= ∅,
by the above argument, at least one of the 5-cycles of Gn has exactly two vertices in
X. We may assume without loss of generality that this is the cycle C : u, x1, y1, z1, v.
Up to symmetry, there are three cases to be considered.

Assume first that X ∩ V (C) = {u, v}. Since u and v lie in each of the 5-cycles,
the above argument yields that X cannot contain further vertices. We may observe
that this case is not possible since then x1 and x2 cannot see each other. Assume next
that X ∩ V (C) = {u, x1}. Then the cycle u, x2, y2, z2, v must contain another vertex
of X which is adjacent to u, and this can only be x2. But then x1 and x2 both belong
to X and are not X-visible, hence this case is also not possible. The last case to be
considered is X∩V (C) = {x1, y1}. There is nothing to show if X has no vertices in the
other 5-cycles, hence assume that, without loss of generality, X ∩ {u, x2, y2, z2, v} 6= ∅.
As u, v /∈ X, we either have x2, y2 ∈ X or y2, z2 ∈ X. In the first case x2 and y1 are
not X-visible, in the second case y1 and y2 are not X-visible. We can conclude that if
X is nonempty, then X intersects only one 5-cycle.

To complete the argument we claim that X = {x1, y1} is a dual mutual-visibility
set. Clearly, x1 and y1 are X-visible. Consider next arbitrary vertices x, y ∈ V (Gn) \
{x1, y1}. If x and y lie on the same 5-cycle, they are X-visible. And if x and y lie
on different 5-cycles, then every shortest path between them lies completely inside
V (Gn) \X. �

Lemma 2.4 is no longer true if instead of the convexity of the subgraph H we
assume that H is isometric. Consider Kn,n, n ≥ 4. Then it is not difficult to see that
µ(Kn,n) = µo(Kn,n) = µd(Kn,n) = µt(Kn,n) = 2(n− 1), and that every largest mutual-
visibility set X is of the form X = V (Kn,n) \ {u, v}, where u and v belong to different
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bipartition sets of Kn,n. The subgraph H = Kn,n \ {u, v} ∼= Kn−1,n−1 is isometric, but
X ∩ V (H) = V (H) is clearly not a mutual-visibility set of H (and hence neither an
outer, a dual, or a total mutual-visibility set).

We also emphasize that the “converse” of Lemma 2.4 does not hold. That is, if
some set of vertices has the required visibility property on a convex subgraph, it is not
always extendable to a set having the same property in the whole graph. For instance,
in C7, two adjacent vertices form a convex subgraph and its vertices are of course a
total/dual/outer mutual-visibility set of this subgraph. However, two adjacent vertices
of C7 do not lie together in a total, a dual, or an outer mutual-visibility set.

We now turn to isometric subgraphs. Note that two adjacent vertices of Cn, n ≥ 7,
form a mutual-visibility set, but the remaining subgraph is not isometric. Similarly,
two antipodal vertices x and x′ of Cn, n ≥ 6, form a µo-set of Cn, but the graph
Cn − {x, x′} is not even connected. On the other hand, we have the following positive
result.

Proposition 2.6 Let G be a connected graph. If X ⊆ V (G) is a dual or a total
mutual-visibility set of G, then the subgraph G−X is isometric.

Proof. Assume that X is a dual mutual-visibility set of G and consider any two vertices
x and y from V (G) \X. Since X is a dual mutual-visibility set, the vertices x and y
are X-visible, say via a x, y-path P . But then the path P is also a shortest x, y-path
in G−X, which already implies that G−X is isometric. The same argument applies
if X is a total mutual-visibility set. �

Proposition 2.6 cannot be strengthened by replacing “isometric” with “convex.” For
instance, if x is a vertex of C4, then {x} is a total mutual-visibility set (and hence also
a dual mutual-visibility set), but C4 − x is not convex.

3 Visibility polynomials

If G is a graph and X ⊆ V (G), then X is a general position set [7, 24] if for any two
vertices of X, no shortest path between them contains an internal vertex from X. In
order to better understand these sets, the general position polynomial was introduced
in [17]. Here we extend this idea to mutual-visibility sets and pose:

Definition 3.1 The visibility polynomial of a graph G is the polynomial

V(G) =
∑

i≥0

rix
i ,

where ri is the number of distinct mutual-visibility sets of G with cardinality i.
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Clearly, the degree of V(G) is µ(G), and its constant term is 1. For instance, if
n ≥ 1, then

V(Pn) = 1 + nx+

(

n

2

)

x2 .

In a completely analogous way we define the dual visibility polynomial, the outer vis-
ibility polynomial, and the total visibility polynomial, which are, for a given graph G,
respectively denoted by Vd(G), Vo(G), and Vt(G). For paths Pn, n ≥ 3, we have

Vd(Pn) = 1 + 2x+ 3x2 ,

Vo(Pn) = 1 + nx+ x2 ,

Vt(Pn) = 1 + 2x+ x2 .

As a further example, we determine these four polynomials for balanced complete
bipartite graphs. Note that the polynomials for a general complete bipartite graph
Km,n can be obtained in the same way but by considering more cases. Here we restrict
our attention to the simpler case of Kn,n.

Proposition 3.2 For n ≥ 3, the complete bipartite graph Kn,n has the following poly-
nomials:

V(Kn,n) = ((x+ 1)n − xn)2 + 2nxn+1 + 2xn ,

Vo(Kn,n) = ((x+ 1)n − xn)2 + 2xn ,

Vd(Kn,n) = Vt(Kn,n) = ((x+ 1)n − xn)2 .

Proof. Let A and B be the partite classes of Kn,n and consider a set X ⊆ V (Kn,n). It
can be readily checked that X is a mutual-visibility set in each of the following cases:

(a) |X ∩ A| ≤ n− 1 and |X ∩B| ≤ n− 1;

(b) X = A or X = B;

(c) A ⊆ X and |X ∩B| = 1;

(d) B ⊆ X and |X ∩A| = 1.

Further, if neither of (a)-(d) holds, then X contains all vertices from one partite class
and at least two vertices, say u and v, from the other class. Then u and v are not
X-visible. Thus X is a mutual-visibility set in Kn,n if and only if X satisfies one of
(a)-(d). This in particular implies that µ(Kn,n) = 2n− 2.
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If 0 ≤ i ≤ n+1, then each i-element subset of the vertex set satisfies one of (a)-(d)
and therefore, we have ri =

(

2n
i

)

for the visibility polynomial. If n + 2 ≤ i ≤ 2n − 2,
then only case (a) can be satisfied. There are

(

n

2n−i

)

sets A′ of cardinality i such that
A ⊆ A′, and there are

(

n

2n−i

)

sets B′ of cardinality i such that B ⊆ B′. Consequently,
ri =

(

2n
i

)

− 2
(

n

2n−i

)

, which in turn implies that

V(Kn,n) =

2n−2
∑

i=0

(

2n

i

)

xi − 2

2n−2
∑

i=n+2

(

n

2n− i

)

xi

=

2n
∑

i=0

(

2n

i

)

xi − 2xn
n

∑

j=0

(

n

j

)

xj − 2nx2n−1 − x2n + 2xn + 2nxn+1 + 2nx2n−1 + 2x2n

= (x+ 1)2n − 2xn(x+ 1)n + x2n + 2xn + 2nxn+1

= ((x+ 1)n − xn)2 + 2nxn+1 + 2xn.

For the remaining part of the statement, we note that X ⊆ V (Kn,n) is an outer
mutual-visibility set if and only if condition (a) or (b) holds; and X is a dual mutual-
visibility set (or a total mutual-visibility set) if and only if (a) holds. Then, respectively
subtracting 2nxn+1 and 2nxn+1+2xn from V(Kn,n) we obtain the polynomials Vo(Kn,n)
and Vd(Kn,n) = Vt(Kn,n). �

Below we give two general properties of the polynomials V, Vo, and Vt. For a real
number x and an integer k with x ≥ k > 0, the binomial coefficient

(

x

k

)

is defined as

(

x

k

)

=

k
∏

s=1

x− s + 1

s
.

The “shadow theorem” of Kruskal [21] and Katona [18] was reformulated by Lovász
in [23] as follows:

Theorem 3.3 [18,21,23] Let F be a family of k-element sets with |F| =
(

x

k

)

for some
real number x ≥ k. Then the number of different (k − 1)-element sets covered by F is
at least

(

x

k−1

)

.

Theorem 3.3 and Proposition 2.1 imply the following general property of the coef-
ficients in the polynomials V(G), Vo(G), and Vt(G).

Proposition 3.4 Let G be a graph and let P ∈ {V,Vo,Vt}. Suppose that ri and ri−1

are the coefficients of xi and xi−1, respectively, in P(G). If ri =
(

z

i

)

for a real number
z, then ri−1 ≥

(

z

i−1

)

.
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The second general property of the polynomials V(G), Vo(G), and Vt(G) is that
they can be deduced from the set of all maximal visibility sets as follows, where we set
P(X) = (1 + x)|X| for X ⊆ V (G) and P ∈ {V,Vo,Vt}.

Proposition 3.5 Let G be a graph and let P ∈ {V,Vo,Vt}. If X1, . . . , Xn is the set
of maximal mutual-visibility (resp. outer mutual-visibility, resp. total mutual-visibility)
sets of G, then

P(G) =

n
∑

k=1

(−1)k−1
∑

{i1,...,ik}⊆[n]

P(Xi1 ∩ · · · ∩Xik) .

Proof. By Proposition 2.1, any subset of a mutual-visibility set X is a mutual-visibility
set. Hence the contribution of X to V(G) is (1 + x)|X|. The formula for V(G) then
follows by the inclusion-exclusion principle. The same argument applies to Vo(G) and
to Vt(G). �

As an example of the use of Proposition 3.5, we will determine Vo(P ), where P is
the Petersen graph. We first infer the following.

Proposition 3.6 Let P be the Petersen graph and X ⊆ V (P ). Then X is an outer
mutual-visibility set of P if and only if X is an independent set of P .

Proof. Assume that X is an outer mutual-visibility set. If two vertices x and y from X
are adjacent, and z is a neighbor of y different from x, then x and z are not X-visible
as P is geodetic, a contradiction.

Conversely, assume that X is an independent set of P . If x, y ∈ X, then they are
clearly X-visible. Assume now that x ∈ X and y /∈ X. There is nothing to show if
xy ∈ E(P ). Assume hence that dP (x, y) = 2 and let z be the common neighbor of x
and y. Since X is independent and x ∈ X, we have z /∈ X. We can conclude that a
vertex x ∈ X and a vertex y /∈ X are also X-visible. �

Concerning Proposition 3.6 we remark that one direction of it is a consequence
of [13, Lemma 5.2] which asserts that in a graph of girth at least 5 every outer mutual-
visibility set is an independent set.

Consider the usual drawing of P and let u0, u1, u2, u3, u4 be the consecutive vertices
of its outer 5-cycle, and v0, v1, v2, v3, v4 their respective neighbors in the inner 5-cycle.
Using Proposition 3.6 and the fact that the independence number of P is 4, it is
straightforward to establish that the only µo-sets of P are:

{u0, u2, v3, v4}, {u1, u3, v4, v0}, {u2, u4, v0, v1}, {u3, u0, v1, v2}, {u4, u1, v2, v3} .

9



In addition, there are precisely ten maximal outer mutual-visibility sets of P of size 3,
they are:

{u0, v2, v3}, {u1, v3, v4}, {u2, v4, v0}, {u3, v0, v1}, {u4, v1, v2},

{v0, u1, u4}, {v1, u2, u0}, {v2, u3, u1}, {v3, u4, u2}, {v4, u0, u3} .

From here, by applying Proposition 3.5, we get:

Vo(P ) = 1 + 10x+ 30x2 + 30x3 + 5x4 ,

where the coefficient at x3 was obtained with computer support.
We next determine the other three polynomials of P . For V(P ), we first state the

following result which is of independent interest.

Proposition 3.7 Let G be a geodetic graph and X ⊆ V (G). Then X is a general
position set if and only if X is a mutual-visibility set.

Proof. A general position set is a mutual-visibility set in general. Hence assume that
X is a mutual-visibility set and let x, y ∈ X. Then there exists a shortest x, y-path R
such that all internal vertices of R lie in V (G) \X. But since G is geodetic, R is the
unique shortest u, v-path, hence x and y lie in general position. We can conclude that
X is a general position set. �

Since P is geodetic, Proposition 3.7 implies that

V(P ) = ψ(P ) = 1 + 10x+ 45x2 + 90x3 + 80x4 + 30x5 + 5x6 ,

where ψ(P ) is the general position polynomial of P . The latter polynomial was intro-
duced in [17], where the second above equality was also deduced.

Finally, since µd(P ) = µt(P ) = 0, we have Vd(P ) = Vt(P ) = 1.

4 Gaps in the dual visibility spectrum

As observed in Section 2, a subset of a dual mutual-visibility set is not necessarily a
dual mutual-visibility set. Further, there are graphs admitting k-element dual mutual-
visibility sets but no (k − 1)-element ones. For this phenomenon, C5 is the smallest
example. We have µd(C5) = 2, but no single vertex forms a dual mutual-visibility set.
This leads to the following concept.

The dual visibility spectrum of a graphG is the vector (r0, . . . , rk), where k = µd(G),
and ri is the number of different dual mutual-visibility sets of size i in G. Equivalently,
the entries r0, . . . , rk are the coefficients of x0, . . . , xk, respectively, in Vd(G). We have
already observed that r0 = 1 for every graph.

For example, we have the following dual visibility spectra for cycles:
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• (1, 3, 3, 1) for C3;

• (1, 4, 4, 4) for C4;

• (1, 0, n) for Cn if n ∈ {5, 6}; and

• (1) for Cn with n ≥ 7.

In this section, we show that there can be arbitrarily large gaps, that is, arbitrary
zero sequences between positive entries in the dual visibility spectrum of a graph.
Moreover, the next result quite surprisingly shows that the spectrum entries can be
arbitrarily prescribed, that is, if r0 = 1, rk > 0, and the other entries are arbitrary
nonnegative integers, a graph with the given dual visibility spectrum exists.

Theorem 4.1 For every k ≥ 0 and nonnegative integers r0 = 1, r1, . . . , rk with rk > 0,
there exists a graph G such that µd(G) = k and the dual visibility spectrum of G is
(1, r1, . . . , rk).

Proof. First, we construct graphs with dual visibility spectra (1, 0, . . . , 0, 1) and (1, ℓ),
then we build a graph with the spectrum (1, r1, . . . , rk).

Construction of Ft. For every t ≥ 2, we take t − 1 5-cycles that share the edge
v0v1. For every i ∈ [t− 1], let this cycle be v0v1v2,iv3,iv4,iv0. Further, we add a vertex
v5 and edges v5v2,i, v5v3,i for every i ∈ [t − 1]. Let Yt = {v2,i : i ∈ [t − 1]} ∪ {v1}. To
finish the construction, we put a 7-cycle onto every vertex outside Yt; that is, for each
of the vertices v0, v5, v3,i, v4,i, where i ∈ [t − 1], we take six new vertices and form a
7-cycle together with the vertex itself. Vertex v0 is designated as the connecting vertex
in Ft. The construction is illustrated in Fig. 1 for the case t = 5, where the gray square
emphasizes that v0 is the connecting vertex and where the 7-cycles are shown as closed
ovals.

Remark that vertex v5 and the incident 7-cycle may be removed from the graph if
t = 2. In general, some of the 7-cycles can also be omitted from the construction such
that Claim 1 remains true.

Claim 1 For every t ≥ 2, it holds that µd(Ft) = t and the only nonempty dual mutual-
visibility set of Ft is Yt.

Proof. Suppose that X is a dual mutual-visibility set in Ft. Observe that the 7-cycles
in Ft are all convex subgraphs and that µd(C7) = 0. It follows by Lemma 2.4 that X
contains no vertices from these 7-cycles. In particular, X ⊆ Yt. Observe that each of
the t− 1 5-cycles is also a convex subgraph in Ft. A nonempty dual mutual-visibility
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v0 v1
Y5

v5

v2,1

v3,1

v4,1

Figure 1: The graph F5

set of a 5-cycle consists of two adjacent vertices. Since X ⊆ Yt, this pair of adjacent
vertices may only be v1 and v2,i. Therefore, if v1 ∈ X, then v2,i ∈ X for all i ∈ [t− 1];
and if a vertex v2,i belongs to X, we get the same conclusion. We may conclude that
X = ∅ or X = Yt. It can be checked directly that Yt is a dual mutual-visibility set in
Ft. (✷)

Construction of F1,ℓ. For every ℓ ≥ 1, take an ℓ-star with a center v0 and leaves
v1, . . . , vℓ. Then, for every two indices 1 ≤ i < j ≤ ℓ, add a vertex ui,j and the edges
ui,jvi and ui,jvj . We add edges ui,jui′,j′ for every pair of vertices with 1 ≤ i < j ≤ ℓ
and 1 ≤ i′ < j′ ≤ ℓ, that is, the vertices ui,j, 1 ≤ i < j ≤ ℓ, induce a complete
subgraph of F1,ℓ. We put a 7-cycle onto each vertex outside Y1,ℓ = {v1, . . . , vℓ} to finish
the construction. Vertex v0 is designated as the connecting vertex in F1,ℓ. We note
that F1,1 is obtained from P2 by putting a 7-cycle onto one vertex of it; F1,2 can be
described as a 4-cycle where 7-cycles are put onto two opposite vertices of the 4-cycle.
The construction is illustrated in Fig. 2 for the case ℓ = 4, where again the gray square
emphasizes that v0 is the connecting vertex and the 7-cycles are shown as closed ovals.

Claim 2 µd(F1,ℓ) = 1 and there are exactly ℓ different µd-sets of F1,ℓ, namely the sets
{v1}, . . . , {vℓ}.

Proof. Let X be a nonempty dual mutual-visibility set in F1,ℓ. Since the 7-cycles are
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Figure 2: The graph F1,4

convex subgraphs in F1,ℓ and µd(C7) = 0, we may infer X ⊆ Y1,ℓ. Suppose now that
|X| ≥ 2. Then at least two different vertices vi and vj from Y1,ℓ belong to X. Since
vi and vj are the only common neighbors of the (nonadjacent) vertices v0 and ui,j,
the latter two vertices are not X-visible that is a contradiction as both v0 and ui,j are
outside X. It shows that |X| = 1. Finally, it suffices to check directly that X = {vi}
is a dual mutual-visibility set for every i ∈ [ℓ]. (✷)

Construction of F (1, r1, . . . , rk). If k = 0, we set F (1) ∼= C7. If k ≥ 1, we take the
following graphs:

• if r1 ≥ 1, we take a copy of the graph F1,r1 ;

• for every i ≥ 2, if ri ≥ 1, we take ri copies of the graph Fi.

The set of these graphs is denoted by G. Thus, |G| =
∑k

i=2 ri if r1 = 0, otherwise
|G| = 1 +

∑k

i=2 ri. Finally, we get F (1, r1, . . . , rk), by merging the connecting vertices
of the graphs in G into one vertex v∗.

Claim 3 The dual visibility spectrum of F (1, r1, . . . , rk) is (1, r1, . . . , rk).

Proof. The statement is true for k = 0 as the dual visibility spectrum of C7 is (1).
From now on, we suppose that k ≥ 1. Let G = F (1, r1, . . . , rk). If k = 1, then G ∼= F1,r1

and the statement follows from Claim 2. If k ≥ 2, rk = 1, and ri = 0 for all i ∈ [k− 1],
then G ∼= Fk and the statement follows from Claim 1. In the remaining cases, G is
constructed from at least two graphs.

13



Let X be a dual mutual-visibility set of G. Observe that each graph Gs ∈ G is a
convex subgraph of G (with the connecting vertex ofGs renamed as v∗). By Lemma 2.3,
the set X ∩ V (Gs) is a dual mutual-visibility set in Gs.

Suppose that X contains vertices from two different graphs Gs ∈ G and Gp ∈ G. If
Gs

∼= Ft and Gp
∼= Ft′ then, by Claim 1, the sets X ∩V (Gs) and X ∩V (Gp) correspond

to the dual mutual-visibility sets Yt and Yt′ in Ft and Ft′ . Naming the vertices as in the
construction, we consider vertex v1 from Gs and v2,1 from Gp. Both vertices belong to
X, and the unique shortest path between them goes through the vertex v1 from Gp. As
the latter vertex is also included in X, the set X cannot be a dual mutual-visibility set.
In the other case, Gs

∼= F1,ℓ and Gp
∼= Ft′ . Here, we choose vertex vi from X ∩ V (Gs)

and consider the shortest path between vi from Gs and v2,1 from Gp. The contradiction
then comes from the fact that the shortest path is unique and contains vertex v1 from
X ∩ V (Gs).

We conclude that X cannot intersect two different graphs from G, and therefore,
X = ∅ orX is a nonempty dual mutual-visibility set in a graphGs ∈ G. By construction
of G and by Claims 1 and 2, the dual visibility spectrum of G is (1, r1, . . . , rk). (✷)

Claim 3 directly implies the theorem. �

The following result is a direct corollary of Theorem 4.1.

Corollary 4.2 Every polynomial with nonnegative integer coefficients and with a con-
stant term r0 = 1 is a dual visibility polynomial of some graph.

By definition, every total mutual-visibility set is a dual mutual-visibility set. All
subsets of a µt-set are total and, consequently, dual mutual-visibility sets according to
Proposition 2.1. This establishes the following statement:

Observation 4.3 If (1, r1, . . . , rk) is the dual visibility spectrum of a graph G and
i ∈ [µt(G)], then ri ≥

(

µt(G)
i

)

. In particular, there are no gaps in the dual visibility
spectrum until the entry rj with j = µt(G).

We point out a further relation between dual and total mutual-visibility sets.

Proposition 4.4 Let (1, r1, . . . , rk) be the dual visibility spectrum of a graph G. Then
r1 = 0 if and only if µt(G) = 0.

Proof. If µt(G) > 0, there is a one-element total mutual-visibility set and, by definition,
it is also a dual mutual-visibility set. Therefore, we have r1 > 0.

If r1 > 0, let X = {x} be a dual mutual-visibility set. To show that X is also a
total mutual-visibility set, we observe that, for every v ∈ V (G)\X, a shortest x, v-path
never contains an internal vertex from X. It implies µt(G) ≥ 1. �

With respect to the last result we add that the graphs G with µt(G) = 0 were
characterized in a different way in [28].
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5 Revisiting total mutual-visibility

In this section, we characterize total mutual-visibility sets, graphs G with µt(G) = 1,
and sets which are not total mutual-visibility sets, yet every proper subset is such.

The vertex v of G is simplicial if NG(v) induces a complete subgraph of G. The set
of simplicial vertices of G is denoted by S(G) and its cardinality by s(G).

To start, let us show the following result.

Proposition 5.1 If G is a geodetic graph, then µt(G) = s(G) and S(G) is the unique
µt-set of G.

Proof. S(G) is a total mutual-visibility set of G because a vertex from S(G) cannot
be an inner vertex of a shortest path.

To prove that µt(G) ≤ s(G), suppose on the contrary that there exists some µt-set
X of G with |X| ≥ s(G)+1. Then X contains a vertex x /∈ S(G). Let x1 and x2 be two
neighbors of x such that x1x2 /∈ E(G). As x ∈ X, and X is a total mutual-visibility
set, there exists a vertex x′ 6= x such that x′ ∈ NG(x1)∩NG(x2). But then there exists
at least two shortest x1, x2-paths, a contradiction.

We have thus seen that µt(G) = s(G). Moreover, the above argument also implies
that S(G) is the unique µt-set of G. �

In the proof of Proposition 5.1 it was sufficient to consider only vertices at distance 2.
The announced characterization of total mutual-visibility sets says it is no coincidence.

Theorem 5.2 If G is a connected graph and X ⊆ V (G), then the following statements
are equivalent.

(i) X is a total mutual-visibility set of G.

(ii) Any two vertices u and v of G with dG(u, v) = 2 are X-visible.

(iii) Any two vertices u and v of G with dG(u, v) = 2 satisfy NG(u) ∩NG(v) 6⊆ X.

Proof. Let X ⊆ V (G) be a total mutual-visibility set. Then in particular each pair of
vertices at distance 2 is X-visible, that is, (i) implies (ii).

To see that (ii) implies (iii), let u and v be vertices with dG(u, v) = 2. Then by (ii),
there exists a shortest u, v-path such that its middle vertex, say w, does not lie in X.
Hence w ∈ (NG(u) ∩NG(v)) \X.

It remains to prove that (iii) implies (i). That is, we need to show that if (iii) holds,
then any two vertices u′, v′ ∈ V (G) are X-visible. To do so, we proceed by induction
on k = dG(u

′, v′). There is nothing to prove if k = 1, while if k = 2, the condition
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(iii) immediately implies that u′ and v′ are X-visible. Assume now that k ≥ 3. Let
P be a shortest u′, v′-path, and let u′ = x0, x1, x2 be its first three vertices. Then
dG(x0, x2) = 2, hence by (iii) there exists a vertex y ∈ NG(x0) ∩ NG(x2) such that
y /∈ X. (It is possible that y = x1.) Since dG(y, v′) = k − 1, the vertices y and v′ are
X-visible by induction. Let Q be a shortest y, v′-path such that no internal vertex lies
in X. Since y /∈ X, the concatenation of the edge u′y with Q is a shortest u′, v′-path
such that no internal vertex lies in X. Hence u′ and v′ are X-visible. �

The equivalence between (i) and (iii) in Theorem 5.2 has been earlier established
in [6, Theorem 2.3] for the case of Hamming graphs.

As already mentioned, in [28] the graphs G with µt(G) = 0 were characterized.
Moreover, an open problem to characterize the graphs with µt(G) = 1 was also posed.
In the second main result of this section we solve the problem as follows. For its
formulation we recall that a vertex v of a graph G is a bypass vertex [28] if v is not the
central vertex of a convex path on three vertices. The number of bypass vertices of G
is denoted by bp(G).

Theorem 5.3 For a graph G, it holds that µt(G) = 1 if and only if bp(G) ≥ 1 and
every two different bypass vertices v1 and v2 satisfy the following condition:

(⋆) there exist nonadjacent vertices u1, u2 with NG(u1) ∩NG(u2) = {v1, v2}.

Proof. First suppose that µt(G) = 1 and {v} is a µt-set of G. Then v is a bypass vertex
and bp(G) ≥ 1. Consider now two bypass vertices v1 and v2. Since X = {v1, v2} is not
a total mutual-visibility set in G, Theorem 5.2 implies the existence of two vertices x
and y with dG(x, y) = 2 that satisfy NG(x)∩NG(y) ⊆ X. On the other hand, we know
the following facts:

• NG(x) ∩NG(y) 6= ∅ as dG(x, y) = 2;

• NG(x) ∩NG(y) 6= {vi}, for i ∈ [2], as vi is a bypass vertex.

Therefore, the only possibility to have NG(x)∩NG(y) ⊆ X is NG(x)∩NG(y) = {v1, v2}.
This proves that every pair of bypass vertices satisfies (⋆).

To prove the other direction, we take the contrapositive of the implication and
assume that µt(G) 6= 1. If µt(G) = 0, then bp(G) = 0. If µt(G) ≥ 2, consider
a 2-element total mutual-visibility set X = {v1, v2}. Note that, by Proposition 2.1,
such a set exists even if µt(G) > 2. Clearly, v1 and v2 must be bypass vertices. We
state that (⋆) does not hold for v1 and v2. Indeed, the existence of vertices u1 and
u2 with NG(u1) ∩ NG(u2) = {v1, v2} would imply that u1 and u2 are not X-visible, a
contradiction. �
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We note that graphs with bp(G) = ℓ and µt(G) = 1 exist for arbitrarily large ℓ.
Graphs F1,ℓ constructed in the proof of Theorem 4.1 provide such examples for not
only µd(F1,ℓ) = 1 but also µt(F1,ℓ) = 1 holds.

Finally, in view of our considerations in Section 2, and as an application of Theo-
rem 5.2, we provide a characterization for sets that are not total-mutual-visibility sets,
although all their proper subsets have this property.

Proposition 5.4 Let X be a nonempty set of vertices in a graph G and suppose that
every proper subset X ′ ⊂ X is a total mutual-visibility set in G. Then X itself is not a
total mutual-visibility set if and only if there exist two nonadjacent vertices v1 and v2
with NG(v1) ∩NG(v2) = X.

Proof. First observe that v1v2 /∈ E(G) and NG(v1) ∩ NG(v2) = X imply that each
shortest v1, v2-path contains an internal vertex from X. Consequently, X is not a total
mutual-visibility set in G.

Now, assume thatX is not a total mutual-visibility set inG, but all proper subsets of
X have that property. By Theorem 5.2, there exist vertices v1 and v2 with dG(v1, v2) = 2
that satisfy NG(v1)∩NG(v2) ⊆ X. Then Theorem 5.2 also implies that X ′ = NG(v1)∩
NG(v2) is not a total mutual-visibility set of G. Therefore, by our condition in the
statement, X ′ is not a proper subset of X, and we may conclude that X = X ′, that is,
NG(v1) ∩NG(v2) = X as stated. �
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