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Abstract

The general position problem asks for large sets of vertices such that no
three vertices of the set lie on a common shortest path. Recently a dynamic
version of this problem was defined, called the mobile general position problem,
in which a collection of robots must visit all the vertices of the graph whilst
remaining in general position. In this paper we investigate this problem in the
context of Cartesian products, corona products and joins, giving upper and
lower bounds for general graphs and exact values for families including grids,
cylinders, Hamming graphs and prisms of trees.
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1 Introduction

The general position problem originated as a geometric puzzle of Dudeney [13], but was
first investigated in the context of graph theory in [8] and [24]. A survey of the problem
is given in [6]. The arXiv version [25] of the paper [24] gave the following motivation
for the problem. Suppose that a collection of robots is stationed on the vertices of a
graph. They communicate with each other by sending signals along shortest paths. To
avoid their communication being disrupted, we wish that no robot lies on a shortest
path between two other robots. Subject to this condition, what is the greatest possible
number of robots that we can place on the graph? In fact, the related mutual-visibility
problem was initially researched in terms of its applications in robotic navigation and
communication (see [1, 2, 11] for a partial overview) and was only recently considered
in a pure mathematics context [12].

However, this picture lacks an important feature of real world robotic navigation:
the general position problem is ‘static’, whereas in applications the robots will typically
need to move around the network. Watching the mobile delivery robots created by
Starship Technologies® [35] inspired the authors of [16] to consider a dynamic version
of the general position problem, in which robots move through the vertices of a graph
whilst remaining in general position, and such that every vertex is visited by a robot
at least once (it is assumed that one robot moves to an adjacent vertex at each step
and no vertex can contain more than one robot). The paper [16] considered this
problem for block graphs, rooted products, Kneser graphs, unicyclic graphs, complete
multipartite graphs and line graphs of complete graphs. A mobile version of the closely
related mutual-visibility problem was recently treated in [10]. In addition, the paper [4]
considers the version of the mobile general position problem with the stricter condition
that every vertex must be visited by every robot, as well as scenarios in which more
than one robot is allowed to move at once.

The general position problem has been investigated for a wide variety of graphs,
but there is a particularly extensive literature on general position sets in Cartesian
products, see [17, 18, 20, 32, 33]. General position sets in other graph products were
discussed in [14]. Cartesian products have also been considered in the setting of vari-
ants of the general position number, such as the lower general position number [21],
the mutual-visibility number [9, 12], the monophonic position number [7], the lower
mutual-visibility number [5], general position polynomials [15], edge general position
numbers [27], total mutual-visibility [23] and the variety of general position prob-
lems [31]. In this paper, we examine the mobile general position problem in Cartesian
products, together with the coronas and joins of graphs.

The plan of the paper is as follows. In Subsection 1.1 we introduce the formal
definitions of the main concepts that we shall use in our exposition. In Section 2 we give
bounds for the mobile general position number of Cartesian products and discuss their
sharpness. In Section 3 we determine this number for Cartesian products involving
paths, including grids, some cylinders and prisms of trees. Section 4 discusses the
mobile general position problem for corona products and joins of graphs. We conclude
with some open problems in Section 5.
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1.1 Formal definitions and preliminaries

We will write [n] for {1, . . . , n} and [m,n] for {m,m+1, . . . , n− 1, n} when m ≤ n. A
graph G = (V (G), E(G)) consists of a set V (G) of vertices that are connected by a set
of edges E(G). All graphs that we consider are simple and undirected. We will write
u ∼ v to indicate that u and v are adjacent in G, and will denote the set of neighbours
of u by NG(u), or simply by N(u) if the graph is clear from the context. The degree
deg(u) of a vertex u is |N(u)|. A vertex of degree one is a leaf, and the number of
leaves in a graph G will be denoted by ℓ(G). A complete graph with n vertices will
be written as Kn and a complete bipartite graph with partite sets of size n and m as
Kn,m.

A path Pr in G is a sequence u1, u2, . . . , ur such that ui ∼ ui+1 for i ∈ [r − 1]
and the length of this path is r − 1. A cycle Cr is a sequence u1, u2, . . . , ur such that
ui ∼ ui+1 for i ∈ [r − 1] and also u1 ∼ ur. The distance between vertices u, v ∈ V (G)
is the length of a shortest u, v-path in G. We will typically identify the vertices of a
cycle Cn with Zn and the vertices of a path Pn with [n] in the natural manner. A
subgraph X of G is convex if for any u, v ∈ V (X) we have V (P ) ⊆ V (X) for any
shortest u, v-path P in G. The subgraph G[X] induced by a subset X ⊆ V (G) is the
subgraph with vertex set X such that u, v ∈ X are adjacent in G[X] if and only if
they are adjacent in G.

If S ⊆ V (G) has the property that no shortest path of G passes through more
than two vertices of S, then we say that S is a general position set of G. The largest
possible number of vertices in a general position set of G is the general position number
of G, denoted by gp(G). Any largest general position set is referred to as a gp-set.

If a robot is located at a vertex u and u ∼ v, then we indicate the movement of the
robot from u to v along the edge uv by u ⇝ v and refer to this as a move. Suppose
that we assign exactly one robot to each vertex of a general position set S. If a robot
is stationed at a vertex u of S, then the move u⇝ v is called a legal move if i) v /∈ S
(thereby avoiding having more than one robot per vertex at any stage) and ii) the
new set (S \ {u}) ∪ {v} is also a general position set. A configuration of robots on a
general position set of G is called a mobile general position set if there is a sequence
of legal moves starting from S such that every vertex of G is visited at least once
by some robot. The mobile general position number, written Mobgp(G), is the largest
number of robots in a mobile general position set. We will refer to a largest possible
configuration of robots in mobile general position as a Mobgp-set.

In [31] the variety of general position problems in graphs was introduced, including
general position sets, outer general position sets, dual general position sets, and total
general position sets. For our purposes we recall the following definitions. If X ⊆
V (G), then u, v ∈ V (G) are X-positionable if for any shortest u, v-path P we have
V (P ) ∩ X ⊆ {u, v}. Note that then X is a general position set if all pairs u, v ∈ X
are X-positionable. If it also holds that every pair u, v with u ∈ X and v ∈ V (G) \X
is X-positionable, then X is an outer general position set. The cardinality of a largest
outer general position set of G is denoted by gpo(G) and is called the outer general
position number. It is shown in [31] that outer general position sets coincide with sets
of mutually maximally distant vertices. (The latter concept was introduced in [28],
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see also the related survey [22].) In particular, in a block graph the outer general
position sets are the sets of simplicial vertices; in the case of a tree this yields gp(T ) =
gpo(T ) = ℓ(T ).

2 Bounds for Cartesian products

Recall that the Cartesian product G □ H of graphs G and H satisfies V (G □ H) =
V (G)×V (H) and (g, h)(g′, h′) ∈ E(G □ H) if either gg′ ∈ E(G) and h = h′, or g = g′

and hh′ ∈ E(H). A G-layer is a subgraph of G □ H induced by V (G)×{h} for some
h ∈ V (H), which will be denoted by Gh, with a similar definition for H-layers gH,
where g ∈ V (G). Likewise, if P is a path u1, . . . , ur in G and h ∈ V (H), then we
will denote the path (u1, h), (u2, h), . . . , (ur, h) in G □ H by P h (with an analogous
definition of gQ for a path Q in H and g ∈ V (G)).

We begin by deriving some bounds on Mobgp(G □ H). A trivial upper bound is
Mobgp(G □ H) ≤ gp(G □ H). Proposition 2.1 gives two lower bounds in terms of the
mobile and outer general position numbers of the factors.

Proposition 2.1. For any connected graphs G and H of order at least two, the fol-
lowing hold.

(i) Mobgp(G □ H) ≥ max{Mobgp(G),Mobgp(H)}.

(ii) Mobgp(G □ H) ≥ max{gpo(G), gpo(H)}.

Proof. (i) Let S be a Mobgp-set of G and let h ∈ V (H). We first position the robots
at the vertices of the set S × {h}. As Gh is an isometric subgraph of G □ H, robots
initially stationed at the vertices of S×{h} can visit every vertex of Gh by a sequence
of legal moves, all the time remaining inside Gh and in in general position in G □ H.
Now, whenever a robot visits a vertex (g, h) in this layer, this robot can visit all the
vertices in the H-layer gH corresponding to g by a sequence of legal moves and then
return to (g, h). Hence Mobgp(G □ H) ≥ Mobgp(G). By symmetry, Mobgp(G □ H) ≥
Mobgp(H).

(ii) Let S = {u1, . . . , ur} be an outer general position set of G of cardinality gpo(G)
and start with that many robots positioned on S×{h} for some h ∈ V (H). Let Ri be
the robot at (ui, h) for i ∈ [r]. Also, for each i ∈ [r] let Gi be the connected component
containing ui in G− (S \ {ui}).

Let h′ ∈ V (H) \ {h} and let Q be a shortest h, h′-path in H. The robot Ri can
follow the path uiQ from (ui, h) to reach the vertex (ui, h

′) by legal moves. At this
point, Ri can visit all the vertices of V (Gi)×{h′} by a sequence of legal moves. To see
this, notice that the shortest paths between the remaining robots lie within the layer
Gh, whilst the shortest paths from Ri to any Rj, i ̸= j, do not pass through a third
robot by the outer general position property. Afterwards Ri can return to (ui, h) by
performing these legal moves in the reverse order. As this holds for any of the robots
and any h′ ∈ V (H)− {h}, this allows us to perform a sequence of legal move so that
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any vertex of G □ H outside Gh is visited, since
⋃r

i=1 V (Gi) = V (G). Having done
this, we return all the robots to their original positions in S × {h} using legal moves.

Finally, let h′ ∈ NH(h). For i ∈ [r] we move the robot Ri from (ui, h) to (ui, h
′) in

sequence; as S is in general position each of these moves is legal. Afterwards the robots
will occupy the set S×{h′}. The previous reasoning applied to Gh′

now shows that the
robots visit each vertex of V (G)×{h} by legal moves. Thus Mobgp(G □ H) ≥ gpo(G)
and, by a symmetric argument, Mobgp(G □ H) ≥ gpo(H).

We now show that both lower bounds in Proposition 2.1 are sharp by consid-
ering the Cartesian products Kr □ Ps. We recall that [32, Theorem 3.2] implies
that gp(Kr □ Ps) = r + 1 for s ≥ 3. Observe that for r, s ≥ 2 it holds that
max{Mobgp (Kr),Mobgp (Ps)} = max{gpo (Kr), gpo (Ps)} = r.

Proposition 2.2. For all positive integers r, s ≥ 2,

Mobgp(Kr □ Ps) = r.

Proof. Let r, s ≥ 2. By Proposition 2.1 we have Mobgp(Kr □ Ps) ≥ r. We now show
that Mobgp(Kr □ Ps) ≤ r. Let V (Ps) = [s] and suppose for a contradiction that
there exists a mobile general position set S of Kr □ Ps with |S| > r. Then choose
x ∈ V (Kr), such that (x, i), (x, j) ∈ V (Kr □ Ps) are occupied by robots R1, R2, where
i < j and the difference |j − i| is the smallest possible.

First, notice that any other vertex (y, k) with k ≥ j cannot be occupied by a
robot of S, for otherwise (x, j) would lie on a shortest path between (x, i) and (y, k).
Similarly, every other vertex (y, k) with k ≤ i is unoccupied. If s = 2, this leads us to
conclude that |S| ≤ 2, which is impossible, since we assumed that |S| > r ≥ 2. So, we
may now suppose that s > 2. By the above reasoning, and the fact that the difference
|j − i| was chosen to be as small as possible, we deduce that no layer yPs can contain
more than one robot for y ∈ V (Kr) \ {x}. Thus, we must have |S| = r + 1 and each
layer yPs contains exactly one robot for y ̸= x. Moreover, each of the remaining r− 1
robots different from R1 and R2 are located at vertices (y, ℓ) such that i < ℓ < j.

It now follows that neither R1 nor R2 can cross to another Ps-layer by a legal
move. Suppose that robots R1 and R2 are stationed at (x, i) and (x, j), respectively,
when R1 makes the move (x, i) ⇝ (y, i). Since there is a robot at some vertex (y, k)
with i < k < j, after this move the robot at (y, k) would lie on a shortest path from
(y, i) to (x, j). As a result, no robot can visit any vertex in (V (Kn) \ {x})× {1, s}, a
contradiction. Thus at most r robots can traverse Kr □ Ps in general position.

To see that the lower bounds of Proposition 2.1 are independent in general, consider
the following examples. If n ≥ 2, then Mobgp(Kn,n) = 2 and gpo(Kn,n) = n. Hence the
bound (i) yields Mobgp(Kn,n □ Kn,n) ≥ 2, while (ii) yields Mobgp(Kn,n □ Kn,n) ≥ n.
On the other hand, if n ≥ 7, then Mobgp(Cn) = 3 and gpo(Cn) = 2, hence the bound
(i) is better for Mobgp(Cn □ Cn) if n ≥ 7. Moreover, just after Theorem 2.4 we
will demonstrate that the mobile general position number of a graph can be arbitrar-
ily larger than its outer general position number, so that in turn, bound (i) can be
arbitrarily larger than bound (ii).
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From [14, Theorem 3.2] we recall that if n ≥ 2 and m ≥ 2, then gp(Kn □ Km) =
n +m − 2. We now sharpen this result by demonstrating that a gp-set of Kn □ Km

as constructed in [14, Theorem 3.2] is essentially unique as soon as n ≥ 3 and m ≥ 3.

Lemma 2.3. Let n ≥ 3, m ≥ 3, V (Kn) = [n], V (Km) = [m], and let X be a gp-set of
Kn □ Km. Then there exist i ∈ [n] and j ∈ [m] such that

X =
(
V ((Kn)

j) ∪ V (i(Km))
)
\ {(i, j)} .

Proof. Let X be a gp-set of Kn □ Km. Then, as stated above, |X| = n + m − 2.
Note that the set X contains at most two vertices from every induced copy of C4 of
Kn □ Km. This fact implies the following:

Claim A: if (i, j), (i, j′) ∈ X, where j ̸= j′, then X ∩
(
V ((Kn)

j) ∪ V ((Kn)
j′)
)
=

{(i, j), (i, j′)}.

If X contains all the vertices of some Kn-layer, then by Claim A, X contains no
other vertices, implying that |X| = n < n+m− 2, which is not possible. Let j ∈ [m]
be such that t = |X ∩ V ((Kn)

j)| is as large as possible. Note that t ≥ 2, for otherwise
we would have |X| ≤ m. Moreover, by the above, t ≤ n − 1. If t = n − 1 and
i ∈ [n] is the index for which (i, j) /∈ X, then using Claim A again, we have that
X ⊆ V ((Kn)

j) ∪ V (i(Km)). Since |X| = n + m − 2, we conclude that X has the
required structure in this case. Suppose finally that t = n− k ≥ 2, where k ≥ 2. We
may assume without loss of generality that X ∩ V ((Kn)

j) = {(1, j), . . . , (n − k, j)}.
Then, using Claim A once more,

X ∩
n−k⋃
ℓ=1

V ((Kn)
ℓ) = {(1, j), . . . , (n− k, j)} .

Notice that the subgraph H of Kn □ Km induced by the vertex set

{n− k + 1, . . . , n} × ({1, . . . , j − 1} ∪ {j + 1, . . . ,m})

is isomorphic to Kk □ Km−1. Since it is a convex subgraph of Kn □ Km, the inter-
section X ∩ V (H) is a general position set of H. Therefore,

|X ∩ V (H)| ≤ gp(Kk □ Km−1) = k + (m− 1)− 2 = k +m− 3 .

By our assumption on t we have X ∩ {(n − k + 1, j), . . . , (n, j)} = ∅. Thus we can
conclude that |X| ≤ (n− k) + (k +m− 3) = n+m− 3, a contradiction.

We have thus proved that |X| = n+m− 2 holds only in the case when t = n− 1
and X has the structure as claimed.

Lemma 2.3 is illustrated in Fig. 1, where the gp-set of K7 □ K5 corresponding to
the vertex (i, j) is shown.

Theorem 2.4. If n ≥ m ≥ 1, then

Mobgp(Kn □ Km) =

{
n; m ∈ [2],
n+m− 3; m ≥ 3.
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Figure 1: Canonical gp-set in K7 □ K5

Proof. If m = 1, then Kn □ K1
∼= Kn, thus gp(Kn □ K1) = Mobgp(Kn □ K1) = n.

The case m = 2 follows from Proposition 2.2.

Let m ≥ 3. By Lemma 2.3, every gp-set of Kn □ Km has the canonical form as
illustrated in Fig. 1. It is straightforward to check that no robot placed in such a set can
make a legal move. This implies that Mobgp(Kn □ Km) < gp(Kn □ Km) = n+m−2.
To complete the proof, we are going to show that there exists a mobile general position
set of cardinality n+m− 3.

Let X = {(2, 1), (3, 1), . . . , (n, 1)} ∪ {(1, 3), (1, 4), . . . , (1,m)} and let us first po-
sition a set of n + m − 3 robots at the vertices of S. First notice that such a set
is a general position set, since it is a subset of the canonical gp-set of Kn □ Km, as
illustrated in Fig. 1. Then we perform the following sequence of moves:

• (2, 1)⇝ (2, 2), (3, 1)⇝ (3, 2), . . ., (n, 1)⇝ (n, 2),

• (1, 3)⇝ (1, 1).

Observe that each of these moves is legal. Thus, the new set occupied by the robots is
a general position set of Kn □ Km. Next, this process of legal moves can be repeated
m − 2 times. In this way, the robots initially positioned at (2, 1), (3, 1), . . . , (n, 1)
will visit the vertices of the set {2, 3, . . . , n} × [m] by legal moves, while the re-
maining vertices can be visited by legal moves by the robots initially positioned at
(1, 3), (1, 4), . . . , (1,m). This concludes our argument for the existence of a mobile
general position set of cardinality n+m− 3.

By Theorem 2.4 we have Mobgp(Kn □ Kn) = 2n − 3, whilst it follows from [31,
Theorem 2.3] that gpo(Kn □ Kn) = n, so that the mobile general position number of
a graph can be arbitrarily larger than the outer general position number. Theorem 2.4
also demonstrates that the mobile general position number of a Cartesian product can
be arbitrarily larger than both bounds in Proposition 2.1.

Finally, we give an example (Cartesian products of stars) that shows that the
mobile general position number of a non-trivial Cartesian product can be arbitrarily
smaller than its general position number.

Proposition 2.5. For all r ≥ 1, there exist graphs G,H for which

gp(G □ H)−Mobgp(G □ H) = r.
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Proof. For k ≥ 2, let V (K1,k) = {0} ∪ [k], with 0 being the vertex of degree k.
It follows from [33, Theorem 1] that gp(K1,k □ K1,k) = 2k. We will show that
Mobgp(K1,k □ K1,k) = k + 1, so that gp(K1,k □ K1,k) −Mobgp(K1,k □ K1,k) = k − 1
and the result follows on setting k = r + 1.

Let S by any mobile general position set of K1,k □ K1,k. Any pair of adjacent
vertices in the Cartesian product of trees is a maximal general position set [21], so
if |S| > 2 the robots must always occupy an independent set. We can start at the
stage that a robot is stationed at (0, 0). If there are robots at vertices (u1, v1) and
(u2, v2) with u1, v1, u2, v2 ∈ [k], u1 ̸= u2 and v1 ̸= v2, then there would be a shortest
(u1, v1), (u2, v2)-path through (0, 0); hence all the remaining robots lie in a set {i}× [k]
or [k]× {j} for some i, j ∈ [k]. In either case, we have |S| ≤ k + 1.

Finally, we show that Mobgp(K1,k □ K1,k) ≥ k+1. Consider the set S = {(0, 0)}∪
([k] × {1}). First, move (0, 0) ⇝ (0, 2), followed by (i, 1) ⇝ (i, 0) for i ∈ [2, k] and
then (0, 2) ⇝ (1, 2). By relabelling as necessary, we see that each vertex except for
(0, 1) may be visited using these sequences. For the remaining vertex, from the initial
configuration S = {(0, 0)} ∪ ([k] × {1}) perform (0, 0) ⇝ (0, 2), (i, 1) ⇝ (i, 0) for
i ∈ [2, k], and finally (1, 1)⇝ (0, 1). Therefore, S is a mobile general position set.

3 Cartesian products with paths

In this section we continue our exposition with exact values of the mobile general po-
sition number for some Cartesian products involving paths, including prism graphs,
i.e. products G □ P2. The result for prisms of complete graphs is contained in Propo-
sition 2.2 and Theorem 2.4. We begin with the exact value of Mobgp(T □ K2), where
T is a tree. It follows from Proposition 2.1 that for any graph G the mobile general
position number of a prism satisfies Mobgp(G) ≤ Mobgp(G □ K2) ≤ 2 gp(G). Since
the mobile general position number of a tree is just two, Theorem 3.1 shows that
Mobgp(G □ K2) can be arbitrarily larger than Mobgp(G).

Theorem 3.1. For any tree T with order at least three, Mobgp(T □ K2) = ℓ(T ).

Proof. By Proposition 2.2, we can assume that ℓ(T ) ≥ 3. As remarked in Section 1,
gpo(T ) = ℓ(T ), so by Proposition 2.1(ii) we have Mobgp(T □ K2) ≥ ℓ(T ). We label
the vertices of K2 by 0, 1. Suppose that at least ℓ(T )+1 robots can traverse T □ K2 in
general position. Since gp(T ) = ℓ(T ) and each T -layer in T □ K2 is isometric, neither
T -layer can contain > ℓ(T ) robots at any stage, that is, each layer V (T ) × {0} and
V (T )×{1} must contain at least one robot at any time. Trivially we can assume that
at least one layer contains two or more robots.

Suppose that the layer T 1 contains at least two robots. If not all of the robots
in T 1 are already stationed at leaves of T , then we may suppose that a robot is at a
vertex (u, 1), where u is a cut-vertex of T . Let T1, . . . , Tk be the components of T −u.
As the set of robots is in general position, one of the sets V (Ti)×{1} must contain the
remaining robots of T 1; without loss of generality, suppose that these other robots are
in V (T1) × {1}. Considering the shortest paths to the robots in V (T1) × {1}, we see
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that there cannot be robots positioned at any vertex from ({u} ∪
⋃k

i=2 V (Ti)) × {0}.
Therefore, the robot at (u, 1) can be moved by a sequence of legal moves to (v, 1), where
v is a leaf of T lying in T2. In this fashion, if both layers T i, i ∈ {0, 1}, contained at
least two robots, then all of these robots could be moved to vertices corresponding to
leaves of T . However, if w is any leaf of T , then we cannot have robots at both (w, 0)
and (w, 1), as this constitutes a maximal general position set. Therefore, in this case,
we conclude that there are at most ℓ(T ) robots in T □ K2, a contradiction.

It follows that there must be a layer, say T 0, that contains just one robot R, and
ℓ(T ) robots lie in T 1. By the preceding argument, R cannot move to the layer T 1 and
no robot in T 1 can move to T 0. If T is a path Pn, then we are left with three robots:
two positioned at vertices of degree two from the copy P 1

n , and other one located at
a vertex of degree three from the other copy P 0

n . It is readily observed that no robot
can visit the vertices of degree two from the copy P 0

n . Hence, we may assume T is not
a path. Let z be any vertex of T with degree at least three. No robot in T 1 can visit
(z, 1) without creating three in a line within T 1, and robot R cannot leave T 0 to visit
(z, 1), a contradiction. We conclude that T □ K2 can hold at most ℓ(T ) robots.

By Theorem 3.1 we have Mobgp(Pn □ P2) = 2 for n ≥ 2. We next complement
this result by considering products of two paths each of order at least three.

Theorem 3.2. If n ≥ m ≥ 3, then Mobgp(Pn □ Pm) = 3.

Proof. Let V (Pk) = [k], so that V (Pn □ Pm) = [n] × [m]. Consider an arbitrary
general position set S of Pn □ Pm with |S| = 4. Then from the proof of [17, Theorem
2.1] we deduce that none of the vertices (1, 1), (1,m), (n, 1) and (n,m) belongs to
S. Hence, no sequence of legal moves for any configuration of four robots in general
position in Pn □ Pm can visit any of the vertices (1, 1), (1,m), (n, 1) and (n,m). Thus,
Mobgp(Pn □ Pm) ≤ 3.

To prove that Mobgp(Pn □ Pm) ≥ 3, we start with three robots positioned at the
general position set S = {(1, 1), (n, 1), (2,m)}. We next describe a sequence of legal
moves for the three robots.

• (1, 1) moves to all the vertices from [1]× [m− 1] and returns back to (1, 1).

• (n, 1) moves to all the vertices from {n} × [m− 1] and returns back to (n, 1).

• (2,m) moves to all the vertices from [2, n−1]× [2,m] and returns back to (2,m).

• (n, 1) ⇝ (n, 2). After this, (1, 1) moves to vertices (2, 1), . . . , (n − 1, 1). Notice
that at this point the robots are at vertices (2,m), (n−1, 1) and (n, 2). Moreover,
by this stage, all the vertices apart from (1,m) and (n,m) have already been
visited.

• (2,m)⇝ (1,m) and (n, 2)⇝ (n, 3)⇝ · · ·⇝ (n,m).

Notice that all these moves are legal, which demonstrates that Mobgp(Pn □ Pm) ≥ 3
and hence Mobgp(Pn □ Pm) = 3 when n ≥ m ≥ 3.

9



By contrast, for infinite grids P∞ □ P∞ we have equality with the general position
number.

Theorem 3.3. If P∞ is the two-way infinite path, then Mobgp(P∞ □ P∞) = 4.

Proof. We first recall from [26, Corollary 3.2] that gp(P∞ □ P∞) = 4. Hence, it
remains to show that Mobgp(P∞ □ P∞) ≥ 4. To do so, let V (P∞) = Z and let
(i, j) ∈ V (P∞ □ P∞). We claim that the set S = {(i−1, j), (i+1, j), (i, j−1), (i, j+1)}
is a mobile general position set of P∞ □ P∞. Observe that the sequence of moves
(i + 1, j) ⇝ (i + 2, j), (i, j + 1) ⇝ (i + 1, j + 1), (i, j − 1) ⇝ (i + 1, j − 1) and
(i − 1, j) ⇝ (i, j) is a sequence of legal moves from robots positioned at the set S.
This sequence moves the four robots one coordinate to the right. We can analogously
move the four robots in each of the remaining three directions in the infinite grid. In
this way, every vertex of the infinite grid is eventually occupied by some robot. Thus,
the conclusion follows.

We now find the exact value of the mobile general position number for some cylinder
graphs Cr □ Ps. The general position numbers of the cylinder graphs are given in [17]
as

gp(Cr □ Ps) =


3; r = 3, s = 2,
5; r = 7 or r ≥ 9, and s ≥ 5,
4; otherwise.

Note that Proposition 2.2 gives Mobgp(C3 □ Ps) = 3 for s ≥ 2. We begin with the
prism graphs Cr □ P2.

Theorem 3.4. If n ≥ 3, then

Mobgp(Cn □ K2) =


3; n = 3,
2; n = 4,
4; otherwise.

Proof. The case C3 □ K2 = K3 □ K2 has already been treated above. Up to sym-
metry, there are unique general position sets of C4 □ K2 of cardinalities three and
four, both of which are independent sets. However, in both cases no robot can move
whilst maintaining the independence property, so that Mobgp(C4 □ K2) ≤ 2, and the
equality trivially holds.

We assume for the remainder of the proof that n ≥ 5. It follows from [17, Theorem
3.2] that gp(Cn □ K2) = 4. Let V (Cn) = Zn and V (K2) = [2]. We separate the
argument into two cases.

Case 1: n is odd.
Consider a set of three robots located at S = {(v0, 1), (v⌈n/2⌉, 1), (v1, 2), (v⌈n/2⌉+1, 2)} .
Then S is a general position set. Moreover, consider the following sequence of four
moves for the robots:

• (v1, 2)⇝ (v2, 2);
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• (v0, 1)⇝ (v1, 1);

• (v⌈n/2⌉+1, 2)⇝ (v⌈n/2⌉+2, 2);

• (v⌈n/2⌉, 1)⇝ (v⌈n/2⌉+1, 1).

Fig. 2 shows this process for the case C5 □ K2.

Figure 2: Moving robots in C5 □ K2

Case 2: n is even.
Suppose now that the robots are positioned at S = {(v0, 1), (vn/2, 1), (v1, 2), (vn/2+1, 2)} .
Then S is a general position set. Moreover, consider the following sequence of moves:

• (v1, 2)⇝ (v2, 2);

• (vn/2+1, 2)⇝ (vn/2+2, 2);

• (v0, 1)⇝ (v1, 1);

• (vn/2, 1)⇝ (vn/2+1, 1).

Fig. 3 shows this process for the case C6 □ K2.

Figure 3: Moving robots in C6 □ K2

In both cases above, we note that these four moves are legal. Since the obtained
sets are symmetric with respect to the original ones, by repeating these procedures
the robots will eventually visit all the vertices of Cn □ K2. It follows that each S is a
mobile general position set, and hence Mobgp(Cn □ K2) ≥ 4.

We now introduce a technical lemma that allows us to extend results on short
cylinders to longer cylinders.

11



Lemma 3.5. If H is a connected graph with girth at least 2r and radius at least r−1,
then for any graph G it holds that

Mobgp(G □ H) ≥ Mobgp(G □ Pr).

Proof. Let Q be any path v1, v2, . . . , vr of length r− 1 in H. The subgraph of G □ H
induced by V (G) × V (Q) is isomorphic to G □ Pr, and as the girth of H is at least
2r, the subgraph is isometric. Thus, Mobgp(G □ Pr) robots can traverse the vertices
of V (G) × V (Q) in general position without leaving the subgraph. Now, let vr+1 ∈
NH(vr) \ {vr−1}. Suppose that the robots have visited all the vertices of V (G)×V (Q)
by a sequence of legal moves. Next, move all robots in V (G)×{vr} to V (G)×{vr+1} in
turn by legal moves of the form (u, vr)⇝ (u, vr+1), where u ∈ V (G). Then repeat this
process to move the robots in V (G)×{vj} to V (G)×{vj+1} for j = r−1, r−2, . . . , 1.
As H has girth at least 2r, the robots remain in general position throughout this
process. As H is connected and the radius of H is at least r− 1, any layer Gh can be
visited in this way.

Notice that Lemma 3.5 generalises the inequality Mobgp(G) ≤ Mobgp(G □ K2).
We first focus on cylinders with cycles of length four.

Proposition 3.6. If s ≥ 3 is an integer, then Mobgp(C4 □ Ps) = 3.

Proof. Let s ≥ 3, V (C4) = Z4, and V (Ps) = [s]. We first show that Mobgp(C4 □ Ps) ≤
3. Suppose for a contradiction that there exists a mobile general position set S of
C4 □ Ps with |S| ≥ 4.

Clearly, no three robots from S can lie in the same Ps-layer. Suppose that two
robots R1 and R2 in S lie in the same Ps-layer of C4 □ Ps; without loss of generality,
R1 and R2 are stationed at vertices (0, i) and (0, j) respectively, where 1 ≤ i <
j ≤ s. There is a shortest path from any vertex (u, v) with v ∈ [i] to R2 through
R1, and likewise for vertices with second coordinate at least j. Hence, there are no
robots on Z4 × ([1, i] ∪ [j, s]) apart from R1 and R2. Call the other two robots R3

and R4. By the above analysis, R3 and R4 cannot have the same first coordinate.
Hence we can assume that robot R3 lies at (1, k), where i < k < j. Any vertex in
({1, 2} × [i+ 1, j − 1]) \ {(1, k)} has a shortest path to either R1 or R2 through R3,
so R4 must be at a vertex (3, l), where i < l < j. However, in this configuration each
robot is only free to move within its Ps-layer, and so no robot can visit any vertex in
2Ps, a contradiction. Consequently, there is one robot on each Ps-layer, and none of
the robots can move to another Ps-layer.

Observe that any pair of adjacent vertices constitutes a maximal general position
set of C4 □ Ps, so the robots must at all times occupy an independent set. Therefore, if
we suppose that R1 is the robot located at the vertex with smallest second coordinate
in the initial configuration, say at vertex (0, i), then no robot can ever move to a
position with second coordinate smaller than that of R1, and hence the vertices in
{1, 2, 3} × {1} cannot be visited by legal moves. Thus, Mobgp(C4 □ Ps) ≤ 3.

To show the lower bound, consider C4 □ P3. We start with robots at vertices (0, 1),
(1, 2) and (0, 3). Then for i = 0, 1, 2 in succession we perform the sequence of three
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legal moves (i+1, 2)⇝ (i+2, 2), (i, 3)⇝ (i+1, 3) and (i, 1)⇝ (i+1, 1) in this order.
Lemma 3.5 now gives the result for cylinders C4 □ Ps for s ≥ 4.

Theorem 3.4 for prisms along with Lemma 3.5 implies that Mobgp(Cr □ Ps) ≥
4 for r ≥ 5. Combined with the upper bound involving gp(Cr □ Ps) we see that
Mobgp(Cr □ Ps) = 4 for r ∈ {5, 6, 8} and s ≥ 2, or for r ≥ 5 and s ≤ 4. For r = 7 or
r ≥ 9 and s ≥ 5 the mobile general position number of Cr □ Ps must be either four
or five.

Proposition 3.7. If r = 9 or r ≥ 11 and s ≥ 5 are integers, then Mobgp(Cr □ Ps) =
5.

Proof. It is known from [17, Theorem 3.2] that gp(Cr □ Ps) = 5 for r = 9 or r ≥ 11
and s ≥ 5. It only remains to show that Mobgp(Cr □ Ps) ≥ 5. We show that the
result is true for Cr □ P5, and the full claim then follows for larger values of s by
Lemma 3.5. Set V (Cr) = Zr and V (P5) = [5].

If r ≥ 11 and i ∈ Zr, then we consider the set

Si,0 = {(i+ 1, 1), (i+ 4, 2), (i+ ⌊r/2⌋+ 2, 3), (i, 4), (i+ 3, 5)}.

For i = 0, 1, . . . , r − 2 we define the following sequence of five moves:

• (i+ 4, 2)⇝ (i+ 5, 2) to give Si,1,

• (i+ 3, 5)⇝ (i+ 4, 5) to give Si,2,

• (i+ ⌊r/2⌋+ 2, 3)⇝ (i+ ⌊r/2⌋+ 3, 3) to give Si,3,

• (i+ 1, 1)⇝ (i+ 2, 1) to give Si,4,

• (i, 4)⇝ (i+ 1, 4).

The final move brings us to the configuration Si+1,0. We start with the five robots
positioned at the set S0,0 and perform these sequences of moves for i = 0, 1, . . . r − 2.
Each of these moves is legal. To see this, notice that the robots remain in general
position at each stage, which is easily verified for S0,j, j ∈ [5], and by then observing
that the automorphism that maps (u, v) to (u+ i, v) for all u ∈ Zr, s ∈ [5] transforms
S0,j to Si,j for j ∈ [5]. Moreover, by the end of the process, all vertices have been
visited.

Similarly, for r = 9 we start with robots positioned at the set

{(1, 1), (4, 2), (⌊s/2⌋+ 2, 3), (0, 4), (3, 5)}

and perform the sequence of moves:

• (⌊s/2⌋+ 2, 3)⇝ (⌊s/2⌋+ 3, 3),

• (1, 1)⇝ (2, 1),
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• (0, 4)⇝ (1, 4),

• (4, 2)⇝ (5, 2),

• (3, 5)⇝ (4, 5).

By repeating these moves the robots visit all of the vertices of C9 □ P5 by legal moves.

Hence, the only unknown values are Mobgp(C7 □ Ps) and Mobgp(C10 □ Ps) for
s ≥ 5. We conjecture that the answer is four in these cases.

By combining Lemma 3.5 with Proposition 3.7 we obtain a lower bound for the
mobile general position number of sufficiently large torus graphs.

Corollary 3.8. For r = 9 or r > 10 and s ≥ 10, Mobgp(Cr □ Cs) ≥ 5.

It is shown in [20] that if r, s ≥ 7 and r and s do not both lie in {8, 10, 12}, then
gp(Cr □ Cs) = 7. Computer search shows that the torus C9 □ C8 has mobile general
position number seven.

4 Corona products and joins

In this section we consider moving robots in general position through corona products
and joins. We first define these two graph operations.

Given two graphs G and H with V (G) = {v1, . . . , vn}, the corona product graph
G ⊙ H is formed by taking one copy of G and n disjoint copies of H, call them
H1, . . . , Hn, and for each i ∈ [n] adding all the possible edges between vi ∈ V (G) and

every vertex of H i. For i ∈ [n] we will write H̃i for the subgraph of G⊙H induced by
V (H i) ∪ {vi}. Also, the join G ∨H of graphs G and H is obtained from the disjoint
union of G and H by adding all possible edges between G and H.

4.1 Corona product graphs

We first recall that the general position number of corona product graphs was studied
in [14]. We next bound the value of the mobile general position number of the corona
product G⊙H.

Theorem 4.1. For any two graphs G and H,

max{Mobgp(G),Mobgp(H ∨K1)} ≤ Mobgp(G⊙H) ≤ max{n(G), gp(H ∨K1)} .

Proof. Let S be a mobile general position set of H ∨K1 and let S1 be its copy in H̃1.
We claim that S1 is a mobile general position set of G ⊙ H. As H̃1 is an isometric
subgraph of G⊙H, first the robots from S1 can visit each vertex of H̃1. Next, as soon
as one robot visits the vertex v1, this robot can visit all the vertices of V (G⊙H)\V (H̃1)
before returning to v1. It follows that Mobgp(G⊙H) ≥ Mobgp(H ∨K1).
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Now, let S be a mobile general position set of G and let S ′ be the copy of S in G⊙H.
Then each vertex vi ∈ V (G) can be visited by a robot from S ′. Moreover, as soon as
a robot moves to some vertex vi, this robot can visit all the vertices from H i and then
return to vi. Hence S

′ is a mobile general position set of G⊙H and Mobgp(G⊙H) ≥
Mobgp(G). We conclude that Mobgp(G⊙H) ≥ max{Mobgp(H ∨K1),Mobgp(G)}.

To prove the upper bound, let S be a mobile general position set of G ⊙ H. If
|S| ≤ n(G), then there is nothing to prove. Assume next that |S| ≥ n(G) + 1. Then

by the pigeonhole principle we have |S ∩V (H̃i)| ≥ 2 for some i ∈ [n(G)]. Hence either

at some point there is already a robot in H i and a second robot enters H̃i via vi, or
else there are always at least two robots in V (Hi) and a further robot must visit vi.
Denote the positions of the robots at this moment by S ′. In S ′ there is a robot R1

in V (H i) and a robot R2 at the cut-vertex vi. As any path from R1 to a robot on

V (G ⊙ H) \ V (H̃i) would pass through R2, it follows that S ′ ⊆ V (H̃i) and S ′ is a

general position set of H̃i. Hence, under the assumption that |S| ≥ n(G)+1, we must
have Mobgp(G⊙H) = |S ′| ≤ gp(H ∨K1).

When both G and H are complete graphs, G ⊙ H is a block graph, hence the
following consequence can also be deduced from [16, Theorem 2.3].

Corollary 4.2. If r, s ≥ 1, then, Mobgp(Kr ⊙Ks) = max{r, s+ 1}.

Note that Corollary 4.2 demonstrates the sharpness of all the bounds in Theo-
rem 4.1. For another sharpness example, in which the upper and lower bounds do
not coincide, consider G = K2 and H = C4. Then we have that Mobgp(K2) = 2,
Mobgp(C4 ∨K1) = 2, and gp(C4 ∨K1) = 3. It can be noted that Mobgp(K2 ⊙ C4) =
3 = gp(C4 ∨ K1). For another infinite family, let G be an arbitrary tree, and H the
edgeless graph of order at least two. Since in this case G ⊙ H is a tree, we have
Mobgp(G⊙H) = 2 (see [16, Theorem 2.3]), which is also the value of the lower bound
in Theorem 4.1.

We complete this section by presenting a result which shows that none of the
bounds of Theorem 4.1 is sharp in general.

Theorem 4.3. If n ≥ 3, then Mobgp(Cn ⊙K1) =
⌈
n
2

⌉
+ 1.

Proof. Set V (Cn) = Zn and, for each i ∈ Zn, let i
′ be the leaf in Cn ⊙K1 attached to

i. We first show that Mobgp(Cn⊙K1) ≥
⌈
n
2

⌉
+1. Set Yi = {i′, (i+1)′, . . . ,

(⌈
n
2

⌉
+ i

)′}
for any i ∈ Zn. We claim that Y0 is a mobile general position set. It is easily seen that
each Yi is a general position set of Cn ⊙K1.

Starting from some fixed Yi, we move the robot R placed at
(⌈

n
2

⌉
+ i

)′
through the

vertices of the set [
(⌈

n
2

⌉
+ i

)
, (i− 1)] and their attached leaves. For 0 ≤ j ≤

⌊
n
2

⌋
− 2,

let Zj be the sequence of three moves(⌈n
2

⌉
+ j

)′
⇝

(⌈n
2

⌉
+ j

)
⇝

(⌈n
2

⌉
+ j + 1

)
⇝

(⌈n
2

⌉
+ j + 1

)′
.

Perform the series of moves Z0, Z1, . . . , Z⌊n
2 ⌋−2 in that order. Observe that after these

moves we are left with the robots occupying the set Yi−1 and at each stage the robots
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remained in general position, since the paths between robots in Yi \ {
(⌈

n
2

⌉
+ i

)′} pass
through [i,

⌈
n
2

⌉
+ i − 1]. Therefore starting at Y0 and repeating this process for i =

0,−1, . . . ,−
⌈
n
2

⌉
results in all vertices being visited by a robot and Y0 is a mobile

general position set as claimed.

We now prove that Mobgp(Cn ⊙K1) ≤
⌈
n
2

⌉
+ 1. Note that each set {i, i′}, i ∈ Zn,

is a maximal general position set, so we must have |X ∩{i, i′}| ≤ 1 for each i ∈ Zn and
any Mobgp-set X. Consider the moment that a robot visits the vertex 0. Let j, k be
the smallest and largest values in [1, n− 1], respectively, such that there is a robot in
{j, j′} and {k, k′}. To avoid the robot in {k, k′} having a shortest path to the robot in
{j, j′} through the robot at 0 we must have k−j ≤

⌈
n
2

⌉
−1. As each set {i, i′} contains

at most one robot for i ∈ [j, k] ∪ {0} and no robots for i ∈ [k + 1, n − 1] ∪ [1, j − 1],
this gives an upper bound of

⌈
n
2

⌉
+ 1 robots in the graph.

Notice that for Cn ⊙ K1, the lower bound of Theorem 4.1 is three if n ≥ 3 and
n /∈ {4, 6}, and it is two if n ∈ {4, 6}, whereas the upper bound is n. Since Cn ⊙K1 is
a unicyclic graph, we may recall that mobile general position sets of unicyclic graphs
were discussed in [16].

4.2 Joins of graphs

We now give bounds for the mobile general position number of joins G ∨H. Observe
that if both G and H are cliques, then G∨H is also a clique and the question is trivial,
so we will assume that at least one of G and H is not a clique.

Theorem 4.4. If G and H are (not necessarily connected) graphs with clique number
at least two, and G and H are not both cliques, then

min{ω(G), ω(H)}+ 1 ≤ Mobgp(G ∨H) ≤ ω(G) + ω(H)− 1.

For any graph G with order n ≥ 2,

2 ≤ Mobgp(G ∨K1) ≤ ω(G) + 1.

Proof. Assume that both G and H have clique number at least two and that at least
two robots are traversing G ∨ H in general position. At some point there must be a
robot in G and a robot in H. Hence, at this point, the set of occupied vertices in G and
the occupied vertices in H must both be cliques in G and H, respectively, giving the
upper bound Mobgp(G∨H) ≤ ω(G)+ω(H). However, if Mobgp(G∨H) = ω(G)+ω(H),
then no robot has a legal move, since any move would result in a clique in one of G
and H and a non-clique in the other, so in fact Mobgp(G ∨H) ≤ ω(G) + ω(H)− 1.

For the lower bound, assume that ω(H) ≤ ω(G). We can start with robots at a
maximum clique WH of H and one robot in G. The robot in G can visit every vertex
of G, since during this process the vertices occupied form a clique in G ∨ H. At the
end, this robot moves into a maximum clique WG of G. After that, all the robots from
WH but one move into WG. At that time, only one robot remains in H and, by the
same argument, it can visit every vertex of H.

The inequalities for G ∨K1 can be derived in a similar manner.
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Note that if G and H are both triangle-free graphs, then the upper bound and the
lower bound of Theorem 4.4 coincide when neither graph is K1. For a triangle-free
graph G, Mobgp(G ∨K1) could be either two or three. It is easily seen that for cycles
we have Mobgp(C4 ∨K1) = 2 and Mobgp(Cn ∨K1) = 3 for n ≥ 5. The first example
shows that the lower bound for Mobgp(G ∨ K1) is tight, but it is an open question
whether this can happen for graphs with large clique number.

Corollary 4.5. If G and H are triangle-free and both have order at least two, then
Mobgp(G ∨H) = 3.

To show that the upper bound is tight, consider the join K−
r ∨ K−

s , where K−
n

represents a complete graph minus one edge. If x1, x2 is the pair of non-adjacent
vertices in K−

r and y1, y2 is the pair of non-adjacent vertices of K−
s , then (V (K−

r ) \
{x2})∪(V (K−

s )\{y1, y2}) is a mobile general position set, as the set of occupied vertices
forms a clique in K−

r ∨K−
s and the robot at x1 can follow the route x1 ⇝ y1 ⇝ x2 ⇝ y2

to visit the remaining vertices. This matches the upper bound. More generally, the
same argument works when G and H are both joins of cliques with empty graphs.

To demonstrate sharpness of the lower bound, for r ≥ 2 take the join Kr ∨K+
r+1,

where K+
r+1 is the complete graph Kr+1 with an added leaf x. Suppose that r + 2

robots can traverse this graph in general position, and focus on the moment that there
is a robot at x. As r + 2 robots cannot be stationed on K+

r+1, there must be a robot
on Kr and the positions occupied on Kr and K+

r+1 must both induce cliques. Hence
every vertex of Kr must contain a robot and in K+

r+1 there is a robot at x and its
support vertex x′. However, there are no legal moves in this configuration. Thus,
Mobgp(Kr ∨K+

r+1) ≤ r + 1 = min{ω(Kr), ω(K
+
r+1)}+ 1.

For an example of graphs with arbitrarily large clique number that meet the upper
bound in Mobgp(G ∨ K1) ≤ ω(G) + 1, consider the birdcage graph Bn formed as
follows. Let U be a clique on vertices {u1, . . . , un}, V be an empty graph on vertices
{v1, . . . , vn} and z an additional vertex, and add edges ui ∼ vi and vi ∼ z for i ∈ [n].
The graph Bn has clique number n and we show that n+1 robots can traverse Bn∨K1

in general position. Denote the vertex of the K1 by x. Start with robots at U ∪ {x}
and make the move x ⇝ z. Then for each i ∈ [n] make the two moves ui ⇝ vi ⇝ ui.
It is easily seen that the robots are always in general position and visit all the vertices
of Bn ∨K1.

5 Concluding remarks and open problems

We conclude with a few open problems.

• Is there a non-trivial upper bound on Mobgp(G □ H), at least for the particular
case Mobgp(G □ K2)?

• We have seen that Mobgp(P∞ □ P∞) = 4 = gp(P∞ □ P∞). In [18, Theorem 1] it

was proven that gp(P k,□
∞ ) = 22

k−1
, where P k,□

∞ the k-tuple Cartesian of the infinite
path P∞. It is therefore of interest to determine whether Mobgp(P

k,□
∞ ) = 22

k−1

holds for larger values of k.
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• Are there graphs G with arbitrarily large clique number such that Mobgp(G ∨
K1) = 2?

• In view of Proposition 3.7 and the preceding remarks, we ask what is the mobile
general position number of cylinder graphs C7 □ Ps and C10 □ Ps for s ≥ 5?

• By Corollary 3.8, Mobgp(Cr □ Cs) ≥ 5 if r = 9 or r > 10 and s ≥ 10. It would
be interesting to classify the mobile general position numbers of all torus graphs.

• What is the mobile general position number of strong and direct products?

• What is the mobile general position number of the hypercube?
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