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Abstract

A packing k-coloring of a graph G is a partition of V (G) into k disjoint
non-empty classes V1, . . . , Vk, such that if u, v ∈ Vi, i ∈ [k], u 6= v, then the
distance between u and v is greater than i. The packing chromatic number
of G is the smallest integer k which admits a packing k-coloring of G. In
this paper, the packing chromatic number of the unitary Cayley graph of
Zn is computed. Two metaheuristic algorithms for calculating the packing
chromatic number are also proposed.
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1 Introduction

Packing coloring is a variant of coloring with applications in frequency assignment,
resource allocation, and wireless network design. In this variant, vertices of a graph
are assigned colors such that vertices sharing the same color are separated by a
distance determined by the color itself. More precisely, a packing k-coloring of a
graph G = (V (G), E(G)) is a partition of V (G) into k disjoint non-empty color
classes V1, . . . , Vk, such that Vi, i ∈ [k], is an i-packing, that is, for each two distinct
vertices u, v ∈ Vi we have dG(u, v) ≥ i + 1. The smallest integer k which admits a
packing k-coloring of G is the packing chromatic number χρ(G) of G.

The packing chromatic number was initially explored under the name broadcast
chromatic number by Goddard et al. in [12]. The terminology and notation used
today was proposed in [5]. This coloring concept has already been extensively and
deeply researched, and the review article [4] published in 2020 contains 68 refer-
ences. Research continued with recent studies of the packing chromatic number of
iterated Mycielskians [2] and hypercubes [14], and with investigations of variants
such as distance dominator packing coloring [9], partial and quasi-packing packing
coloring [15], and Grundy packing coloring [13]. Several recent papers deal also with
criticality concepts, cf. [10,18]. The greatest emphasis in recent times, however, has
been on S-packing colorings, especially on subcubic graphs, see [3, 20–23, 26].

It should be stressed that it is intrinsically difficult to determine the packing
chromatic number. It was proved already in the seminal paper [12] that the decision
problem whether an input graph admits a packing k-coloring is NP-complete for
k = 4, even when restricted to planar graphs. This finding was followed up by Fiala
and Golovach [11] with the breakthrough result asserting that this decision problem
is is NP-complete for trees. Furthermore, it was later proven that the decision
problem remains NP-complete when restricted to chordal graphs with diameter at
least 3 [17].

For these reasons, it is desirable to find different heuristic and/or approximation
algorithmic approaches to the packing chromatic number. We do this in Section 3
by considering the local search and the genetic algorithm for computing the pack-
ing chromatic number. In Section 4 we then report experimental results on these
two approaches and make their comparison with the recently proposed greedy ap-
proach [13]. Before turning our attention to algorithms, we determine in Section 2
the packing chromatic number of unitary Cayley graphs of Zn.

In the reminder of this section we recall some definitions and notations, for
undefined terms we refer to [25]. Let G = (V (G), E(G)) be a graph. We use the
notation x ∼G y to denote that xy ∈ E(G). A subset S of V (G) is independent if
no two vertices of S are adjacent. The cardinality of a largest independent set is the
independence number α(G) of G. The distance dG(a, b) between vertices a and b of
a connected graph G is the length of a shortest a, b-path. The diameter diam(G) of
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G is the length of a longest shortest path in G. By Kn1,...,nm
we denote the complete

m-partite graphs with parts of size ni, i ∈ [m]. The direct product G1×G2 of graphs
G1 and G2 is the graph with vertex set V (G1)× V (G2) and (u1, v1) ∼G1×G2

(u2, v2)
if u1 ∼G1

u2 and v1 ∼G1
v2.

2 Packing chromatic number of unitary Cayley

graphs of Zn

In this section we determine the packing chromatic number of the unitary Cayley
graph of Zn, the ring of integers modulo n.

Let R be a finite commutative ring with nonzero identity, and let R× denote the
set of all unit elements of R. The unitary Cayley graph GR = Cay(R,R×) of R is a
graph with the vertex set R and two vertices x and y are adjacent if x − y ∈ R×.
We refer to [6, 7, 24] for some recent investigations of unitary Cayley graphs, see
also [1, 16, 19].

IfR is a finite commutative ring, then by [8, p. 752] we can writeR ∼= R1×· · ·×Rt,
where Ri, i ∈ [t], is a finite local ring with maximal ideal mi. This decomposition
is unique up to permutation of factors. We denote the (finite) residue field Ri

mi
by

Ki and fi = |Ki| =
|Ri|
|mi|

. We also assume (after appropriate permutation of factors)
that f1 6 · · · 6 ft.

The following proposition is a basic consequence of the definition of the unitary
Cayley graphs, cf. [1, Proposition 2.2].

Proposition 2.1. If R is a finite commutative ring, then the following statements
hold.

(a) The graph GR is a |R×|-regular graph.

(b) If R is a local ring with maximal ideal m, then GR is a complete multipartite
graph whose partite sets are the cosets of m in R. In particular, GR is a
complete graph if and only if R is a field.

(c) If R ∼= R1 × · · · × Rt is a product of local rings, then GR
∼= ×t

i=1GRi
. Hence,

GR is the direct product of complete multipartite graphs.

Proposition 2.2. [1, Theorem 3.1] If R ∼= R1 × · · · × Rt is a finite, commutative
ring, then

diam(GR) =







1; t = 1 and R is a field,
2; t = 1 and R is not a field,
2; t > 2, f1 > 3,
3; t > 2, f1 = 2, f2 > 3,
∞; t > 2, f1 = f2 = 2.
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For the rest of this section, some preparation is needed. Let n = pr11 . . . prtt be
the prime factorization of n, where pis are primes with p1 < · · · < pt. Then Zn

∼=
Zp

r1
1
×· · ·×Zp

rt
t
. Also Zp

ri
i
is a local ring with the maximal ideal mi = {rpi | r ∈ Zp

ri
i
}

with |mi| = pri−1

i and the number of cosets of mi in Zp
ri
i
is equal to pi, for each i ∈ [t].

Remark 2.3. By Proposition 2.1 and the above preparation, GZ
p
ri
i

, i ∈ [t], is isomor-

phic to the complete pi-partite graph K
p
ri−1

i
,...,p

ri−1

i

. Also, since Zn
∼= Zp

r1
1
×· · ·×Zp

rt
t
,

the third part of Proposition 2.1, yields

GZn
∼= ×t

i=1K p
ri−1

i
,...,p

ri−1

i
︸ ︷︷ ︸

pi

.

Using Proposition 2.2, the following result can be deduced.

Corollary 2.4. If pr11 . . . prtt is the prime factorization of n, where p1 < · · · < pt,
then GZn

is connected and we have

diam(GZn
) =







1; t = 1, r1 = 1,
2; t = 1, r1 > 1,
2; t > 2, p1 > 3,
3; t > 2, p1 = 2.

Now all is ready to determine the packing chromatic number of GZn
. The case

when n is a prime is trivial since in that case GZn
is a complete graph. By Corol-

lary 2.4 the remaining cases are of diameter two or three. For the first case we recall
the following result from the seminal paper [12], see also the survey [4, Proposition
2.5].

Proposition 2.5. If G is a graph, then

χρ(G) ≤ n(G)− α(G) + 1,

with equality if diam(G) = 2.

Assume that n = pr, where p is a prime number and r > 1. In this situation,
by Corollary 2.4, we have diam(GZpr

) = 2, and so by Proposition 2.5, we have
χρ(GZpr

) = pr − α(GZpr
) + 1. By Remark 2.3, GZpr

is isomorphic to the p-partite
Kpr−1,...,pr−1, for which we have α(GZpr

) = pr−1. Therefore, if n = pr, r > 1, then

χρ(GZn
) = pr − pr−1 + 1.

The second subcase when the diameter of the unitary Cayley graph is two in covered
with the next result.
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Theorem 2.6. If n = pr11 . . . prtt , where t > 1 and 3 6 p1 < · · · < pt, then

χρ(GZn
) = pr1−1

1 pr22 . . . prtt (p1 − 1) + 1.

Proof. By Corollary 2.4, diam(GZn
) = 2. Hence by Proposition 2.5 it suffices to

determine α(GZn
). By Remark 2.3, GZn

is isomorphic to the direct product of t
pi-partite graphs K

p
ri−1

i
,...,p

ri−1

i

, i ∈ [t]. Also, GZpi
, i ∈ [t], is isomorphic to the pi-

partite graph K
p
ri−1

i
,...,p

ri−1

i

. Let V pi
1 , . . . , V pi

pi
be the pi parts of GZpi

, and V pi
j =

{apij,1, . . . , a
pi

j,p
ri−1

i

}, j ∈ [pi]. Clearly |V pi
j | = |V

pi
j′ | = pri−1

i , for each j, j′ ∈ [pi]. For

j ∈ [pi] set

Api
j = V (GZp1

)× · · · × V (GZpi−1
)× V pi

j × V (GZpi+1
)× · · · × V (GZpt

).

The set Api
j , j ∈ [pi], is an independent set of order pr11 . . . p

ri−1

i−1 p
ri−1

i p
ri+1

i+1 . . . prtt , and

V (GZn
) =

t⋃

i=1

pi⋃

j=1

Api
j .

Since p1 < · · · < pt and |
⋃p1

j=1
Ap1

j | = · · · = |
⋃pt

j=1
Apt

j |, we have |Ap1
1 | > · · · > |A

pt
1 |.

Let S be an arbitrary independent set of GZn
. Since there are at most pr1−1

1

possibilities for the first component of the elements of S, we must have |S| 6
pr1−1

1 pr22 . . . prtt , which means that |S| 6 |Ap1
1 |. Therefore, Ap1

1 is an independent
set of greatest order, which means that α(GZn

) = |Ap1
1 | = pr1−1

1 pr22 . . . prtt . Proposi-
tion 2.5 completes the argument.

In view of Corollary 2.4, the only remaining case to be considered is the following.

Theorem 2.7. If n = pr11 . . . prtt , where t > 1, p1 = 2, and p1 < · · · < pt, then

χρ(GZn
) = pr1−1

1 pr22 . . . prtt (p1 − 1).

Proof. By the proof of Theorem 2.6, the greatest size of a 1-packing of GZn
is

pr1−1

1 pr22 . . . prtt . By Corollary 2.4, each two distinct vertices of GZn
are at distance

at most three. Also, by Remark 2.3, we have GZ2r1

∼= K2r1−1,2r1−1. Let V1 and V2

be the two parts of GZ2r1
. If X = (x1, . . . , xt) and Y = (y1, . . . , yt) are nonadjacent

vertices of GZn
, then dGZn

(X, Y ) = 3 if and only if x1 ∈ V1 and y1 ∈ V2, or vice
versa. Now let A be a 2-packing in GZn

. If |A| > 2, then there are three distinct
vertices U1 = (x1, . . . , xt), U2 = (y1, . . . , yt), and U3 = (z1, . . . , zt) in A such that
dGZn

(Ui, Uj) = 3, for each 1 6 i 6= j 6 3. Without loss of generality, assume that
x1 ∈ V1 and y1 ∈ V2. If z1 ∈ V1, then we have dGZn

(U1, U3) = 2, which is impossible.
If z1 ∈ V2, then we have dGZn

(U2, U3) = 2, which is again impossible. So any 2-
packing in GZn

has at most two vertices and for i > 2, each i-packing of GZn
has at

most one vertex. We can conclude that χρ(GZn
) = pr1−1

1 pr22 . . . prtt (p1 − 1).

5



3 Two metaheuristic algorithms

Recall from the introduction that there is a strong case for utilizing meta-heuristic
algorithms for the approximation of the packing chromatic number. In this section
we employ the local search and the genetic algorithm for solving this problem.
We recall that the genetic algorithm is designed as a population-centric technique,
whereas the local search algorithm focuses on point-based optimization.

3.1 Local search algorithm

We now present a local search (LS) algorithm for finding a packing k-coloring for a
given graph G.

The main algorithm’s objective is to achieve a packing k-coloring by iteratively
improving an initial solution. Maxit in Algorithm 1 denotes the maximum number
of iterations chosen as a stopping criterion. In addition, for given k the notation
cfitness is an evaluation function for a coloring c which is defined as cfitness =

1

1+Ic
where

Ic =
∑k

i=1
|{{u, v} ⊂ V (G) : u 6= v, c(u) = c(v) = i, dG(u, v) ≤ i}|. This process

is performed by the sub-algorithm named the fitness calculation (FC) algorithm
(FC for short) for each coloring. Algorithm 1 continues by generating neighboring
solutions. If for a specific k, a neighbor solution ci is found such that cifitness = 1, we
have a packing k-coloring. Otherwise, another value of k can be checked. Moreover,
Nc denotes a set of neighboring configurations, each of then differ from the current
coloring c in only one vertex’s color.

3.2 Detailed explanation of the LS algorithm

Initialization
We start by generating a random coloring c of V (G) with k colors. Then we apply
the FC sub-algorithm to compute the fitness number cfitness. If cfitness = 1, it’s
immediately returned as the best solution.

Local search loop
If cfitness < 1, then the algorithm enters a local search loop. In each iteration, a set
of neighboring configurations Nc is generated. For each neighbor configuration of
Nc, the algorithm computes the fitness function and updates the current solution if
a neighboring solution with grater fitness value is found.

Updating best solution
If the fitness value of the best neighboring solution is greater than cfitness, then we
update Sbest; In other word, If fN > fbest, the algorithm sets Sbest = Nbest and
fbest = fN. We recall that if fbest = 1, then the algorithm returns Sbest as the best
solution. Otherwise, the algorithm increments the iteration count.
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Termination
The process continues until either a coloring c with cfitness = 1 is found, the maximum
number of iterations (Maxit) is reached, or no further improvement can be made.
Finally, the algorithm returns Sbest as the best solution.

Algorithm 1 LS algorithm to find a packing k-coloring

Require: Graph, G, the number of colors k, the number of iterations Maxit.
Ensure: A packing k-coloring of G.
1: Generate an arbitrary vertex coloring, c, for G.
2: Call FC algorithm for c (cfitness ← FC(G, k, c)).
3: Set Sbest = c and fbest = cfitness.
4: if fbest = 1 then
5: Return Sbest.
6: else
7: Let count← 1. //count is the iteration counter.
8: while count <= Maxit do
9: Generate neighborhood set Nc of c.

10: Set Nbest = ∅ and fN = 0.
11: while Nc 6= ∅ do
12: Select an element, ci of Nc and call FC for it (cifitness ← FC(G, k, ci)).
13: if cifitness > fN then
14: Nbest ← ci and fN ← cifitness.
15: end if
16: Nc ← Nc − {c

i}.
17: end while
18: if fN > fbest then
19: Set Sbest = Nbest and fbest = fN.
20: if fbest = 1 then
21: Return Sbest and break.
22: end if
23: end if
24: Set c← Nbest, count← count+ 1.
25: end while
26: end if
27: Return Sbest.
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Algorithm 2 FC algorithm

Require: graph G, number of colors k, coloring c.
Ensure: The fitness value cfitness.
1: Set Ic = 0.
2: for i = 1 to k do
3: for each u, v ∈ V (G) such that c(u) = c(v) = i do
4: if dG(u, v) ≤ i then
5: Set Ic ← Ic + 1.
6: end if
7: end for
8: end for
9: Set cfitness =

1

1+Ic
.

10: Return cfitness.

3.3 Genetic algorithm

Here we apply the genetic algorithm for solving the packing coloring problem. This
algorithm begins by generating an initial population of size np, and calculating its
fitness values via algorithm FC. If a solution achieves the fitness value 1, then it is
immediately returned as the optimal solution. Otherwise, the algorithm proceeds
to the main iterative phase.

At the beginning of each iteration, offspring and mutated populations are gen-
erated through crossover and mutation. These populations are merged with the
original, and less optimal solutions are removed to create a refined population of
size np. This process is repeated until a maximum number of iterations is reached.
Finally, the algorithm selects the solution with the highest fitness value. If the fit-
ness equals 1, it outputs a graph coloring. Otherwise, the algorithm reports that it
was unable to color the graph using k colors. Below, we describe the combination
operations employed by our algorithm to generate a new population.

Crossover 1
In this process of generating a new offspring, two parents are randomly selected from
the existing population. The resulting offspring is initially created as an exact copy
of the second parent’s genome. Subsequently, a specific modification mechanism
is applied: any colors present in the first parent’s genetic structure but absent in
the second parent are randomly substituted into selected vertices of the offspring’s
structure.

Crossover 2
The process of generating new offspring begins with the random selection of two par-
ents from the population. The initial offspring structure is formed through complete
replication of the first parent’s genome. Subsequently, in a targeted modification

8



process, two vertices are randomly selected from the offspring’s structure and their
corresponding colors are transferred from the second parent. This genetic transfer
mechanism ensures a balanced combination of characteristics from both parents.

Mutation
The process begins with random selection of a parent from the existing population.
The mutated’s initial structure is established through complete replication of the
parent’s genome. Subsequently, in a targeted modification process, two vertices are
randomly selected from the mutated’s structure, and their colors are interchanged.
This mutation mechanism enhances genetic diversity within the population and
facilitates the exploration of new regions in the search space.

GA is presented as Algorithm 3.

Algorithm 3 GA for the packing coloring problem

Require: G, k, maximum number of iterations Maxit, initial population’s size np.
Ensure: a k-packing coloring for G.
1: Create an initial populations with size np, and evaluate them using FC algorithm.
2: count = 1.
3: while count ≤Maxit do
4: Select parents randomly.
5: Generate and evaluate offspring using the crossover operators.
6: Generate and evaluate mutated populations using the mutation operator.
7: Merge the initial population, offspring, and mutated populations, and sort

them based on the fitness function (new population).
8: Truncate new population and generate a new population with size np.
9: count = count+ 1.

10: end while
11: Return the individual with the best fitness value as the best solution.

4 Experimental results

The section includes two parts: the initial part reviews the efficiency of GA, while
the latter part delivers a comparative analysis of the three algorithms: LS, GA,
and Greedy. In what follows, pcGA and pcGreedy refer to the approximations of
the packing chromatic number computed by the genetic algorithm and the greedy
algorithm, respectively.
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4.1 GA efficiency

Here we focus on assessing the effectiveness of the earlier described GA. We first
present in Table 1 a report on the algorithm’s output for graphs with known exact
chromatic numbers as provided in [4].

Table 1: χρ of some graphs computed by GA

Graph name χρ pcGA GA CPU time (s)

C15 4 4 0.458
C20 3 3 3.442
P20 3 3 5.721
S10 2 2 0.120
K3,5,7 9 9 0.372

GA has been next tested on some examples from Section 2, see Table 2.

Table 2: χρ of some unitary Cayley graphs computed by GA

Graph name χρ pcGA GA CPU time (s)

GZ5
5 5 0.002

GZ16
9 9 0.299

GZ21
15 15 2.103

GZ27
19 19 1.893

GZ45
31 31 22.196

4.2 Comparison of the three algorithms

Article [13] introduces a greedy algorithm designed to assist in determining the chro-
matic number of graphs. We compared the results obtained from both the greedy
and genetic algorithms. Through an analysis of various graph samples, particularly
a subset of Cayley graphs, we found that for some graphs, all three methods found
packing colorings of the same cardinality. Some of these examples are grouped
together in Table 3.

Although LS is faster than GA, it might get stuck in a local maximum and
miss a better solution. Hence we moved on to compare the genetic and the greedy
algorithm on some larger graphs. In Table 4 computational results are collected for
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Table 3: Graphs for which all three algorithms return the same value

Graph value
Greedy CPU

time (s)
GA CPU
time (s)

LS CPU
time (s)

Cay(Z8, {1, 3, 5, 7}) 5 0.001 0.039 0.004
Cay(Z9, {1, 3, 5, 7}) 7 0.002 0.029 0.007
Cay(Z12, {1, 3, 9, 11}) 7 0.002 0.769 0.023
Cay(Z8, {1, 2, 3, 5, 6, 7}) 7 0.001 0.022 0.002
Cay(Z9, {1, 2, 3, 6, 7, 8}) 8 0.002 0.020 0.006

Cay(Z12, {1, 2, 3, 9, 10, 11}) 10 0.002 0.054 0.017

the generalized Petersen graph G(12, 2), the graph BN16 (shown in 1), the truncated
icosahedral graph TI and the fullerene graphs C48 and C70.

Figure 1: Graph BN16

A comparative analysis of the greedy and genetic algorithm reveals that as graph
complexity and size increase, the performance gap between these methods becomes
more pronounced. For instance, for the fullerene C48, the greedy algorithm yielded
inconsistent results across multiple iterations (e.g., 16, 17, 16, 17, 19, 18), highlight-
ing its instability and inefficiency for complex graphs. On the other hand, GA found
a packing coloring with 13 colors, but using for it 443.667 seconds. Nevertheless, GA
demonstrated its ability to explore a broader solution space and identify a better,
most likely optimal result.

These insights offer guidance for selecting graph coloring strategies in future
research, especially for large and complex graphs. If an upper bound for the packing
chromatic number can be established using some of the results from [4] or elsewhere,
it can serve as input for the genetic algorithm; otherwise, the greedy algorithm can

11



Table 4: Computational results for some additional graphs

Graph G n(G) pcGreedy
Greedy CPU

time (s)
pcGA

GA CPU
time (s)

G(12, 2) 24
13,11,13,
12,13,12

0.007 10 60.343

BN16 32
14,14,13,
13,11,12

0.011 9 89.511

C48 48
17,16,17,
16,19,18

0.028 13 443.667

TI 60
21,21,21,
17,19,23

0.055 16 549.806

C70 70
22,22,26,
21,24,25

0.081 19 1237.402

provide an initial estimate, which can then be refined by the genetic algorithm.
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