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Abstract

The general position problem in graph theory asks for the number of ver-

tices in a largest set S of vertices of a graph G such that no shortest path of

G contains more than two vertices of S. The analogous monophonic position

problem is obtained from the general position problem by replacing “short-

est path" by “induced path." This paper studies monophonic position sets in

the Cartesian and lexicographic products of graphs. Sharp lower and upper

bounds for the monophonic position number of Cartesian products are estab-

lished, along with several exact values. For the lexicographic product, the

monophonic position number is determined for arbitrary graphs.
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1 Introduction

The general position problem for graphs originates in Dudeney’s “Puzzle with Pawns”
in his book “Amusements in Mathematics" [7] from 1917. This problem asked the
reader to find the largest number of pawns that can be placed on a chessboard with-
out any three pawns lying on a common straight line. This problem was generalised
to the setting of graph theory independently in [4, 17] as follows: a set of vertices
S in a graph G is in general position if no shortest path of G contains more than
two vertices of S. The problem then consists of finding the largest set of vertices
in general position for a given graph G. The structure of general position sets in
graphs was described in [1].

The general position problem has been the subject of intensive research, with
some 48 papers appearing on the subject since 2018. For some recent developments
see [2, 3, 5, 10, 11, 19, 20, 21, 25, 27, 29]. One case of particular interest is the general
position number of product graphs. The general position problem for Cartesian
products has been treated in many papers, including [12, 14, 15, 16, 24, 26]. General
position numbers of strong and lexicographic products were investigated in [6].

Several variations on the general position problem have also been considered. For
example, we can replace ‘shortest path’ in the definition of the problem by some other
family of paths. In [13] the authors restrict attention to shortest paths of bounded
length, whilst [9] considers the problem for the widest possible family, all paths.
Another important family is the induced or monophonic paths. Partially inspired
by the extensive literature on monophonic convexity (a recent example is [18]),
the monophonic position problem was introduced in [22]. Some extremal problems
for monophonic position sets are discussed in [28], smallest maximal monophonic
position sets are treated in [5] and graph colourings in which every colour class is
in monophonic position are explored in [20]. In the present article we explore the
monophonic position problem for various graph products.

The plan of this paper is as follows. In the following section, we provide the
necessary definitions required for later use. In Section 3, we conduct a structural
analysis of monophonic position sets in Cartesian products through a series of lem-
mas. Additionally, we establish precise lower and upper bounds for the monophonic
position number of Cartesian products and present several exact values. Then, in
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Section 4, we turn our attention to lexicographic products and determine the mono-
phonic position number of arbitrary lexicographic products.

2 Preliminaries

We now define the terminology that will be used in this paper. By a graph G =
(V (G), E(G)) we mean a finite, undirected, simple graph. We will write u ∼ v

if vertices u and v are adjacent. The open neighbourhood N(u) of u ∈ V (G) is
{v ∈ V (G) : u ∼ v}, whilst the closed neighbourhood N [v] is defined by N [u] =
N(u) ∪ {u}. The distance d(u, v) between two vertices u and v in a connected
graph G is the length of a shortest u, v-path in G, and any such shortest u, v-path
is a geodesic. A path P in G is induced or monophonic if G contains no chords
between non-consecutive vertices of P . For two distinct vertices u, v of a graph
G, the monophonic interval JG[u, v] is the set of all vertices lying on at least one
monophonic u, v-path.

Recall that a set S of vertices in a graph G is a general position set if no shortest
path in G contains more than two vertices of S. The number of vertices in a largest
general position set of G is called the general position number of G and is denoted
by gp(G). A set M ⊆ V (G) is a monophonic position set of G if no three vertices
of M lie on a common monophonic path in G. The monophonic position number or
mp-number mp(G) of G is the number of vertices in a largest monophonic position
set of G. Observe that every monophonic position set of a graph G is also in
general position, and hence mp(G) ≤ gp(G). Any pair of vertices is in monophonic
position, so for graphs with order n(G) ≥ 2 we have 2 ≤ mp(G) ≤ n(G). Trivially
mp(G) = n(G) holds for a connected graph G if and only if G is a complete graph. It
was shown in [22, 28] that for any 2 ≤ a ≤ b there exists a graph G with mp(G) = a

and gp(G) = b. Interestingly the largest possible number of edges in a graph with
order n and monophonic position number a is quadratic in a, whereas for fixed
general position number the largest size is linear in n, see [28]. Thus the general
and monophonic position problems are intrinsically different.

We will also make use of the following terminology to simplify our arguments:
a monophonic path containing three vertices of a set S is S-bad. If S is clear from
the context, we will simply write bad. Hence, if S is assumed to be in monophonic
position, then the appearance of a bad path constitutes a contradiction.

We will denote the subgraph of G induced by a subset S ⊆ V (G) by G[S]. A
vertex is simplicial if its neighbourhood induces a clique. The clique number ω(G)
of G is the number of vertices in a maximum clique in G and the independence
number α(G) is the number of vertices of a maximum independent set. The path of
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order ℓ will be written as Pℓ and the cycle of length ℓ as Cℓ. For any positive integer
k, we fix [k] = {1, 2, . . . , k}.

We will need the following result on monophonic position sets.

Lemma 2.1. [22, Lemma 3.1] Let G be a connected graph and M ⊆ V (G) be
a monophonic position set. Then G[M ] is a disjoint union of k cliques G[M ] =⋃k

i=1Wi. If k ≥ 2, then for each i ∈ [k] any two vertices of Wi have a common
neighbour in G−M .

Let G and H be graphs. In this paper we discuss the monophonic position
number of the Cartesian product G � H and the lexicographic product G ◦H . Both
products have the vertex set V (G) × V (H). Let (g1, h1), (g2, h2) ∈ V (G) × V (H).
In the Cartesian product G � H the vertices (g1, h1) and (g2, h2) are adjacent if (i)
g1 ∼ g2 in G and h1 = h2 or (ii) g1 = g2 and h1 ∼ h2 in H . In the lexicographic
product G ◦H these vertices are adjacent if (i) g1 ∼ g2 or (ii) g1 = g2 and h1 ∼ h2.

If ∗ ∈ {� , ◦}, then the projection mappings πG : G∗H → G and πH : G∗H → H

are given by πG(u, v) = u and πH(u, v) = v, respectively. If S ⊆ V (G�H), then
the set {g ∈ V (G) : (g, h) ∈ S for some h ∈ V (H)} is the projection πG(S) of S on
G. The projection πH(S) of S on H is defined analogously. We adopt the following
conventions. If v0, v1, . . . , vℓ−1, vℓ is a path Q in H , then by uQ we denote the path

(u, v0), (u, v1), . . . , (u, vℓ−1), (u, vℓ)

in G ∗H . Similarly, if u0, u1, . . . , uℓ−1, uℓ is a path in G, then in G ∗H , the path

(u0, v), (u1, v), . . . , (uℓ−1, v), (uℓ, v)

is denoted by Pv. Furthermore, a tilde over a path will denote that it is traversed in
the opposite direction; for example, if P is the path u0, u1, . . . , uℓ, then P̃ is the path
uℓ, . . . , u1, u0. Finally, for u ∈ V (G) and v ∈ V (H) we define uH to be the subgraph
of G ∗H induced by {u}× V (H), which we call a H-layer, whilst the G-layer Gv is
the subgraph induced by V (G)× {v}.

3 Cartesian products

In this section we investigate the monophonic position number of the Cartesian
product of connected graphs. In the main result (Theorem 3.13) we give sharp
lower and upper bounds for mp(G � H) in general, and the exact formula for the
case when factors do not contain simplicial vertices. For the case when factors are
bipartite, we also give in Theorem 3.14 an upper bound, which is of a different
nature.
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Note that if S ⊆ V (G � H), then due to the commutativity of the Cartesian
product, any result that holds for πG(S) also holds for πH(S) and vice versa.

Let’s begin with the following straightforward lower bound for mp(G � H).

Observation 3.1. If G and H are graphs, then mp(G � H) ≥ max{ω(G), ω(H)}.

Proof. The observation follows because for any graph X we have mp(X) ≥ ω(X),
and because ω(G � H) = max{ω(G), ω(H)}.

In order to be able to prove the main result of this section, Theorem 3.13, we
need a sequence of lemmas.

Lemma 3.2. If S is a monophonic position set of G � H, then πH(S) is a mono-
phonic position set of H.

Proof. Suppose for a contradiction that πH(S) is not in monophonic position in H .
Then there exists a set S ′ = {v1, v2, v3} ⊆ πH(S) such that there is an induced
v1, v3-path P that passes through v2. Since {v1, v2, v3} ⊆ πH(S), there exist (not
necessarily distinct) vertices u1, u2, u3 of G such that (u1, v1) (u2, v2) and (u3, v3)
belong to S; we will derive a contradiction by constructing a monophonic path
in G � H from (u1, v1) to (u3, v3) that passes through (u2, v2). Let Q and R be
monophonic paths in G from u1 to u2 and from u2 to u3 respectively. Also, recall
that Q̃ is the reverse path of Q, i.e. the path formed by traversing Q in the opposite
direction from u2 to u1. Without loss of generality there are four possibilities to
consider: (i) u1, u2 and u3 are pairwise distinct, (ii) u1 = u2 6= u3, (iii) u1 = u3 6= u2,
and (iv) u1 = u2 = u3. Note that the path u2

P passes through (u2, v2).

Case Section 1 Section 2 Section 3

u1, u2, u3 distinct Qv1 u2
P Rv3

u1 = u2 6= u3 u1
P Rv3

u1 = u3 6= u2 Qv1 u2
P Q̃v3

u1 = u2 = u3 u1
P

Table 1:

The desired monophonic paths in G � H are constructed by concatenating the
paths in Table 1 in order. Each section of the paths is monophonic by construction
and it is easily verified that there are no chords between different sections of the
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displayed paths. Observe that dH(v1, v3) ≥ 2, so that there is no edge in G � H

between a vertex (u, v1) and (u, v3).

Note that the converse of Lemma 3.2 is not true. As an example, consider
K3 � P3. Let V (P3) = {1, 2, 3} = V (K3). Then S = {(1, 1), (2, 2), (1, 3)} is not a
monophonic position set of G, whereas πK3

(S) = {1, 2} is a monophonic position
set of K3.

Lemma 3.3. Let G and H be connected graphs and let S be a monophonic position
set of G � H. If (u, v) ∈ S, then V (uH) ∩ S = {(u, v)} or V (Gv) ∩ S = {(u, v)}.

Proof. Suppose that the result is not true, i.e. that there exist u′ 6= u in G and v′ 6= v

in H such that (u, v), (u′, v) and (u, v′) all belong to S. Let P be a monophonic
u′, u-path in G and Q be a monophonic v, v′-path in H . Then the concatenation of
Pv and uQ would be a monophonic (u′, v), (u, v′)-path in G � H through (u, v), a
contradiction.

Lemma 3.4. If S = {(ui, vi) : i ∈ [|S|]} is a monophonic position set of G � H,
then one of the following holds.

(a) S lies in a single G-layer, or S lies in a single H-layer.

(b) u1, . . . , u|S| are distinct vertices of G and v1, . . . , v|S| are distinct vertices of H.

(c) πG(S) is a clique of G with order at least 2 and v1, . . . , v|S| are distinct vertices
of H, or πH(S) is a clique of H with order at least 2 and u1, . . . , u|S| are
distinct vertices of G.

Proof. Suppose that S satisfies neither of the first two statements; without loss of
generality, we can assume that u1 = u2 and there is a ui ∈ πG(S) with ui 6= u1. We
wish to show that πG(S) induces a clique in G and that the vertices v1, v2, . . . , v|S|
of H are all distinct.

Let P be a monophonic u1, ui-path in G and Q and R be monophonic v1, v2- and
v2, vi-paths in H . As the concatenated path u1

Q, Pv2 , ui
R cannot be monophonic

there must be a chord between the paths u1
Q and ui

R, which is the case if and only
if u1 ∼ ui in G and the paths Q and R intersect in H . Therefore, u1 ∼ ui in G for
every i such that u1 6= ui which implies that πG(S) induces a connected subgraph
of G. Lemmas 2.1 and 3.2 then yields that the set πG(S) induces a clique in G.

Suppose now that not all vertices v1, . . . , v|S| are distinct; say vi = vj . As we
are assuming that S does not lie in a single layer, there must be a vk ∈ πH(S) with
vk 6= vi. Let P ′ be a monophonic vi, vk-path in H . As πG(S) is a clique, the path
formed by following the edge (ui, vi) ∼ (uj, vi), the path uj

P ′ and then the edge
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(uj, vk) ∼ (uk, vk) (if uk = uj we omit the final edge) will be monophonic unless
ui = uk and there is an edge vi ∼ vk; however, in this case we can interchange ui

and uj in the argument to produce a contradiction.

Corollary 3.5. If G and H are connected graphs, then

mp(G � H) ≤ max{mp(G),mp(H)} .

Proof. By Lemma 3.4, |πG(S)| = |S| or |πH(S)| = |S| (or both), thus the conclusion
follows from Lemma 3.2.

As the bounds in Observation 3.1 and Corollary 3.5 coincide for products of
paths and cycles, the following corollary follows immediately.

Corollary 3.6. For paths Pm, Pn of order at least two and cycles Cr, Cs of length
at least four,

mp(Pm � Pn) = mp(Pn � Cr) = mp(Cr � Cs) = 2 .

Our bounds also make it easy to evaluate mp(Kn � H) for graphs H with small
mp-number.

Corollary 3.7. If H is a connected graph and n ≥ mp(H), then mp(Kn � H) = n.

Corollary 3.7 in particular yields mp(Kn � Pm) = n for n ≥ 2, mp(Kn � Cm) =
n for n ≥ 3, and mp(Kn � Km) = max{n,m}.

We will call a monophonic position set of Type (a) layered, of Type (b) varied,
and of Type (c) cliquey. These three types of monophonic position sets are shown
schematically in Fig. 1.

Figure 1: Layered (left), varied (middle), and cliquey (right) monophonic position
set
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Lemma 3.8. If u, u′ ∈ V (G) and v, v′ ∈ V (H) are such that u′ 6∈ NG[u] and
v′ 6∈ NH [v], then the set {(u, v), (u′, v′)} is a maximal monophonic position set of
G � H.

Proof. Suppose that (u, v) and (u′, v′) satisfy the stated conditions, but that there
exists a third vertex (x, y) of G � H such that {(u, v), (u′, v′), (x, y)} is an mono-
phonic position set. It follows from Lemmas 3.2 and 3.4 that {u, u′, x} is a set of
distinct vertices of G in monophonic position, and likewise {v, v′, y} in an mono-
phonic position set of H of order three.

Let P and P ′ be monophonic u, x- and x, u′-paths in G respectively and Q and
Q′ be monophonic v, y- and y, v′-paths in H respectively. Consider the path formed
by the concatenation of Pv, xQ, P ′

y and u′Q′. Trivially there are no chords between
consecutive sections of the concatenated path, e.g. between Pv and xQ. There is no
chord between Pv and u′Q′; otherwise there is an edge (w, v) ∼ (u′, z) in G � H ,
where w lies on P and z lies on Q′ and, since either w = u′ or z = v we would have
a violation of Lemma 3.2.

Finally if we assume that x 6∼ u′ and v 6∼ y, then there are no chords be-
tween Pv and P ′

y or between xQ or u′Q′. This contradicts our assumption that
{(u, v), (u′, v′), (x, y)} is an monophonic position set, so we conclude that either
x ∼ u′ or y ∼ v. Similarly we must have x ∼ u or y ∼ v′. By Lemma 3.2 we cannot
have both x ∼ u and x ∼ u′, or both y ∼ v and y ∼ v′, so it follows that either (i)
x ∼ u and y ∼ v or (ii) x ∼ u′ and y ∼ v′. Suppose that x ∼ u and y ∼ v (the other
case is similar). Let P ′′ be a monophonic u, u′-path in G and Q′′ be a monophonic
v, v′-path in H . Then the path formed by the edges (x, y) ∼ (x, v) and (x, v) ∼ (u, v)
followed by the path uQ

′′ and P ′′
v′ is a monophonic path passing through (u, v), a

contradiction. We conclude that {(u, v), (u′, v′)} is a maximal monophonic position
set.

Corollary 3.9. If G � H has a maximum monophonic position set that is varied,
then mp(G � H) = max{ω(G), ω(H)}.

Proof. We have mp(G � H) ≥ max{ω(G), ω(H)} by Observation 3.1. Assume that
S is a largest monophonic position set of G � H that is varied. Suppose for a
contradiction that mp(G � H) > max{ω(G), ω(H)}. By Lemmas 3.2 and 2.1, the
sets {u1, . . . , ump(G � H)} and {v1, . . . , vmp(G � H)} are independent unions of cliques
in G and H respectively, so we can assume by Lemma 3.8 that there exist (u1, v1),
(u2, v2) and (u3, v3) in S such that in G we have u1 ∼ u2 and u1 6∼ u3, whilst in H we
have v1 6∼ v2 and v1 ∼ v3. Let P be a monophonic u2, u3-path in G and Q and Q′ be
monophonic v1, v2- and v2, v3-paths in H respectively. As u1 and u2 are at distance at
least two from u3, the path formed by following the edge (u1, v1) ∼ (u2, v1) followed
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by the paths u2
Q, Pv2 and u3

Q′ in that order is bad, a contradiction. It follows that
either πG(S) or πH(S) induces a clique, so that |S| ≤ max{ω(G), ω(H)}.

We can now confine our attention to layered and cliquey monophonic position
sets.

Lemma 3.10. If {u} × S ′ ⊆ S, where S ′ ⊆ V (H), then if S is either cliquey or S

is layered with |S| > max{ω(G), ω(H)}, then S ′ induces an independent set in H,
with a similar result for subsets S ′′ × {v} ⊆ S.

Proof. Let {u}×S ′ ⊆ S. We show firstly that S ′ is either a clique or an independent
set. If |S ′| ≤ 2 then there is nothing to prove, so we assume that |S ′| ≥ 3. By
Lemmas 3.2 and 2.1, the set πH(S) is an independent union of cliques, so if S ′ is
not a clique or an independent set, then there are vertices v1, v2, v2 ∈ S ′ such that
v1 ∼ v2, v1 6∼ v3 and v2 6∼ v3 in H . Let u′ be any neighbour of u in G and P be
a monophonic v2, v3-path in H . Then the path formed by concatenating the path
(u, v1) ∼ (u, v2) ∼ (u′, v2) with the path u′P and then the edge (u′, v3) ∼ (u, v3) in
that order would be {u} × S ′-bad. Thus S ′ is either a clique or an independent set.

Suppose that there are v1, v
′
1 ∈ S ′ with v1 ∼ v′1 in H and let u2 ∈ πG(S) \

{u}, where (u2, v2) ∈ S. Let P be a monophonic v′1, v2-path. Then the path
(u, v1), (u, v

′
1), (u2, v

′
1) followed by u2

P is a bad path, so there is no such edge in
S ′. If S is layered and |S| > max{ω(G), ω(H)}, then S ′ cannot be a clique and
hence must be independent.

We will use the following labelling convention for a cliquey monophonic position
set S of G � H (we assume that πG(S) is a clique without loss of generality). With
each vertex ui ∈ πG(S) we associate the set S ′

i ⊆ V (H) such that {ui} × S ′
i =

S ∩ ({ui} × V (H)). Recall that by Lemma 3.4 the sets Si are pairwise disjoint, so
that these sets partition πH(S). The sets S ′

i are schematically presented in Fig. 2.

Lemma 3.11. Let S be a cliquey monophonic position set of G � H, where πG(S)
is a clique. If |πG(S)| ≥ 3 or |S| ≥ 3, then πH(S) is an independent set.

Proof. By Lemma 3.10 each set S ′
i is an independent set, so we need only prove that

there are no edges between S ′
i and S ′

j for i 6= j.
We show firstly that if |S ′

i| ≥ 2 there are no edges from S ′
i to S ′

j in H for
i 6= j. We assume that |S ′

i| ≥ 2, with (ui, v1), (ui, v2) ∈ S. Suppose that v2 ∼ v3
in H for some v3 ∈ S ′

j , i 6= j. By Lemma 3.10 v1 6∼ v2. Let P be a monophonic
v1, v2-path in H ; in this case the path formed by concatenating ui

P with the path
(ui, v2), (uj, v2), (uj, v3) would again be bad. Hence there can be no edge between S ′

i

and S ′
j .
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u1 u2 u3 u4

G

H G � H

S ′
1

S ′
2

S ′
3

S ′
4

Figure 2: Sets S ′
i

Now we show that if |πG(S)| ≥ 3 then there are no edges between S ′
i and S ′

j for
i 6= j. Suppose that |πG(S)| ≥ 3 and that there is an edge between v1 ∈ S ′

i and
v2 ∈ S ′

j, where i 6= j. Let uk ∈ πG(S) \ {ui, uj}. If there is an edge from v3 ∈ S ′
k to

{v1, v2}, then {v1, v2, v3} is a clique and

(ui, v1), (uj, v1), (uj, v2), (uk, v2), (uk, v3)

would be bad. Otherwise, there is no edge between v3 and {v1, v2} and, letting P be
a monophonic v2, v3-path in H , the path formed by concatenating (ui, v1), (uj, v1),
(uj, v2), (uk, v2) and uk

P would again be bad.
Finally, suppose that |πG(S)| = 2 and |S| > 2. Write πG(S) = {u1, u2}. If there

are v1 ∈ S ′
1, v2 ∈ S ′

2 and an edge v1 ∼ v2, then we can assume that there is a
v3 ∈ S ′

2 \ {v2} and, taking P to be a monophonic v2, v3 path in H , the path formed
from (u1, v1), (u1, v2), (u2, v2) followed by u2

P would again be bad.

Lemma 3.12. If S is a layered or cliquey monophonic position set of G � H (where
πG(S) is a clique) and |S| > max{ω(G), ω(H)}, then every vertex from πG(S) is
simplicial.

Proof. Suppose that ui ∈ πG(S) is not simplicial, with w1, w2 ∈ N(ui) and w1 6∼ w2

in G. Firstly assume that |S ′
i| ≥ 3, with {v1, v2, v3} ⊆ S ′

i. Let P and P ′ be
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monophonic v1, v2- and v2, v3-paths respectively. Having Lemma 3.10 in mind, the
path formed by concatenating the edge (ui, v1) ∼ (w1, v1), the path w1

P , the path
(w1, v2), (ui, v2), (w2, v2), the path w2

P ′ and finally the edge (w2, v3) ∼ (ui, v3) in
that order would be bad.

Now suppose that |S ′
i| = 2. As |S| > max{ω(G), ω(H)}, S must be cliquey, so

there is a uj ∈ πG(S) \ {ui}. Let v1, v2 ∈ S ′
i, v3 ∈ S ′

j , P and P ′ be monophonic
v1, v2- and v2, v3-path respectively and Q be a shortest path from {w1, w2} to uj,
which we assume without loss of generality to be a w2, uj-path (notice that Q has
length at most two and that w2 = uj is possible). Then the following concatenated
path is bad: the edge (ui, v1) ∼ (w1, v1), the path w1

P , the path (w1, v2), (ui, v2),
(w2, v2), the path w2

P ′, and finally the path Qv3 . Thus |S ′
i| = 1.

Finally suppose that |S ′
i| = 1. As |S| > max{ω(G), ω(H)}, S is cliquey and

there is a uj ∈ πG(S) \ {ui} with |S ′
j| ≥ 2, say S ′

i = {v1} and {v2, v2} ⊆ S ′
j . Now

ui has a neighbour w such that w 6∼ uj. Let P and P ′ be monophonic v1, v2- and
v2, v3-paths respectively and Q be a monophonic w, uj-path. The path formed as
the concatenation of the edge (ui, v1) ∼ (w, v1) and the paths wP , Qv2 , and uj

P ′ in
that order would be bad.

A vertex subset S of a graph that is simultaneously an independent set and in
monophonic position is called independent monophonic position set. The largest
order of an independent monophonic position set is the independent monophonic
position number of G, denoted by mpi(G). With this notation in hand, we prove
the following tight bounds.

Theorem 3.13. If G and H are connected graphs, then

max{ω(G), ω(H)} ≤ mp(G � H) ≤ max{ω(G), ω(H),mpi(G),mpi(H)}.

Furthermore, if neither G nor H has simplicial vertices, then

mp(G � H) = max{ω(G), ω(H)} .

Proof. Suppose that G � H contains a monophonic position set S with |S| >

max{ω(G), ω(H)}. Then it follows from Corollary 3.9 that S is either cliquey or
layered. If S is cliquey, then using Lemma 3.4, we may assume that πG(S) is a clique
and |πH(S)| = |S|. Now, Lemmas 3.2 and 3.11 show that πH(S) is an independent
monophonic position set of H and hence mp(G � H) = |S| = |πH(S)| ≤ mpi(H).
On the other hand, if S is a layered monophonic position set of G with πG(S) = {u},
then it follows from Lemmas 3.2 and 3.10 that πH(S) is an independent monophonic
position set of H . This again shows that mp(G � H) = |S| = |πH(S)| ≤ mpi(H)
and thus the bounds follow.

The second assertion of the theorem follows from Lemma 3.12.
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The bounds in Theorem 3.13 are sharp. As an example, consider K1,4 � K3.
Let V (K1,4) = {0, 1, 2, 3, 4}, where 0 is the center vertex; and let V (K3) = {1, 2, 3}.
Then S = ({1, 2} × {1}) ∪ ({3, 4} × {2}) is a cliquey monophonic position set
of K1,4 � K3 and T = {1, 2, 3, 4} × {1} is a layered monophonic position set of
K1,4 � K3. Hence mp(K1,4 � K3) = 4 = mpi(K1,4).

The structural properties established in the earlier lemmas about the mono-
phonic position sets in the Cartesian product of graphs can be used to deter-
mine the monophonic position number for numerous classes of graphs. For in-
stance, the following theorem for bipartite graphs shows that for integers m,n ≥ 2,
mp(K1,m � K1,n) = max{m,n}. To this end, we set σ(G) = 1 if δ(G) = 1, and
σ(G) = 0 otherwise.

Theorem 3.14. If G and H are connected bipartite graphs of order at least 3, then

mp(G � H) ≤ max{2, σ(G)∆(G), σ(H)∆(H)}.

Moreover, the bound is tight when both G and H are star graphs.

Proof. Let S be a largest monophonic position set of G � H . If |S| ≥ 3, then
S is either cliquey or layered by Corollary 3.9. Suppose that S is cliquey and
πG(S) = {u1, u2} induces a clique, that is, u1 ∼ u2 in G. But the order of G is at
least three, which is in contradiction with Lemma 3.12. Hence S must be layered;
and again by Lemma 3.12, we may assume that πG(S) = {u}, where u is a vertex of G
of degree 1. Let u′ ∈ V (G) be such that dG(u, u

′) = 2 and let P : u = u0, u1, u2 = u′

be a shortest u, u′-path in G. As in the proof of Theorem 3.13, we get that πH(S) is
an independent monophonic position set of H . Let v1, v2 ∈ πH(S). In the following,
we first prove that any v1, v2-monophonic path in H has length exactly 2.

Assume on the contrary that there exists a v1, v2-monophonic path, say Q : v1 =
x0, x1, . . . , xk = v2 with k ≥ 3. Choose v3 ∈ πH(S) such that v3 is distinct from
both v1 and v2. This is possible since |πH(S)| = |S| ≥ 3. Let i be the least suffix
such that i ∈ [k] and dH(v3, xi) is minimum. Let Q1 be a v3, xi-shortest path in
H . Then Q1 together with the v1, xi-subpath of Q is a v3, v1-monophonic path in
H , say Q2. Then i ∈ [k − 1], since πH(S) is independent monophonic position set
of H . Now, if i ∈ [k − 2], then the concatenation of the paths uQ2, Pv1 , u2

Q, and

P̃v2 forms a monophonic (u, v3), (u, v2)-path in G � H containing the vertex (u, v1).
This is impossible and hence xi = xk−1. Now, suppose that Q1 together with the
edge xk−1xk is a monophonic path in H , say Q3. Then as above the concatenation of
the paths uQ3, Pv2 , u2

Q̃, and P̃v1 forms a monophonic (u, v3), (u, v1)-path in G � H

containing the vertex (u, v2), which is not possible. Therefore, we can assume that
the v3, v2-path Q3 is not monophonic. Now, fix Q3 : v3 = z1, z2, . . . , zl = xi, v2. Let
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j be the least suffix such that j ∈ [l − 1] and zj is adjacent to v2. This shows that
the v3, zj-subpath of Q3 together with the edge zjv2 is a monophonic v3, v2-path

in H , say Q4. Then the concatenation of the paths uQ4, Pv2 , u2
Q̃, and P̃v1 forms

a monophonic (u, v3), (u, v1)-path in G � H containing the vertex (u, v2), another
contradiction. Thus we can conclude that each monophonic path in H joining any
pair of vertices of πH(S) has length exactly 2.

Now let v1, v2 and v3 be three district vertices in πH(S) and let Q : v1, y, v2
be a monophonic v1, v2-path of length 2 in H . Suppose that the vertices v3 and
y are non-adjacent in H . Let Q′ be a monophonic v2, v3-path in H . Then the
concatenation of the paths uQ, Pv2 , u2

Q̃′, and P̃v3 is a monophonic (u, v1), (u, v3)-
path in G � H containing the vertex (u, v1), which is not possible. Hence v2 must
be adjacent to the vertex y. This proves that |πH(S)| ≤ |NH(y)| = degH(y) and so
mp(G � H) ≤ ∆(H). Thus the bound follows. Furthermore, if both G and H are
star graphs, then for any degree 1 vertex u of G and for any v ∈ V (H), one can
easily check that the set u × NH(v) is a monophonic position set of G � H . This
proves the sharpness of the bound for star graphs.

4 Lexicographic products

The variety of general position sets was introduced in [23] and has already been
investigated on lexicographic products in [6]. In this section, we determine the
monophonic position number of arbitrary lexicographic products.

Before stating the main result, we recall the distance function of lexicographic
products (see [8, Proposition 5.12]) and state two lemmas.

Proposition 4.1. If (g, h) and (g′, h′) are distinct vertices of G ◦H, then

dG◦H ((g, h), (g′, h′)) =





dG(g, g
′); g 6= g′ ,

dH(h, h
′); g = g′, degG(g) = 0 ,

min{dH(h, h
′), 2}; g = g′, degG(g) 6= 0 .

Lemma 4.2. If S is a monophonic position set of G◦H, then πG(S) is a monophonic
position set of G.

Proof. Suppose for a contradiction that πG(S) is not a monophonic position set in
G. Then there exist vertices u1, u2, u3 ∈ πG(S) and a monophonic u1, u3-path P in G

which passes through u2. As u1, u2, u3 ∈ πG(S), there exist vertices v1, v2, v3 ∈ V (H)
such that (u1, v1), (u2, v2), (u3, v3) ∈ S. But now it is straightforward to lift the
path P to a monophonic (u1, v1), (u3, v3)-path in G ◦ H which passes (u2, v2), a
contradiction.
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Let u ∈ V (G) and and let P be a monophonic path in H . Then the isomorphic
copy of P in the layer uH of G◦H is a monophonic path of G◦H . This fact implies
the second announced lemma.

Lemma 4.3. If S is a monophonic position set of G ◦H, then for any u ∈ πG(S),
πH(

uH ∩ S) is a monophonic position set of H.

Note that πH(S) need not be a monophonic position set of H . As an example
consider P2 ◦ P3 (See Fig. 3). Let V (P2) = {u1, u2}, V (P3) = {v1, v2, v3} and let
S = {(u1, v1), (u1, v2), (u2, v2), (u2, v3)}. As S is a clique, it is a monophonic position
set of P2 ◦ P3. But πP3

(S) = {v1, v2, v3} is not a monophonic set in P3.

Figure 3: Example demonstrating that a monophonic position set of G◦H need not
project to a monophonic position set in H

In view of Lemma 2.1, in the rest of this section, for a monophonic position set
M of G we denote the components of G[M ] by: A1, A2, . . . , Ak, B1, . . . , Br, where
|Ai| ≥ 2 for each i ∈ [k] and |Bj| = 1 for each j ∈ [r]. Also we fix nM =

∑k

i=1 |Ai|.
Then for any monophonic position set M of G we have |M | = nM + r. Now we are
ready for our main result of this section.

Theorem 4.4. Let G be a connected graph of order at least 2 and let M be the
collection of all monophonic position sets of G. Then

mp(G ◦H) = max
M∈M

{nM · ω(H) + r ·mp(H)} .

Proof. Let S be an monophonic position set of G ◦ H . If |πG(S)| = |S|, then by
Lemma 4.2 we have |S| = |πG(S)| ≤ mp(G). Now, for any monophonic position set
M of G, we have that |M | = nM + r ≤ nM · ω(H) + r · mp(H). This shows that
|S| ≤ maxM∈M{nM · ω(H) + r ·mp(H)}.

Next consider the case |πG(S)| < |S|. If |πG(S)| = 1, then πH(S) = πH(
uH ∩S),

for some u ∈ πG(S). Lemma 4.3 yields that πH(
uH ∩ S) is a monophonic position

set of H . Thus |S| = |πH(S)| ≤ mp(H). So in the following, we assume that
1 < |πG(S)| < |S|. Let {Ai}i∈[k] be the non-trivial components of G[πG(S)].
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Claim: If u ∈ Ai, i ∈ [k], then πH(
uH ∩ S) is a clique in H .

Let u ∈ Ai. If |πH(
uH ∩ S)| = 1, then there is nothing to prove. So assume

that |πH(
uH ∩ S)| > 1. Choose distinct vertices v1, v2 in πH(

uH ∩ S). Then
(u, v1), (u, v2) ∈ S. Since |Ai| ≥ 2, we can choose u1 ∈ Ai distinct from u; and
v3 ∈ V (H) such that (u1, v3) ∈ S. By Lemma 2.1, Ai induces a clique in G. If
v1 6∼ v2, then by Proposition 4.1, the path P : (u, v1), (u1, v3), (u, v2) is a mono-
phonic path in G ◦H , a contradiction to the fact that S is a monophonic position
set of G ◦H . Hence v1 ∼ v2 in H which proves the claim.

By the above claim and the fact that for each u ∈ πG(S), the set πH(
uH ∩S) is a

monophonic position set of H , we can conclude that mp(G) = |S| ≤ nM ·ω(H)+ r ·
mp(H). To complete the proof it suffices to show that for any M ∈ M, we are able
to construct a monophonic position set S in G◦H with |S| = nM ·ω(H)+r ·mp(H).

Consider an arbitrary monophonic position set M of G. Let G[M ] = (∪k
i=1Ai)∪

(∪r
j=1Bj), where |Ai| ≥ 2 for each i ∈ [k] and |Bj| = 1 for each j ∈ [r]. Let C be

a largest clique and let D be a largest monophonic position set of H , respectively.
Now for each al ∈ ∪k

i=1Ai, l ∈ [nM ], fix Cl = al × C, a clique in alH ; and for
bj ∈ Bj, fix Dj = bj × D, a monophonic position set of bjH . We claim that
S = (∪nM

l=1Cl)∪ (∪r
j=1Dj) is a monophonic position set of G ◦H . If possible, suppose

that there exist vertices x = (x1, y1), y = (y1, y2), and z = (z1, z2) in S such that
y ∈ JG◦H [x, z]. Fix F = {x, y, z}. Let A = ∪nM

l=1Cl, B = ∪r
j=1Dj and P be a

monophonic path connecting x and z containing y. We distinguish the following
four cases.

Case 1: x1 = y1 = z1.
In this case, since y ∈ JG◦H [x, z], πH(F ) is not a clique in H . Thus F ⊆ B. Since
πH(F ) ⊆ D and D is a monophonic position set in H , we have that P is not
contained in x1H . This shows that P cannot be a monophonic path in G ◦ H , a
contradiction.

Case 2: x1 = y1 6= z1.
Then there will be a chord from x to any path connecting y and z, a contradiction
to the fact that y ∈ JG◦H [x, z].

Case 3: x1 = z1 6= y1.
In this case, since P is a monophonic x, z-path, the length of P must be 2. Hence
x1 ∼ y1 and z1 ∼ y1 in G which implies F ⊆ A. But then by our construction,
x2 ∼ z2 in H , a contradiction to the fact that y ∈ JG◦H [x, z].

Case 4: x1, y1 and z1 are distinct vertices of G.
By Proposition 4.1, y ∈ JG◦H [x, z] if and only if y1 ∈ JG[x1, z1]. This contradicts
the fact that M is a monophonic position set in G.
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Since in all cases we have arrived at a contradiction, we can conclude that S is a
monophonic position set of G◦H and so mp(G◦H) ≥ |S| = nM ·ω(H)+r·mp(H).

Corollary 4.5. If G be a connected bipartite graph and H is a connected graph,
then mp(G ◦H) = mp(G) ·mp(H).

Corollary 4.6. If H is a connected graph and n ≥ 2, then mp(Kn ◦H) = n ·ω(H).
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