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Abstract

The variety of mutual-visibility problems contains four members, as does

the variety of general position problems. The basic problem is to determine

the cardinality of the largest such sets. In this paper, these eight invariants are

investigated on Sierpiński graphs Sn
p . They are determined for the Sierpiński

graphs S2
p , p ≥ 3. All, but the outer mutual-visibility number and the outer

general position number, are also determined for Sn
3 , n ≥ 3. In many of the

cases the corresponding extremal sets are enumerated.
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1 Introduction

General position and mutual-visibility are two fresh areas in metric and algorithmic
graph theory. These concepts are complementary to each other, and together they
represent a flourishing field of research.

After general position sets were independently introduced (in a general setting)
to graph theory in [5] and in [22], research in this area has expanded rapidly, a recent
review article [4] lists 115 references. These investigations include several interesting
variations including edge general position sets [23], monophonic position sets [26],
Steiner position sets [15], vertex position sets [25], mobile position sets [14], and
lower general position sets [10, 20]. See also recent studies [1, 13, 27, 31–33].

Given a set X of vertices in a graph G, two vertices u and v are X-positionable, if
for every shortest u, v-path P we have V (P )∩X ⊆ {u, v}. (Note that if uv ∈ E(G),
then u and v are X-positionable.) Then X is a general position set, if every u, v ∈ X
are X-positionable. A largest general position set is a gp-set and its size is the general
position number gp(G) of G.

Based on the motivation of robotic visibility, the graph mutual-visibility problem
was introduced in 2022 by Di Stefano [9]. Given a set X of vertices in a graph G,
two vertices u and v are mutually-visible with respect to X, shortly X-visible, if
there exists a shortest u, v-path P such that V (P ) ∩ X ⊆ {u, v}. The set X is a
mutual-visibility set if any two vertices from X are X-visible. A largest mutual-
visibility set of G is a µ-set and its size is the mutual-visibility number µ(G) of G.
Although only recently introduced, the mutual-visibility sets has already received a
lot of attention, here we would like to point in particular to [2, 8, 17, 21, 24, 28].

In [7], the total mutual-visibility number was introduced, while the variety of
mutual-visibility invariants was rounded off in [6] by adding to the list the outer
mutual-visibility number and the dual mutual-visibility number. A set X ⊆ V (G)
is an outer mutual-visibility set in G if X is a mutual-visibility set and every pair of
vertices u ∈ X, v ∈ V (G) \X are X-visible. X is a dual mutual-visibility set if X
is a mutual-visibility set and every pair of vertices u, v ∈ V (G) \ X are X-visible.
Finally, X is a total mutual-visibility set if every pair of vertices in G are X-visible.
The cardinality of a largest outer/dual/total mutual-visibility sets are respectively
denoted by µo(G), µd(G), µt(G).

Following the pattern of mutual-visibility, the variety of general position in-
variants was presented in [30]. The definition of the outer/dual/total general po-
sition set in G is analogous, we just need to replace everywhere “X-visible” by
“X-positionable.” Largest corresponding sets are called gpo-sets, gpd-sets, gpt-sets
and their sizes are the outer/dual/total general position number of G, respectively
denoted by gpo(G), gpd(G), gpt(G).
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Recently, Korže and Vesel [18] investigated Sierpiński triangle graphs ST n
3 and

determined τ(ST n
3 ) for τ ∈ {µ, µt, µo, µd, gp}. Sierpiński triangle graphs ST n

3 are
obtained from the classical Sierpiński graphs Sn

3 by contracting all the edges which do
not lie in triangles. Continuing the above investigation, in this paper we determine
τ(Sn

3 ) for τ ∈ {µ, µt, µd, gp, gpt, gpd} and bound µo(S
n
3 ) and gpo(S

n
3 ). We also

determine all the eight invariants for the Sierpiński graphs S2
p for any p ≥ 3. In

many of the cases we also enumerate the corresponding extremal sets.

2 Preliminaries

For any positive integer k we set [k] = {1, 2, . . . , k} and [k]0 = {0, 1, . . . , k − 1}.
Let G = (V (G), E(G)) be a graph. The degree of a vertex u of G is the number

of its adjacent vertices in G. For the vertices u and v of G, the length of a shortest
u, v-path is called the distance between u and v, and is denoted by dG(u, v).

If X ⊆ V (G), then the subgraph of G induced by X is denoted by G[X ]. A
vertex of a graph is simplicial if its neighborhood induces a complete graph. The
set of simplicial vertices of G is denoted by S(G) and we set s(G) = |S(G)|. A
subgraph H of G is convex, if for every two vertices u and v of H , every shortest
u, v-path in G is contained in H .

Let τ ∈ {µ, µt, µo, µd, gp, gpt, gpo, gpd}. By a τ -set of G we mean a set with the
property τ of cardinality τ(G), and by #τ(G) we denote the number of τ -sets of
G. The following fact is often very useful, parts of it are already known from the
literature.

Lemma 2.1 If G is a connected graph and τ ∈ {µ, µt, µo, µd, gp, gpo, gpd}, then
τ(G) ≥ s(G).

Proof. Since any two vertices of G are S(G)-positionable, gpt(G) ≥ s(G). The
assertion follows because gpt(G) ≤ τ(G) for τ ∈ {µ, µt, µo, µd, gp, gpt, gpo, gpd}. �

We next collect several known results that will be needed later.

Lemma 2.2 [9, Lemma 2.1] If H is a convex subgraph of G, and X a mutual-
visibility set of G, then X ∩ V (H) is a mutual-visibility set of H.

Theorem 2.3 [3, Theorem 5.2] If G is a connected graph and X ⊆ V (G), then X
is a total mutual-visibility set of G if and only if any two vertices u and v of G with
dG(u, v) = 2 are X-visible.

Theorem 2.4 [30, Theorems 2.1, 3.1] If G is a connected graph and X ⊆ V (G),
then the following hold.
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(i) X is a total general position set of G if and only if X ⊆ S(G). Moreover,
gpt(G) = s(G).

(ii) If X is a general position set of G, then X is a dual general position set if and
only if G−X is convex.

In the rest of the preliminaries we introduced Sierpiński graphs Sn
p and related

notation required. These graphs were introduced in [16] as graphs of a particular
variant of the well-known Tower of Hanoi problem [12].

If p ≥ 3 and n ≥ 1, then Sn
p is defined as follows. The vertex set is V (Sn

p ) = [p]n0 ,
we will simplify the notation of a vertex (i1, . . . , in) of Sn

p to i1 · · · in. Vertices i1 · · · in
and j1 · · · jn being adjacent if there exists an index h ∈ [n], such that

(i) ∀ t, t < h =⇒ it = jt,

(ii) ih 6= jh,

(iii) ∀ t, t > h =⇒ it = jh and jt = ih.

In the case p = 3, these graphs are isomorphic to the graphs of the classical Tower
of Hanoi problem.

If s ∈ [p]n−k
0 , where k ∈ [n− 1], then the subgraph of Sn

p induced by the vertices
of the form {st : t ∈ [p]k0}, is isomorphic to Sk

p , it will be denoted by sSk
p . If i ∈ [p]0,

then the notation iS1
p will be simplified to iS1

p . Note that iS1
p is isomorphic to

Kp. The subgraphs sSk
p indicate the fractal nature of Sierpiński graphs by which we

mean that V (Sn
p ) can be partitioned into pn−k sets each of which induces a subgraph

isomorphic to Sk
p .

Now, consider p = 3. Let k be a positive integer, where 1 ≤ k ≤ n − 2, and
let s ∈ [3]k0. In the subgraph sSn−k

3 of Sn
3 , each of the three vertices sin−k, i ∈ [3]0,

is the degree 2 vertex of an induced bull, which we denote by sBn
i . (Recall that

the bull graph is a graph of order five obtained from a triangle by attaching two
pendant vertices to its two different vertices.) Note that some of these bulls can be
isomorphic. In particular, for a fixed i ∈ [3]0, the bulls ikBn

i , 1 ≤ k ≤ n− 2, are one
and the same bull with the degree two vertex being the vertex in. See Fig. 1 where
S4
3 is presented and some of its bulls emphasized. We can infer that

V (sBn
i ) = {sin−k−2ji, sin−k−1j : j ∈ [3]0} .
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Figure 1: S4
3 and some of its bulls

3 Sierpiński graphs S2
p

In the seminal paper on Sierpiński graphs [16] it was proved that there are at most
two shortest paths between any two vertices of Sn

p . It was also described when
one of the two cases happens. In particular, in S2

p there exist two shortest paths
between any pair of vertices of the form ik and jk, these are the paths ik, ij, ji, jk
and ik, ki, kj, jk. For all the remaining pair of vertices there exists a unique shortest
path between them.

5



Theorem 3.1 If p ≥ 3 then,

µ(S2
p) =







(p+1)2

4
; p odd ,

p(p+2)
4

; p even ,
and #µ(S2

p) =







(

p
p+1

2

)

; p odd ,
(

p+1
p+2

2

)

; p even .

Proof. If p ≥ 3 is odd, then let

X1 =
{

ii, ij : i ∈ [(p+ 1)/2]0, j ∈ [p]0 \ [(p+ 1)/2]0

}

,

and if p ≥ 4 is even, then let

X2 =
{

ii, ij : i ∈ [p/2]0, j ∈ [p]0 \ [p/2]0
}

.

It is straightforward to check that X1 is a mutual-visibility set of S2
p if p is odd,

whilst X2 is a mutual-visibility set of S2
p if p is even. Since |X1| = (p + 1)2/4 and

|X2| = p(p+ 2)/4, we have thus shown that

µ(S2
p) ≥







(p+1)2

4
; p odd ,

p(p+2)
4

; p even .

To prove that this lower bound is also an upper bound, consider an arbitrary
µ-set X of S2

p . We may without loss of generality assume that

|X ∩ V (0S1
p)| = max{|X ∩ V (iS1

p)| : i ∈ [p]0} ,

and let |X∩V (0S1
p)| = k. Since we have assumed that X is a µ-set of S2

p , the already
proved lower bound implies that k ≥ 2. We consider the following two cases.

Case 1: 00 ∈ X ∩ V (0S1
p).

Let 0j ∈ X ∩ V (0S1
p), where j ∈ [p − 1]. Since 00, 0j, j0, ji, where i ∈ [p]0, is

the unique shortest path between 00 and ji, it follows that X ∩ V (jS1
p) = ∅. As

X ∩ V (0S1
p) contains k− 1 vertices different from 00, this in turn implies that k− 1

subgraphs of the form iS1
p contain no vertex from X. By the definition of k we get

that |X| ≤ k · (p− k + 1).

Case 2: 00 /∈ X ∩ V (0S1
p).

Let 0j, 0j′ ∈ X ∩ V (0S1
p), where j 6= j′ and j, j′ ∈ [p − 1]. We claim that either

X ∩ V (jS1
p) = ∅ or X ∩ V (j′S1

p) = ∅. Suppose not. Since 0j′, 0j, j0, jℓ is the unique
shortest path between 0j′ and jℓ, where ℓ ∈ [p]0 \ {j

′}, it follows that X ∩V (jS1
p) =

{jj′}. Analogously, since 0j, 0j′, j′0, j′ℓ′ is the unique shortest between 0j and j′ℓ′,
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where ℓ′ ∈ [p]0 \ {j}, we get X ∩ V (j′S1
p) = {j′j}. Hence {0j, 0j′, jj′, j′j} ⊆ X. But

the vertices 0j, 0j′, j0, jj′, j′j, and j′0 induce a cycle C6, it contradicts with the
fact that µ(C6) = 3. Since X ∩ V (0S1

p) contains k − 1 vertices different from 0j,
it implies that k − 1 subgraphs of the form iS1

p contain no vertex from X. By the
definition of k we thus have |X| ≤ k · (p− k + 1).

From the above, we have

|X| ≤ k · (p− k + 1) ≤ max{k · (p− k + 1) : k ∈ [p]} .

Note that

max{k · (p− k + 1) : k ∈ [p]} =







(p+1)2

4
; p odd ,

p(p+2)
4

; p even .

As a consequence, we conclude that

µ(S2
p) =







(p+1)2

4
; p odd ,

p(p+2)
4

; p even .

In remains to determine the number of µ-sets X. Assume first that p is odd. In
this case |X| = (p+1)2

4
, which is if and only if k = p+1

2
. That is, X intersects exactly

p+1
2

subgraphs iS1
p in exactly p+1

2
vertices each. The selection of these subgraphs can

be made in
(

p
p+1

2

)

ways. We now claim that as soon as such a selection is made, X
is uniquely determined. To prove it, assume without loss of generality that X has
vertices in iS2

p for i ∈ [(p + 1)/2]0. Hence, if j, k ∈ [(p + 1)/2]0, then jk /∈ X. The
remaining vertices in each of iS2

p for i ∈ [(p+ 1)/2]0 must thus lie in X, that is, X
is uniquely determined. This proves that #µ(S2

p) =
(

p
p+1

2

)

when p is odd.
The argument for p is even is similar, except that now a µ-set either intersects

p

2
copies iS1

p in exactly p+2
2

vertices each, or intersects p+2
2

copies of iS1
p in exactly p

2

vertices each. In each of these cases we then proceed as above to see that a µ-set is
unique as soon as we select the subgraphs iS1

p which contain vertices from the µ-set.
Therefore if p is even,

#µ(S2
p) =

(

p
p

2

)

+

(

p
p+2
2

)

=

(

p+ 1
p+2
2

)

,

and we are done. �

Theorem 3.1 is illustrated in Fig. 2 for p ∈ {3, 4}. For S2
3 all three µ-sets are

shown, while for S2
4 the left figure shows one of six µ-sets that interest two subgraphs

iS1
4 , and the right figure shows one of four µ-sets that interest three subgraphs iS1

4 .
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Figure 2: µ-sets in S2
3 and in S2

4

Corollary 3.2 If p ≥ 3 then,

gp(S2
p) =







(p+1)2

4
; p odd ,

p(p+2)
4

; p even ,
and #gp(S2

p) =







(

p
p+1

2

)

; p odd ,
(

p+1
p+2

2

)

; p even .

Proof. The µ-sets X1 and X2 mentioned in the proof of Theorem 3.1 are general
position sets of S2

p . Since gp(S2
p) ≤ µ(S2

p), the result follows. �

Theorem 3.3 If p ≥ 3, then µd(S
2
p) = p and #µd(S

2
p) = p+ 1.

Proof. By Lemma 2.1, µd(S
2
p) ≥ p. To prove the upper bound, we consider an

arbitrary µd-set X of S2
p . Let Xi = X ∩ V (iS1

p), and let xi = |Xi| for i ∈ [p]0. We
distinguish three cases.

If for each i ∈ [p]0 we have ki ≤ 1, then |X| ≤ p.
Assume second that there exists an index i ∈ [p]0 such that ki = p, then ki′ = 0,

where i′ ∈ [p]0 \ {i}. Indeed, for otherwise 00, 0i′, i′0, i′j is the unique shortest path
between 00 and i′j, where j ∈ [p]0, but this implies that the vertices 00 and i′j are
not X-visible as 0i′ ∈ X. Then |X| ≤ p.

In the remaining case we may assume without loss of generality that 2 ≤ x0 ≤
p−1 and that x0 = max{xi : i ∈ [p]0}. Then there exist vertices 0i ∈ X and 0j /∈ X.
In iS1

p there exists a vertex ik /∈ X. Since 0j, 0i, i0, ik is the unique shortest path,
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the vertices 0j and jk are not X-visible, hence this last case is not possible. In
consequence, we have |X| ≤ p, and we can conclude that µd(S

2
p) = p.

From the above, the only possibilities that X is a µd-set is that X contains all
vertices of some iS1

p , or that X has exactly one vertex from each of them. In the
first case, we find µd-sets V (iS1

p), i ∈ [p]0, while in the second case the only µd-set
is {ii : i ∈ [p]0}. Hence #µd(S

2
p) = p+ 1. �

Theorem 3.3 is illustrated in Fig. 3 on the case of S2
4 . The left figure shows one

of four µd-sets which respectively contain sets V (iS1
4), the right figure shows the

unique µ-set which interests each subgraph iS1
4 .

Figure 3: µd-sets in S2
4

Corollary 3.4 If p ≥ 3, then gpd(S
2
p) = p and #gpd(S

2
p) = 1.

Proof. It is straightforward to check that the set {ii : i ∈ [p]0} is a dual general
position set of S2

p , hence gpd(S
2
p) ≥ p. By the definitions of mutual-visibility and

general position we have gpd(G) ≤ µd(G), in view of Theorem 3.3, hence gpd(S
2
p) =

p. Moreover, the set {ii : i ∈ [p]0} is the only largest dual general position set of
S2
p , hence we are done. �

Theorem 3.5 If p ≥ 3 and τ ∈ {µt, µo, gpt, gpo}, then τ(S2
p) = p and #τ(S2

p) = 1.

Proof. By Lemma 2.1 we have τ(S2
p) ≥ p for any τ ∈ {µt, µo, gpt, gpo}.

We first consider the total mutual-visibility. Since µt(S
2
p) ≤ µd(S

2
p), Theorem 3.3

implies µt(S
2
p) = p. Let X be an arbitrary µt-set of S2

p . We will show that X = {ii :
i ∈ [p]0}. If i 6= j, then considering the vertices ii, ij, and ji, Theorem 2.3 implies
that ij /∈ X and ji /∈ X. It follows that X ⊆ {ii : i ∈ [p]0}. Moreover, the set
{ii : i ∈ [p]0} is a total mutual-visibility set, hence this set is the unique µt-set of
S2
p .

9



Consider next the outer mutual-visibility. To prove that µo(S
2
p) ≤ p, let Y be

an arbitrary µo-set of S2
p and let Yi = Y ∩ V (iS1

p) for i ∈ [p]0. If |Yi| ≤ 1 for each
i ∈ [p]0, then there is nothing to prove. In the rest we may hence assume that
|Y0| ≥ 2 and that |Y0| = max{|Yi| : i ∈ [p]0}. Then there exists a vertex 0j ∈ Y0,
where j ∈ [p − 1]. Since 0i, 0j, j0 is the unique shortest path between 0i and j0,
we get that 0i /∈ Y and j0 /∈ Y . But this implies that 0j is the unique vertex in
Y0, which contradicts our assumption that |Y0| ≥ 2. Hence |Y | ≤ p, and we have
µo(S

2
p) = p. This argument also implies that Y is a µo-set if and only if |Yi| = 1 and

Y ∩ V (iS1
p) = {ii} for i ∈ [p]0.

Similar as to the above arguments, the set {ii : 1 ≤ i ≤ p} is the only gpt-set
as well as the only gpo-set of S2

p . Hence gpt(S
2
p) = gpo(S

2
p) = p and #gpt(S

2
p) =

#gpo(S
2
p) = 1. �

4 Sierpiński graphs Sn
3

In this section, we consider varities of mutual-visibility problems and general position
problems on the Sierpiński graphs Sn

3 .

Theorem 4.1 If n ≥ 1, then µt(S
n
3 ) = µd(S

n
3 ) = 3. Moreover, #µt(S

n
3 ) = 1 and

#µd(S
n
3 ) = 4.

Proof. Clearly, µt(S
1
3) = µd(S

1
3) = 3 and by Theorems 3.5 and 3.3 also µt(S

2
3) =

µd(S
2
3) = 3. Hence in the remaining proof we may assume that n ≥ 3.

By Lemma 2.1 we have µt(S
n
3 ) ≥ 3 so that 3 ≤ µt(S

n
3 ) ≤ µd(S

n
3 ). To prove that

µt(S
n
3 ) = µd(S

n
3 ) = 3 it thus suffices to show that µd(S

n
3 ) ≤ 3. Let X be an arbitrary

µd-set of Sn
3 . We claim that

X ⊆ W = V (0n−1S1
3) ∪ V (1n−1S1

3) ∪ V (2n−1S1
3) .

Suppose on the contrary that there exists a vertex x ∈ X \W . Then the degree of
x is 3, let x1, x2, x3 be the neighbors of x, where x2x3 ∈ E(Sn

3 ). Since X is a dual
mutual-visibility set, either x1 ∈ X and x2, x3 /∈ X, or x1 /∈ X and x2, x3 ∈ X. In
the first case consider a convex P4 in which the edge xx1 is the middle edge to get a
contradiction that X is a dual mutual-visibility set. In the second case we proceed
similarly, expect that now the middle edge of a considered convex P4 is xx2. This
contradiction proves the claim.

Assume now that in−1j ∈ X, where i, j ∈ [3]0, i 6= j. Then as above, considering
the neighbors of in−1j we infer that then X = {in, in−1j, in−1k}, where {i, j, k} = [3]0.
In this way we get the following µd-sets: {0n, 0n−11, 0n−12}, {1n, 1n−10, 1n−12}, and

10



{2n, 2n−10, 2n−11}. So, if some vertex of the form in−1j lies in X, then X is one of
these three sets. The last possibility for X is then {0n, 1n, 2n} which is also a dual
mutual-visibility set. We have thus proved that µd(S

n
3 ) ≤ 3 and that #µd(S

n
3 ) = 4.

Finally, note that any vertex of Sn
p of degree p is the middle vertex of a convex

P3. By [28, Lemma 5] we get that such a vertex lies in no total mutual-visibility set.
We can conclude that {0n, 1n, 2n} is the unique total mutual-visibility set. �

Corollary 4.2 If n ≥ 1, then gpt(S
n
3 ) = gpd(S

n
3 ) = 3. Moreover, #gpt(S

n
3 ) = 1

and #gpd(S
n
3 ) = 1.

Proof. Using Theorem 2.4(i) and Theorem 4.1 we have

3 = gpt(S
n
3 ) ≤ gpd(S

n
3 ) ≤ µd(S

n
3 ) = 3 .

This in turn also implies that the maximum sets from Theorem 4.1 remain also for
the total/dual general position case. �

Next we focus on the mutual-visibility set. We first settle small cases which will
serve as our basis for the later induction.

Proposition 4.3 The following holds.

(i) µ(S2
3) = 4. Moreover, the sets {ii, ij, kj, kk}, where {i, j, k} = [3]0, are the

unique µ-sets of S2
3 .

(ii) µ(S3
3) = 6. Moreover, if X is a µ-set of S3

3 , then either |X ∩ V (iS3
3)| = 2 for

every i ∈ [3]0, or |X ∩ V (iS3
3)| = 3 for exactly two i ∈ [3]0.

(iii) µ(S4
3) = 12. Moreover, if X is a µ-set of S4

3 , then |X∩V (iS3
3)| = 4 for i ∈ [3]0.

In addition, if X is a mutual-visibility set of S4
3 , then |X∩(V (iS3

3)∪V (jS3
3))| ≤

10 for i, j ∈ [3]0.

Proof. (i) This follows from Theorem 3.1 and its proof, see also the top part of
Fig. 2.

(ii) The set X = {iji : i 6= j and i, j ∈ [3]0} ⊆ V (S3
3) is a mutual-visibility set of

S3
3 , hence µ(S3

3) ≥ 6.
To prove that µ(S3

3) ≤ 6, consider an arbitrary µ-set T of S3
3 . Since iS2

3 , i ∈ [3]0,
is a convex subgraph of S3

3 , we have |T ∩ V (iS2
3)| ≤ 4 by (i). There is nothing to

prove that |T | ≤ 6 if |T ∩ V (iS2
3)| ≤ 2 for i ∈ [3]0. In this case we also have that

|T ∩ V (iS3
3)| = 2, for i ∈ [3]0. In the rest we may hence without loss of generality

assume that |T ∩ V (0S2
3)| ≥ 3.
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Assume first that |T ∩ V (0S2
3)| = 4. Then these vertices must be (up to sym-

metry) 000, 011, 021, 020 or 011, 010, 020, 022. In both cases we infer that no vertex
from V (1S2

3) ∪ V (2S2
3) lies in T , hence |T | = 4.

We are left with the case when |T∩V (0S2
3)| = 3. Setting Y1 = {000, 001, 010, 011}

we see that |T ∩ Y1| ≤ 2. Moreover, if |T ∩ Y1| = 2, then T ∩ V (1S2
3) = ∅. As in the

case where |T ∩V (2S2
3)| ≥ 4 was previously ruled out, we can conclude that |T | ≤ 6.

The same conclusion can be derived by considering the set Y2 = {000, 002, 020, 022}.
Hence assume in the rest that |T ∩ Y1| ≤ 1 and |T ∩ Y2| ≤ 1 in the rest of this proof
and consider the following subcases.

Consider the case where |T ∩ Y1| = 1 and |T ∩ Y2| = 1. Assume first that 000 ∈
T ∩ Y1. Then since |T ∩ V (0S2

3)| = 3, we have T ∩ V (0S3
3) = {000, 012, 021}. Since

021, 012, 1ij is the unique shortest path between 021 and each vertex 1ij ∈ V (1S2
3)\

{122}, we have |T ∩ V (1S2
3)| ≤ 1. Analogously, 012, 021, 2ij is the unique shortest

path between 012 and each vertex 2ij ∈ V (1S2
3) \ {211}, we have |T ∩ V (2S2

3)| ≤ 1.
Hence |T | ≤ 5 in this case.

Assume second that 000 /∈ T ∩Y1. Since we have assumed that |T ∩V (0S3
3)| = 3,

we get |{001, 010, 011}∩ T | = 1, |{002, 020, 022}∩ T | = 1, and |{012, 021}∩ T | = 1.
Assume first that 011 ∈ T . Since |{012, 021} ∩ T | = 1, we infer that T can have
at most one vertex in 1S2

3 , and if so, this vertex is 122. Now, if 122 /∈ T , then T
has vertices only in 0S2

3 and in 2S2
3 , hence by our case assumption |T | ≤ 6. And

if 122 ∈ T , then T ∩ V (2S2
3) = ∅, and we have |T | ≤ 4. Analogously we get the

conclusion if 022 ∈ T . Hence we are left with the cases when |{001, 010} ∩ T | = 1,
|{002, 020} ∩ T | = 1, and |{012, 021} ∩ T | = 1. Then a case analysis similar to the
above leads to the required conclusion. Since we have assumed |T ∩V (0S3

3)| = 3, we
are now left with the case where exactly one among T ∩Y1 and T ∩Y2 is of cardinality
1 and the other is empty. As in the proof of the previous cases, none other than 122
and 211 can be in T from V (1S2

3) ∪ V (2S2
3). Hence, |T | ≤ 5 in this case. We can

conclude that in each case |T | ≤ 6, and therefore µ(S3
3) = 6. In each of the cases,

we also see that if |T ∩ V (0S2
3)| = 3, then |T ∩ V (iS2

3)| = 3 and |T ∩ V (jS2
3)| = 0,

where {i, j} = {1, 2} (or otherwise |T | < 6).

(iii) (To help the reader follow this part of the proof, we invite the reader to use
Fig. 1.) Consider S4

3 and let X = {iiii, i012, i120, i201 : i ∈ [3]0}. Since X is a
mutual-visibility set of cardinality 12, we get µ(S4

3) ≥ 12.
To prove the reverse inequality, let T be a mutual-visibility set of S4

3 . Since each
iS3

3 is a convex subgraph of S4
3 , combining Lemma 2.2 with (i) we have |T∩V (iS3

3)| ≤
6. We can also observe that V (iS3

3) ∪ V (jiS2
3) ∪ V (jjiS1

3) ∪ {jjji, jjjj} induces a
convex subgraph of S4

3 for i, j ∈ [3]0.
We claim that |T ∩ (V (iS3

3) ∪ V (jS3
3))| ≤ 10 for i, j ∈ [3]0. Let |T ∩ V (2S3

3)| =
max{|T ∩ V (iS3

3)| : i ∈ [3]0}. In view of (ii), we have |T ∩ V (2S3
3)| ≤ 6. If

12



|T∩V (2S3
3)| ≤ 5, there is nothing to prove and the inequality holds. If |T∩V (2S3

3)| =
6, we will show that |T ∩ V (iS3

3)| ≤ 4 for each i ∈ [2]0. Suppose not and assume,
without loss of generality, that |T ∩V (1S3

3)| ≥ 5. Since |T ∩V (2S3
3)| = 6, by (ii) we

have |T ∩V (2iS2
3)| ≤ 3 for each i ∈ [3]0. It follows that |T ∩ (V (20S2

3)∪ V (220S1
3)∪

{2220})| ≤ 5 and |T ∩ (V (21S2
3) ∪ V (221S1

3) ∪ {2221, 2222})| ≥ 1.
Next, we show that |T ∩(V (12S2

3)∪V (112S1
3)∪{1112, 1111})| ≥ 1. It is straight-

forward to check that |T∩(V (21S2
3)∪V (221S1

3)∪{2221, 2222})| ≤ 2 if |T∩V (10S2
3)| 6=

0. By (i) we known that |T ∩V (1iS2
3)| ≤ 4 for each i ∈ [3]0. But if |T ∩V (1iS2

3)| = 4,
then |T ∩ V (1jS2

3)| = 0 for j ∈ [3]0 \ {i}. Hence |T ∩ V (1S3
3)| = 4 contradicts what

we have assumed |T ∩ V (1S3
3)| ≥ 5, so |T ∩ V (1iS2

3)| ≤ 3 for each i ∈ [3]0. Assume
first that |T ∩ V (10S2

3)| ≤ 2. Since |T ∩ (V (21S2
3) ∪ V (221S1

3) ∪ {2221, 2222})| ≤ 2,
we have |T ∩ (V (10S2

3)∪V (110S1
3)∪{1110})| ≤ 4, then our assumption implies that

|T ∩ (V (12S2
3) ∪ V (112S1

3) ∪ {1112, 1111})| ≥ 1.
Assume second that |T ∩ V (10S2

3)| = 3. If |T ∩ (V (110S1
3) ∪ {1110})| ≤ 1, then

|T ∩ (V (12S2
3)∪V (112S1

3)∪{1112, 1111})| ≥ 1 as the assumption |T ∩V (1S3
3)| ≥ 5.

If |T ∩ (V (110S1
3) ∪ {1110})| = 2, since the vertex 1100 lies on the unique shortest

path between a vertex of T ∩{1101, 1102, 1110} and each vertex of T ∩V (10S2
3), we

see that 1100 /∈ T . Moreover, the vertices 1110, 1101, and 1102 lie on a convex P3

in S4
3 , then 1110 ∈ T or 1101 ∈ T . Furthermore, if {1101, 1102} ⊆ T ∩V (1S3

3) is the
case, since |T ∩ (V (21S2

3) ∪ V (221S1
3) ∪ {2221, 2222})| ≥ 1, the vertex 1102 lies on

the unique shortest path between 1101 and a vertex of T ∩ (V (21S2
3) ∪ V (221S1

3) ∪
{2221, 2222}). This is a contradiction. If {1110, 1102} ⊆ T , it is easy to verify
that only {1000, 1002, 1012} ⊆ T ∩ V (10S2

3) is the case. But the vertex 1102 lies on
the unique shortest path between 1000 and a vertex of T ∩ (V (21S2

3) ∪ V (221S1
3) ∪

{2221, 2222}), a contradiction. Therefore, |T ∩ (V (10S2
3)∪V (110S1

3)∪{1110})| ≤ 4,
we obtain |T ∩ (V (12S2

3) ∪ V (112S1
3) ∪ {1112, 1111})| ≥ 1.

Let x ∈ T∩(V (12S2
3)∪V (112S1

3)∪{1112, 1111}). Since each vertex in T∩V (2S3
3)

is T -visible with x, we obtain 2111 /∈ T ∩ V (2S3
3) and each vertex in T ∩ V (2S3

3) is
T ∩ V (2S3

3)-visible with 2111. This implies that (T ∩ V (2S3
3))∪ {2111} is a mutual-

visibility set of S3
3 of cardinality seven, which is a contradiction. As a consequence,

we conclude that |T ∩ (V (iS3
3) ∪ V (jS3

3))| ≤ 10 for i, j ∈ [3]0.
Now assume that T is an arbitrary µ-set of S4

3 . We show that |T ∩V (iS3
3)| ≤ 4 for

each i ∈ [3]0. Suppose not and we may without loss of generality let |T∩V (0S3
3)| ≥ 5.

Since we have proved that |T | ≥ 12 and |T ∩ (V (iS3
3) ∪ V (jS3

3))| ≤ 10 for each
i, j ∈ [3]0, it follows that |T ∩ V (iS3

3)| ≥ 2 for each i ∈ [2]. In fact, there are only
two cases. Either |T ∩ V (iS3

3)| ≥ 4 for some i ∈ [2] or |T ∩ V (iS3
3)| ≥ 3 for each

i ∈ [2]. For each i ∈ [2], since |T ∩ V (iS3
3)| ≥ 2, we get

|T ∩ {0000, 000i, 00i0, 00ii, 0i00, 0i0i, 0ii0, 0iii}| ≤ 1 .

Let T ′ = T ∩ {0111, 0112, 0121, 0122, 0211, 0212, 0221, 0222}. It is also observed
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that |T ′| ≤ 2. Assume that |T ′| = 2, let xi be the vertex in T ′ closer to iS3
3 for each

i ∈ [2]. Since |T ∩ V (iS3
3)| ≥ 2, it is straightforward to check that xi ∈ {0iii, 0iij},

where i ∈ [2]. If for some i ∈ [2] we have |T ∩ V (iS3
3)| ≥ 4, there is no choice for

xj , where xj ∈ T ′ and j ∈ [2] \ {i}, which is a contradiction. If |T ∩ V (iS3
3)| ≥ 3 for

each i ∈ [2], then xi = 0iii, which is again not possible. These two contradictions
imply that |T ′| ≤ 1.

Recall the definition of bull graph sBn
i , where i ∈ [3]0. Since assumption |T ∩

V (0S3
3)| ≥ 5, we have |T ∩ V (0B4

i )| ≤ 2 for i ∈ [3]0. If |T ∩ V (0B4
i )| = 2 for some

i ∈ [2], then all the remaining vertices in T ∩V (0S3
3) must be from V (0jjS1

3)∪{0j0j}
as |T ∩ V (iS3

3)| ≥ 2. But |T ∩ (V (0jjS1
3) ∪ {0j0j})| ≤ 2, which is a contradiction

to |T ∩ V (0S3
3)| ≥ 5. (Notice that {0010, 0020} ⊆ T ∩ V (0B4

0).) This contradiction
implies that |T ∩ V (0B4

i )| ≤ 1 for each i ∈ [2].
Now, let C be the set of twelve vertices in 0S3

3 whose induced subgraph is a cycle
C12. Then 2 ≤ |T ∩ C| ≤ 3.

Consider first the case case |T ∩ C| = 2. Since we have proved that |T ∩
{0000, 000i, 00i0, 00ii, 0i00, 0i0i, 0ii0, 0iii}| ≤ 1 and |T ′| ≤ 1, where i ∈ [2], the as-
sumption |T ∩V (0S3

3)| ≥ 5 implies that T does not intersect {00ii, 0i00, 0ijj : i, j ∈
[2]}. It follows that T intersects each of the three sets {0iii, 0iij, 0iji : i, j ∈ [2]}
and {0000, 000i, 00i0, 0i0i, 0ii0, 0iii} for {i, j} = [2]. There are then two subcases.
If T intersects {0000, 000i, 00i0}, {0iii, 0iij, 0iji}, and {0jjj, 0jj0, 0j0j} for some
i ∈ [2], we see that T ∩ (V (0S3

3) \ C) ⊆ (V (0iiS1
3) ∪ {0i0i}) since |T ∩ V (jS3

3)| ≥ 2,
where j ∈ [3]0, which is a contradiction. In the other subcase, 0010, 0020 ∈ T ,
and T intersects {0iii, 0iij, 0iji} for some i ∈ [2]. Then T does not intersect
{0012, 0021}. Hence T intersects {0102, 0120} and {0201, 0210}. It follows that
T ∩ (V (0S3

3) \ C) ⊆ V (0jjS1
3) ∪ {0j0j} since |T ∩ V (iS3

3)| ≥ 2, which is again a
contradiction.

Consider next the case |T∩C| = 3. Since |T∩V (0S3
3)| ≥ 5, the set T intersects at

least two of the sets {0iii, 0iij, 0iji : i, j ∈ [2]} and {0000, 000i, 00i0, 0i0i, 0ii0, 0iii}
for i ∈ [2]. Thus T intersects each of the three sets {0011, 0012, 0021, 0022} and
{0i00, 0i0j, 0ij0, 0ijj} for i, j ∈ [2]. Since |T ∩ V (iS3

3)| ≥ 2 for i ∈ [2], this implies
that T does not intersect {00i0, 0i00, 0i0i, 0ii0, 0iii, 0iij, 0iji, 0ijj : i, j ∈ [2]}. Con-
sequently, we can conclude that 0001 and 0002 are in T , which is a contradiction,
since T already intersects {0i0j, 0ij0 : i, j ∈ [2]}.

Hence µ(S4
3) = 12. Moreover, if X is a µ-set of S4

3 , then |X ∩ V (iS3
3)| = 4 for

i ∈ [3]0. �

Theorem 4.4 If n ≥ 2, then µ(Sn
3 ) = 3n−2 + 3. Moreover, if n ≥ 4 and X is a

µ-set of Sn
3 , then |X ∩ V (iSn−1

3 )| = 3n−3 + 1 for i ∈ [3]0. In addition, if n ≥ 4 and
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X is a mutual-visibility set of Sn
3 , then |X ∩ (V (iSn−1

3 ) ∪ V (jSn−1
3 ))| ≤ 2.3n−3 + 4

for i, j ∈ [3]0.

Proof. Proposition 4.3 yields the correctness of the formula for n ≤ 4. Also, note
that when n = 4, 2.3n−3 + 4 = 10, so that the remaining part of the statement also
follows from Proposition 4.3. Hence assume in the rest that n ≥ 5. The set

X = {s012, s120, s201 : s ∈ [[3]0]
n−3} ∪ {in : i ∈ [3]0}

is a mutual-visibility set of cardinality 3n−2 +3. Therefore, µ(Sn
3 ) ≥ 3n−2 +3. Also,

note that |X ∩ V (iSn−1
3 )| = 3n−3 + 1, for i ∈ [3]0.

We first claim that if T is a mutual-visibility set of Sn
3 , then |T ∩ (V (iSn−1

3 ) ∪
V (jSn−1

3 ))| ≤ 2.3n−3 + 4 for i, j ∈ [3]0. For this it is enough to show that if |T ∩
V (iSn−1

3 )| = 3n−3 + 3 for some i ∈ [3]0 then |T ∩ V (jSn−1
3 )| ≤ 3n−3 + 1 for each

j ∈ [3]0 \ {i}. Assume the contrary. Without loss of generality let |T ∩V (2Sn−1
3 )| =

3n−3+3 and |T ∩V (1Sn−1
3 )| ≥ 3n−3+2. Considering 1Sn−1

3 , by induction hypothesis,
we know that |T∩(V (10Sn−2

3 )∪V (11Sn−2
3 ))| ≤ 2.3n−4+4. Since 2.3n−4+4 < 3n−3+2,

we get that T intersects 12Sn−2
3 . This implies that 21n−1 /∈ T and each vertex in

T ∩ V (2Sn−1
3 ) is T ∩ V (2Sn−1

3 )-visible with 21n−1. Hence by adding 21n−1 to the set
T ∩ V (2Sn−1

3 ) we obtain a mutual-visibility set of Sn−1
3 with cardinality 3n−3 + 4,

which is a contradiction to our induction hypothesis. This contradiction proves the
claim.

If i, j, k ∈ [3]0, then by the fact that µ(Sn
3 ) ≥ 3n−2 + 3 and by the above claim

we obtain that

|T ∩ V (iSn−1
3 )| = |T | − |T ∩ (V (jSn−1

3 ) ∪ V (kSn−1
3 ))|

≥ (3n−2 + 3)− (2 · 3n−3 + 4)

= 3n−3 − 1 . (1)

Now suppose T is a µ-set of Sn
3 . Then |T | ≥ 3n−2 + 3. If |T ∩ V (iSn−1

3 )| ≤ 3n−3 + 1
for each i ∈ [3]0, then we are done. Suppose now that, without loss of generality,
|T ∩ V (0Sn−1

3 )| ≥ 3n−3 + 2. Then considering 0Sn−1
3 , by induction hypothesis, we

know that |T ∩ (V (00Sn−2
3 )∪V (0iSn−2

3 ))| ≤ 2 ·3n−4+4. Since 2 ·3n−4+4 < 3n−3+2,
we get that T intersects 0iSn−2

3 for each i ∈ [2].
Considering iSn−1

3 , by induction hypothesis, we know that |T ∩ (V (iiSn−2
3 ) ∪

V (ijSn−2
3 ))| ≤ 2 · 3n−4 + 4. For n ≥ 6, since 2 · 3n−4 + 4 < 3n−3 − 1, we get that

T intersects i0Sn−2
3 for each i ∈ [3]0. Hence for n ≥ 6, we obtain that the vertices

on the shortest 01n−1, 02n−1-path are not in T . In addition, we obtain that every
vertex in T ∩ V (0Sn−1

3 ) is (T ∩ V (0Sn−1
3 ))-visible with 01n−1 and 02n−1. Hence by

adding 01n−1 and 02n−1 to the set T ∩ V (0Sn−1
3 ), we get a mutual-visibility set of
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Sn−1
3 with cardinality at least 3n−3 + 4, which is a contradiction to our induction

hypothesis.
Now we are left with the case n = 5. In this case, we claim that T intersects

V (i0S3
3) ∪ V (ii0S2

3) ∪ V (iii0S1
3) ∪ V (iiiiS1

3 ) for each i ∈ [2]. Assume the contrary.
Then by (1) we have |T ∩V (iS5

3)| ≥ 8. But now we have, |T ∩ (V (ijS3
3)∪V (iijS2

3)∪
V (iiijS1

3))| ≥ 8. Then |T ∩ V (ijS3
3)| ≤ 5 since otherwise, we can form a mutual-

visibility set of S3
3 with cardinality seven, which is a contradiction. Also, |T ∩

(V (iijS2
3) ∪ V (iiijS1

3))| ≤ 3. Hence the only possibility is that |T ∩ V (ijS3
3)| = 5

and |T ∩ (V (iijS2
3) ∪ V (iiijS1

3))| = 3. But |T ∩ V (ijS3
3)| = 5 happens only if

ij00i and ij00j are T in which case, ij00j is not mutually-visible with the vertices
in V (iijS2

3) ∪ V (iiijS1
3). This is a contradiction. Thus T intersects V (i0S3

3) ∪
V (ii0S2

3) ∪ V (iii0S1
3) ∪ V (iiiiS1

3) for both i ∈ [2]. Then again as mentioned for
n ≥ 6, we can add 014 and 024 to the set T ∩ V (0S4

3) to get a mutual-visibility set
of S4

3 with cardinality at least 13, which is a contradiction. Thus if n ≥ 5, then
µ(Sn

3 ) = 3n−2 + 3. Moreover, if X is a µ-set of Sn
3 , then |X ∩ V (iSn−1

3 )| = 3n−3 + 1
for i ∈ [3]0. �

Corollary 4.5 If n ≥ 2, then gp(Sn
3 ) = 3n−2 + 3.

Proof. Since gp(Sn
3 ) ≤ µ(Sn

3 ), Theorem 4.4 implies that gp(Sn
3 ) ≤ µ(Sn

3 ) = 3n−2+3.
On the other hand, the set {s012, s120, s201 : s ∈ [[3]0]

n−3} ∪ {in : i ∈ [3]0} is a
general position set of Sn

3 of cardinality 3n−2 + 3 for n ≥ 3, and we are done. �

It remains to consider the outer mutual-visibility number and the outer general
position number of Sn

3 . The sets

X = {0k12n−k−1 : k ∈ [n]0} and

Y = {0n, i000kijn−k−4 : i, j ∈ [2], k ∈ [n− 4]0}

are outer general position sets with cardinality n and 2n− 7, respectively. Thus, if
n ≥ 3, then

µo(S
n
3 ) ≥ gpo(S

n
3 ) ≥ max{n, 2n− 7} .

5 Concluding remarks

We have finished the previous section by bounding from below µo(S
n
3 ) and gpo(S

n
3 ).

It remains open to determine the exact values of µo(S
n
3 ) and of gpo(S

n
3 ) for n ≥ 3.

The Sierpiński graph S2
p is isomorphic to the Sierpiński product graph Kp⊗f Kp,

where f is the identity function. (For the definition of Sierpiński product graphs see
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the seminal paper [19], cf. also [11].) In [29] it was proved that minf gp(Kp⊗fKp) = p
and that maxf gp(Kp ⊗f Kp) = p(p − 1). Hence Corollary 3.2 asserts that S2

p is
somewhere in between the minimum and the maximum over all functions f .
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