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Didem Gözüpek d,‡ Sandi Klavžar b,c,e,§
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Abstract

For a non-decreasing sequence of positive integers S = (s1, s2, . . .), the S-
packing chromatic number of a graph G is denoted by χS(G). In this paper,
χS-critical graphs are introduced as the graphs G such that χS(H) < χS(G)
for each proper subgraph H of G. Several families of χS-critical graphs are
constructed, and 2- and 3-colorable χS-critical graphs are presented for all
packing sequences S, while 4-colorable χS-critical graphs are found for most
of S. Cycles which are χS-critical are characterized under different conditions.
It is proved that for any graph G and any edge e ∈ E(G), the inequality
χS(G−e) ≥ χS(G)/2 holds. Moreover, in several important cases, this bound
can be improved to χS(G− e) ≥ (χS(G)+ 1)/2. The sharpness of the bounds
is also discussed. Along the way an earlier result on χS-vertex-critical graphs
is supplemented.
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1 Introduction

Let S = (s1, s2, . . .) be a non-decreasing sequence of positive integers and let G =
(V (G), E(G)) be a graph. A mapping c : V (G) → [k] = {1, . . . , k} is an S-packing k-
coloring of G if the equality c(u) = c(v) = i for u 6= v ∈ V (G) implies dG(u, v) > si.
The S-packing chromatic number χS(G) of G is the smallest integer k such that G
admits an S-packing k-coloring [16].

In the special case when S = (1, 2, 3, . . .), the S-packing chromatic number is
the standard packing chromatic number χρ, which was first explored under the
name broadcast chromatic number [15] and given the present name in [7]. The 2020
review article [6] on packing colorings (including S-packing colorings) contains 68
references, but research continues, see [3,14,17–19]. The greatest emphasis in recent
years has been on S-packing colorings, especially on subcubic graphs, see [4, 8, 12,
21, 27, 33, 36, 37, 40].

It should be stressed that the concept of S-packing coloring is very general. As
said, it contains the packing coloring as a particular instance. In addition, the special
case S = (k, k, k, . . .), k ≥ 1, is studied in the literature as k-distance colorings, the
corresponding (k, k, k, . . .)-packing chromatic number is denoted by χk. Note that
χ1 = χ. Up to 2008, these investigations were surveyed in [30], while for some
recent related papers see [20,26,32]. In the last years, however, the main focus was
on 2-distance colorings of planar graphs, cf. [2, 9, 10, 31, 41].

Independently, and almost simultaneously, two different packing criticality con-
cepts were introduced. In [25], a graph G was defined to be χρ-vertex-critical if
χρ(G− u) < χρ(G) for each u ∈ V (G). Moreover, if G is a χρ-vertex-critical graph
with χρ(G) = k, then G is called k-χρ-vertex-critical. On the other hand, according
to [5], G is χρ-critical if χρ(H) < χρ(G) for each proper subgraph H of G. If G has
no isolated vertices, this is equivalent to the requirement that χρ(G − e) < χρ(G)
holds for each e ∈ E(G). If G is a χρ-critical graph with χρ(G) = k, then G is
called k-χρ-critical. The paper [13] further investigated χρ-vertex-critical graphs
and provided a characterization of 4-χρ-vertex-critical graphs.

In the same way as packing colorings extend to S-packing colorings, one can ex-
tend χρ-vertex-critical graphs and χρ-critical graphs to χS-vertex-critical graphs and
χS-critical graphs. The first of these generalizations has been done in [22], while in
the follow-up paper [24] a characterization of 4-χS-vertex-critical graphs for packing
sequences with s1 = 1 and s2 ≥ 3 is given. The second of these generalizations, that
is, χS-critical graphs, has not yet been studied, we fill this gap in this paper. We
say that G is χS-critical if χS(H) < χS(G) for each proper subgraph H of G. If G
is a χS-critical graph with χS(G) = k, then G is called k-χS-critical. Note that we
do not consider the empty graph as a proper subgraph. Then, by our definition, the
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isolated vertex K1 has no proper subgraph, and it is 1-χS-critical for every packing
sequence S.

The paper is organized as follows. In the next section, we give some definitions,
introduce useful notation, and present basic observations about S-packing critical
graphs. In Section 3, some families of χS-critical graphs are discussed. We determine
2-χS-critical and 3-χS-critical graphs for all packing sequences S, and determine 4-
χS-critical graphs for most of S. For the case of 4-χS-critical graphs, we supplement
an earlier result from the literature on χS-vertex-critical graphs. In Section 4 we
characterize cycles which are χS-critical under different conditions. In Section 5 we
consider the impact of edge removal on the S-packing chromatic number. We prove
that χS(G − e) ≥ χS(G)/2 for any graph G and any edge e ∈ E(G), and that in
several important cases the bound can be improved to χS(G− e) ≥ (χS(G) + 1)/2.
For many S, infinitely many sharp examples are constructed. In the last section we
identify several open problems for further research.

2 Preliminaries

Let G = (V (G), E(G)) be a graph. The open neighborhood NG(u) of u in G is the
set of the neighbors of u. A support vertex of G is a vertex adjacent to a leaf. The
girth of G is denoted by g(G). If G has no cycles, we set g(G) = ∞. As usual, α(G)
is the independence number of G. The distance dG(u, v) between u, v ∈ V (G) is the
shortest-path distance. The diameter of G is denoted by diam(G). A subgraph H
of G is isometric, if for every two vertices u, v ∈ V (H) we have dH(u, v) = dG(u, v).
The path, the cycle, and the complete graph of order n are respectively denoted by
Pn, Cn, and Kn, while the order of a graph G will be denoted by n(G).

The set of all packing sequences will be denoted by S, that is,

S = {(s1, s2, . . . ) : 1 ≤ s1 ≤ s2 ≤ · · · }.

For a given S ∈ S we will always assume that S = (s1, s2, . . . ). Unless stated
otherwise, the packing sequences are considered to be infinite in this paper.

We will consider sets of packing sequences such that some of their first coor-
dinates are fixed or bounded from below. Instead of introducing the notation in
general, consider the following example. Assume we wish to consider the set of
packing sequences S = (s1, s2, s3, . . . ) with s1 = 1, s2 = 3, and s3 ≥ 4. Then we set

S1,3,4 = {(s1, s2, s3, . . .) : s1 = 1, s2 = 3, s3 ≥ 4} .

The general notation should be clear from this example. For instance, S1,3,5 is the
set of packing sequences with s1 = 1, 3 ≤ s2 ≤ 5, and s3 = 5. Note also that
S = S 1.
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It was stated in [16, Observation 2] that every graph G and any edge e of it
satisfy the inequality

χS(G− e) ≤ χS(G).

As the removal of isolated vertices does not change χS(G), this inequality also implies
χS(H) ≤ χS(G) for every subgraph H of G. We may also infer that if χS(G) = k,
then G contains a subgraph that is k-χS-critical.

Observation 2.1 Let S ∈ S and let G be a graph.

(i) If G contains no isolated vertex, then G is χS-critical if and only if χS(G−e) <
χS(G) holds for every edge e ∈ E(G).

(ii) K1 is the unique 1-χS-critical graph.

3 Families of S-packing critical graphs

In this section we present several families of S-packing critical graphs. We first show
that graphs of diameter k and girth at least k + 2 are χS-critical for each packing
sequence S ∈ Sk. This result is then extended to specific generalized lexicographic
products. We end the section by classifying k-χS-critical graphs for almost all S and
k ∈ {2, 3, 4}. But first we give two general, simple properties of S-packing critical
graphs.

Lemma 3.1 If S ∈ S and G is a χS-critical graph, then G is connected.

Proof. Suppose to the contrary thatG is not a connected graph such thatH1, . . . , Hr

are the components of G, where r ≥ 2. Since χS(G) = maxi∈[r] χS(Hi), there
exists a component Hj such that χS(Hj) = χS(G). Now consider a component
Hk for some k 6= j. The removal of Hk from G yields a proper subgraph H with
χS(H) = χS(Hj) = χS(G), which contradicts the assumption that G is χS-critical.
Therefore, G must be connected. �

Lemma 3.2 If G is a χS-critical graph, then G is a χS-vertex-critical graph.

Proof. If G ∼= K1, then it is χS-critical and χS-vertex-critical. Otherwise, consider
an arbitrary vertex x ∈ V (G). Since G− x is a proper subgraph of G, χS-criticality
implies χS(G− x) < χS(G) and proves that G is a χS-vertex-critical graph. �

A graph G is called diameter k-critical if diam(G) = k and diam(G − e) >
diam(G) holds for every e ∈ E(G) (see [11, 34, 39]).
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Proposition 3.3 Let k ≥ 1 and S ∈ Sk. Then every diameter k-critical graph is
χS-critical.

Proof. Let G be a diameter k-critical graph. Since s1 = k, no two vertices of G can
receive the same color, that is, χS(G) = n(G). Let now e be an arbitrary edge of G.
Since diam(G− e) ≥ k + 1, there are two vertices u and v with dG−e(u, v) ≥ k + 1.
Therefore, in an S-coloring of G− e, we can color u and v with color 1, and assign
a unique color to every other vertex. Hence χS(G− e) ≤ n(G)− 1 < χS(G) = n(G)
which yields the conclusion. �

Since every graph G with diam(G) = k and girth g(G) ≥ k + 2 is diameter
k-critical, we deduce the following statement from Proposition 3.3.

Corollary 3.4 Let k ≥ 1 and S ∈ Sk. If G is a graph with diam(G) = k and
g(G) ≥ k + 2, then G is χS-critical.

As Proposition 3.3 and Corollary 3.4 are true for trees, we may infer that ev-
ery tree is χS-critical for infinitely many packing sequences S. We also prove the
following property for trees.

Proposition 3.5 For every tree T and every S ∈ S, the tree T is χS-critical if and
only if it is χS-vertex-critical.

Proof. If T is an isolated vertex, the equivalence holds. From now on, we may
assume n(T ) ≥ 2. The first direction of the statement follows from Lemma 3.2.
To prove the other direction, consider a χS-vertex-critical tree T and remove an
arbitrary edge e = uiuj. Let Ti and Tj be the two components of T − e such that
ui ∈ V (Ti) and uj ∈ V (Tj). We know that χS(T − e) = max{χS(Ti), χS(Tj)}
and may assume χS(T − e) = χS(Ti). As Ti is also a component in T − uj, the
χS-vertex-criticality of T implies

χS(T − e) = χS(Ti) ≤ χS(T − uj) < χS(T ).

Since χS(T −e) < χS(T ) holds for every edge and T is isolate-free, we may conclude
that T is χS-critical. This finishes the proof of the equivalence. �

We conclude the section by considering k-χS-critical graphs, where k ∈ {2, 3, 4}.

Proposition 3.6 If S ∈ S, then a graph G is 2-χS-critical if and only if G ∼= K2.
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Proof. It is straightforward that G ∼= K2 is 2-χS-critical: its packing chromatic
number is 2, and removing any vertex or edge reduces the packing chromatic number
to 1. Conversely, suppose G is 2-χS-critical. Then, by Lemma 3.2, G is also 2-χS-
vertex-critical. It is shown in [22] that the only graph with this property is K2.
Thus, the result follows. �

In the first item of [22, Theorem 5.1] it is claimed that if S ∈ S2,2,2, then a graph
G is 4-χS-vertex-critical if and only if G is one of the graphs K1,3, C4, Z1, K4−e, K4,
where Z1 denotes the graph obtained by adding a pendant edge to a C3. However,
there is one example missing from the proof, which we explain below.

Consider a 4-χS-vertex-critical graph G and let u ∈ V (G), so that χS(G−u) ≤ 3.
In the proof of [22, Theorem 5.1], when the case degG(u) = 2 is considered, it is
correctly stated that if G− u is connected, then, for G− u ∼= P3 we get G ∼= C4 or
G ∼= Z1, for G − u ∼= C3 we get G ∼= K4 − e. Afterwards, it is stated that in any
other case no χS-critical graph is obtained. But the vertex u can be adjacent to two
degree 1 vertices of G − u, that is, to the end-vertices of a path in which case G
is a cycle. Note that χS(Cn) = 3 if and only if n is divisible by 3. Hence, Cn is a
4-χS-vertex-critical graph if and only if n is not divisible by 3.

According to the above, the first item of [22, Theorem 5.1] must be supplemented
as follows.

Proposition 3.7 If S ∈ S2,2,2, then a graph G is 4-χS-critical if and only if

G ∈ {K1,3, Z1, K4 − e,K4} ∪ {Cn : n ≥ 4, n 6≡ 0 (mod 3)}.

With Proposition 3.7 in hand, we can state the following result.

Theorem 3.8 Let S ∈ S and let G be a graph.

(i) If S ∈ S1,1, then G is 3-χS-critical if and only if G ∈ {C2k+1 : k ≥ 1}.

(ii) If S ∈ S1,2, then G is 3-χS-critical if and only if G ∈ {C3, P4}

(iii) If S ∈ S2, then G is 3-χS-critical if and only if G ∼= P3.

(iv) If S ∈ S2,2,2, then G is 4-χS-critical if and only if
G ∈ {K1,3} ∪ {Cn : n ≥ 4, n 6≡ 0 (mod 3)}.

(v) If S ∈ S2,2,3, then G is 4-χS-critical if and only if G ∈ {K1,3, C4, P6}.

(vi) If S ∈ S2,3, then G is 4-χS-critical if and only if G ∈ {K1,3, C4, P5}.

(vii) If S ∈ S3, then G is 4-χS-critical if and only if G ∈ {K1,3, P4}.
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Proof. Let S ∈ S. Then it was proved in [22, Theorem 4.1] that (i) if S ∈ S1,1, then
G is 3-χS-vertex-critical if and only if G ∈ {C2k+1 : k ≥ 1}; (ii) if S ∈ S1,2, then G
is 3-χS-vertex-critical if and only if G ∈ {C3, C4, P4}; and (iii) if S ∈ S2, then G is
3-χS-vertex-critical if and only if G ∈ {C3, P3}. By Lemma 3.2, it remains to verify
which of the above-listed graphs is 3-χS-critical. Doing it one by one, the first three
assertions of the theorem follow.

By Proposition 3.7 we know the list of 4-χS-vertex-critical where S ∈ S2,2,2.
We next recall that it was further proved in Theorem [22, Theorem 5.1] that (a)
if S ∈ S2,2,3, then G is 4-χS-vertex-critical if and only if G ∈ {K1,3, C4, Z1, K4 −
e,K4, P6, C6}; (b) if S ∈ S2,3, then G is 4-χS-vertex-critical if and only if G ∈
{K1,3, C4, Z1, K4− e,K4, P5}; and (c) if S ∈ S3, then G is 4-χS-vertex-critical if and
only if G ∈ {K1,3, P4, C4, Z1, K4 − e,K4}. Applying Lemma 3.2 again, we need to
verify which of the above-listed graphs are 4-χS-critical. Carefully checking all of
them, the last four assertions of the theorem follow. �

To state the following theorem, we first need to introduce two families of graphs
and some specific graphs. If S ∈ S, then let

Cs4 = {Cn, n ≥ 5 : (n ≡ 1, 2 (mod 4)) or (n ≡ 3 (mod 4) and s4 < ⌊n/2⌋)} .

So Cs4 is a subclass of cycles that depends on the fourth term of S. Next, let X2k,
k ≥ 3, be the graph obtained from P2k by attaching a pendant vertex to each of the
support vertices of P2k. Finally, we need the graphs Gi, i ∈ {1, . . . , 8}, which are
shown in Fig. 1. Note that G6

∼= X6.

Theorem 3.9 If G is a graph, then the following assertions hold.

(i) If S ∈ S1,3,3, then G is 4-χS-critical if and only if

G ∈ {K4, G1, G2} ∪ Cs4 ∪ {X2k : k ≥ 3}.

(ii) If S ∈ S1,3,4, then G is 4-χS-critical if and only if

G ∈ {K4, C5, C6, P8} ∪ {Gi : i ∈ {1, . . . , 7}}.

(iii) If S ∈ S1,4, then G is 4-χS-critical if and only if

G ∈ {K4, C5, P6, G8}.

Proof. Let S ∈ S. In each of the three cases listed above, the set of all 4-χS-vertex-
critical graphs has been completely classified in [24]. This classification includes
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G1 G2 G3

G4 G5

G6 G7 G8

Figure 1: The graphs G1, . . . , G8

sporadic examples, as well as several graph families. By Lemma 3.2, any 4-χS-
critical graph must also be 4-χS-vertex-critical. Therefore, it suffices to determine
which of the graphs identified in [24] are also χS-critical.

When S ∈ S1,3,3, the classification from [24] includes nine individual graphs and
four graph families, two of which are infinite. Only those listed in item (i) satisfy
the χS-criticality condition.

For S ∈ S1,3,4, the classification from [24] consists of thirteen graphs and two
graph families. Only the graphs listed in item (ii) are χS-critical.

For S ∈ S1,4, the classification from [24] includes twelve graphs and two graph
families. Among them, only the graphs in item (iii) were found to be χS-critical
through direct verification. This completes the proof. �

4 On S-packing critical cycles

Recall that (k, k, . . .)-packing colorings are known as k-distance colorings and that
the (k, k, . . .)-packing chromatic number is denoted by χk. For cycles, it is proved
in [38] that χk(Cn) = k + 1 + ⌈ r

ℓ
⌉, where n = ℓ(k + 1) + r, 0 ≤ r ≤ k. (The special

case when r = 0 was earlier observed in [29].) Since n ≥ k+1 implies χk(Pn) = k+1,
we can conclude that Cn, where n ≥ k+ 1, is (k, k, , . . .)-packing critical if and only
if n 6≡ 0 (mod k + 1).
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Proposition 4.1 If S ∈ S and n ≥ 3, then the following hold.

(i) If n ≤ s1 + 1, then Cn is not S-packing critical.

(ii) If s1 + 2 ≤ n ≤ 2s1 + 1, then Cn is S-packing critical.

Proof. (i) Since n ≤ s1 + 1, we have χS(Cn) = n. Moreover, Cn − e = Pn and
diam(Pn) = n− 1 ≤ s1, hence χS(Cn − e) = n. So Cn is not S-packing critical.

(ii) Let s1 + 2 ≤ n ≤ 2s1 + 1. Since diam(Cn) = ⌊n
2
⌋ ≤ ⌊2s1+1

2
⌋ = s1, we have

χS(Cn) = n. On the other hand, diam(Cn− e) = diam(Pn) = n−1 ≥ (s1+2)−1 =
s1 + 1, so we can color the two leaves of Pn with the same color and henceforth,
χS(Cn − e) ≤ n− 1. So Cn is S-packing critical in this case. �

Theorem 4.2 If S ∈ S1 and n ≥ 3, then the following hold.

(i) If n ≤ s2 + 2, then Cn is S-packing critical if and only if n is odd.

(ii) If s2 + 3 ≤ n ≤ 2s2 + 1, then Cn is S-packing critical.

Proof. (i) If n ≤ s2 + 1, then diam(Cn) < diam(Pn) ≤ s2. Therefore, no color t
with t ≥ 2 can be repeated in an S-packing coloring of Pn, and we get an optimal
coloring by assigning color 1 to as many vertices as possible. Then χS(Pn) = n −
α(Pn)+1 = n−⌈n

2
⌉+1. For cycles, the situation is similar and we obtain χS(Cn) =

n− α(Cn) + 1 = n− ⌊n
2
⌋ + 1. Since χS(Cn − e) = χS(Pn) for every e ∈ E(Cn), the

above formulas show that χS(Cn − e) < χS(Cn) if and only if n is odd.
Now let n = s2 + 2. We observe that diam(Cn) = ⌊n

2
⌋ ≤ s2 always holds and

then no color t with t ≥ 2 can be repeated in an S-packing coloring of Cn. Thus,
χS(Cn) = n−α(Cn)+1 = n−

⌊

n
2

⌋

+1 =
⌈

n
2

⌉

+1. After deleting an edge from Cn, we
obtain Pn, whose diameter is n−1 = s2+1. We may have two types of S-coloring c
of the n-path v1 . . . vn. The first possibility is that no color t with t ≥ 2 is repeated,
and then c uses at least n − α(Pn) + 1 = ⌊n

2
⌋ + 1 colors. The second possibility is

to assign color 2 to v1 and vn, and use color 1 on an independent set in v2 . . . vn−1.
This needs at least n − 2 − α(Pn−2) + 2 = n − ⌈n−2

2
⌉ = ⌊n

2
⌋ + 1 colors. We may

therefore infer that χS(Cn) = ⌊n
2
⌋+1. Comparing χS(Cn) and χS(Cn−e) = χS(Pn),

we conclude that Cn is χS-critical if and only if n is odd, as stated.
(ii) Suppose first that n is even. Since diam(Cn) =

n
2
≤ s2, no color t with t ≥ 2

can be repeated in an S-packing coloring of Cn. Thus, χS(Cn) = n − α(Cn) + 1 =
n
2
+ 1. For the n-path v1v2 . . . vn, consider the coloring c that assigns color 1 to the

vertices v1, v3, . . . , vn−1, color 2 to v2 and vn, while the remaining vertices are colored
pairwise differently with colors 3, . . . , n

2
. As dPn

(v2, vn) = n − 2 ≥ s2 + 1, c is an
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S-packing-coloring. Then, we conclude that χS(Pn) ≤ n
2
< χS(Cn), proving the

χS-criticality of Cn.
If n is odd, diam(Cn) =

n−1
2

≤ s2 implies that no color different from 1 can be
repeated in an S-packing coloring. We infer again that χS(Cn) = n− α(Cn) + 1 =
n+1
2

+ 1. The path Pn can be colored such that only color 1 is repeated. Hence,

χS(Pn) ≤ n− α(Pn) + 1 =
n− 1

2
+ 1 < χS(Cn)

that proves the χS-criticality of Cn. �

Theorem 4.3 If n ≥ 3, then the following hold.

(i) If S ∈ S1,1, then Cn is S-packing critical if and only if n is odd.

(ii) If S ∈ S1,2,2, then Cn is S-packing critical if and only if it is C3 or C5.

(iii) If S ∈ S1,2,3, then Cn is S-packing critical if and only if n 6≡ 0 (mod 4).

Proof. Throughout the proof, let v1, . . . , vn be consecutive vertices of Cn.
(i) Let S ∈ S1,1. An even cycle Cn can be colored alternately with colors 1 and

2. Hence, χS(Cn) = 2. If n is odd, a 2-packing-coloring is not possible, but three
colors are clearly enough. On the other hand, χS(Pn) = 2 for every n ≥ 2. It follows
that χS(Cn − e) < χS(Cn) holds if and only if n is odd.

(ii) Let S ∈ S1,2,2. Consider a path Pn, for n ≥ 4, and an S-packing-coloring c of
Pn. On every four consecutive vertices of the path, the coloring uses at least three
colors. Let (123)∗ denote the sequence of colors in which 123 repeats an arbitrary
number of times. Using the color pattern (123)∗, starting with the first vertex of
the path, and where from the last block 123 the required number of elements is
used (possibly zero), we obtain an S-packing coloring. Consequently, χS(Pn) = 3 if
n ≥ 4. As follows, χS(Cn) ≥ 3 holds for every n ≥ 4.

If n ≥ 6, we consider the following colorings of Cn. The referred patterns start
from vertex v1, and after a specified initial sequence, the coloring repeats pattern
123 so that the color of vn will be 3. If n ≡ 0 (mod 3), we color Cn with (123)∗. If
n ≡ 1 (mod 3), we color Cn as 1213 (123)∗. If n ≡ 2 (mod 3), then n ≥ 8, and we
can color Cn as 1213 1213 (123)∗. It shows χS(Cn) ≤ 3 and in turn, χS(Cn) = 3, for
every n ≥ 6. We conclude that in this case there is no S-packing critical cycle on
more than 5 vertices.

For the small cases, we observe χS(P3) = 2 < χS(C3) = 3; χS(P4) = 3 = χS(C4);
and χS(P5) = 3 < χS(C5) = 4. Now, we may conclude that C3 and C5 are the only
S-packing critical cycles if S ∈ S1,2,2.
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(iii) Under the conditions n ≥ 4 and S ∈ S1,2,3, any S-packing-coloring of Pn

or Cn requires at least 3 colors. A path Pn with n ≥ 4 can be colored by (1213)∗

no matter whether n ≡ 0 (mod 4) is valid or not. Naturally, if n 6≡ 0 (mod 4),
then from the last block 1213 the required number of elements is used. Therefore,
χS(Pn) = 3 when n ≥ 4. If n ≡ 0 (mod 4), we can take the same type of coloring
for Cn and get χS(Cn) = 3. It also shows that no n-cycle with n ≡ 0 (mod 4) is
χS-critical.

Suppose now that c is an S-packing coloring of Cn, for n ≥ 5 that uses only colors
1, 2, 3. We claim that there are no two neighbors colored with 2 and 3. Assume,
without loss of generality, that c(vi) = 3 and c(vi+1) = 2. Then, vi+2 cannot get a
color different from 1. But then, as s2 ≥ 2 and s3 = 3, neither of colors 1, 2, and 3
can be assigned to vi+3. This contradiction proves that every second vertex of the
cycle is colored with 1. As neither of the patterns 1212 and 1313 may occur in the
coloring, we obtain that the pattern 1213 must be repeated along the cycle. If n 6≡ 0
(mod 4), it is impossible to have 3 colors and we conclude χS(Cn) ≥ 4 for these
cases. Therefore, Cn is χS-critical for every n ≥ 5 if n 6≡ 0 (mod 4). Observing also
that χS(P3) = 2 < χS(C3) = 3 we obtain that C3 is χS-critical. This completes the
proof for (iii). �

5 Impact of edge removal on χS

In view of Observation 2.1 (i), the question naturally arises as to what extent re-
moving an edge of G can affect χS(G). Before we answer this question, recall the
following well-known sets (see [1, 23, 35]) which are defined for an arbitrary edge
e = uv of a graph G:

WG
uv = {w ∈ V (G) : dG(u, w) < dG(v, w)},

WG
vu = {w ∈ V (G) : dG(v, w) < dG(u, w)},

vW
G
u = {w ∈ V (G) : dG(u, w) = dG(v, w)} .

Clearly, V (G) = Wuv∪Wvu ∪ vWu. We will use the next lemma throughout the rest
of the section mostly without explicitly mentioning it.

Lemma 5.1 If e = uv ∈ E(G), then WG
uv = WG−e

uv and WG
vu = WG−e

vu .

Proof. Assume first that w ∈ WG
uv. Then e = uv does not lie on any shortest

w, u-path, thus we have

dG−e(w, u) = dG(w, u) < dG(w, v) ≤ dG−e(w, v) ,
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hence w ∈ WG−e
uv .

Assume second that w ∈ WG−e
uv , that is, dG−e(w, u) < dG−e(w, v). Then no

matter whether there exists a shortest w, v-path in G which passes e, we have

dG(w, v) ≥ dG(w, u) + 1 ,

that is, w ∈ WG
uv. We can conclude that WG

uv = WG−e
uv . The argument for the

equality WG
vu = WG−e

vu is parallel. �

In the proof of the next result, we use some ideas similar to those in the proof
of [5, Theorem 1].

Theorem 5.2 Let S be a packing sequence and let e = uv be an edge of a graph G.
Then the following statements hold.

(i) χS(G− e) ≥
χS(G)

2
. Moreover, there are infinitely many sharp examples for

every packing sequence S ∈ S1,3 ∪ S2,5 ∪ S 3.

(ii) If G contains a component on at least three vertices and S ∈ S1,1 ∪ S1,2,

then χS(G− e) ≥
χS(G) + 1

2
holds. Moreover, there are infinitely many sharp

examples for every S ∈ S1,1 ∪ S1,2.

(iii) If S ∈ S2,2,2 and χS(G− e) ≥ 3, then χS(G− e) ≥
χS(G) + 1

2
holds.

Proof. (i) Let c′ : V (G) → [χS(G−e)] be a χS-packing-coloring of G−e. For a color
t ∈ [χS(G− e)], we say that a vertex pair {x, y} is t-problematic if c′(x) = c′(y) = t
but dG(x, y) ≤ st. Since c′ is an S-packing coloring of G− e, we have dG−e(x, y) ≥
st + 1. Then dG−e(x, y) > dG(x, y) and therefore, in G, every shortest (x, y)-path
goes through the edge e. It also follows that, for every problematic pair {x, y}, one
vertex is in WG

uv and the other is in WG
vu. Note that W

G
uv = WG−e

uv and WG
vu = WG−e

vu

hold by Lemma 5.1.

We say that a vertex z covers a problematic pair {x, y} if z = x or z = y and
state the following key property of problematic pairs.

Claim: For every t ∈ [χS(G − e)], either there is no t-problematic pair or there
exists a vertex that covers all t-problematic pairs.

Proof. Consider the bipartite graph Ft with partite classes WG
uv, W

G
vu, where xy is

an edge if {x, y} is a t-problematic pair in G. Suppose for a contradiction that the
claim is not true, that is, E(Ft) 6= ∅ and that one vertex cannot cover all edges of
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Ft. König’s theorem [28] implies that the matching number of Ft is at least 2. So we
may suppose that {x1, y1} and {x2, y2} are two vertex-disjoint t-problematic pairs
in G.

Without loss of generality, let xi ∈ WG
uv and yi ∈ WG

vu for i ∈ {1, 2}. Let us set
dG(xi, u) = ai and dG(yi, v) = bi for i ∈ {1, 2}. Note that these distances remain
the same in G − e. Consider first x1 and x2. As both vertices belong to Wuv, we
have dG(x1, x2) = dG−e(x1, x2). Since c′ is a χS-packing-coloring of G − e, it holds
that dG−e(x1, x2) ≥ st + 1. Further, the length a1 + a2 of the (x1, x2)-path through
u gives an upper bound on the distance between x1 and x2. We obtain

a1 + a2 ≥ dG(x1, x2) ≥ st + 1. (1)

A similar reasoning gives

b1 + b2 ≥ dG(y1, y2) ≥ st + 1. (2)

By our assumption, both {x1, y1} and {x2, y2} are t-problematic pairs and so

a1 + 1 + b1 = dG(x1, y1) ≤ st (3)

and
a2 + 1 + b2 = dG(x2, y2) ≤ st. (4)

Inequalities (1)-(4) imply

2st + 2 ≤ a1 + a2 + b1 + b2 ≤ 2st − 2.

This contradiction finishes the proof of the claim. (✷)

By the claim, for every color t with a t-problematic pair, we can specify a vertex
zt that covers all t-problematic pairs. If we remove zt from the corresponding color
class, then no t-problematic pair remains, and hence, any two remaining vertices
have a distance of at least st + 1 in G. Let Z contain all specified vertices zt. Then
|Z| ≤ χS(G−e). Define now a new coloring c which keeps the color c′(x) if x /∈ Z and
assigns a unique color to every vertex x ∈ Z from {χS(G−e)+1, . . . , χS(G−e)+|Z|}.

It is clear that c uses at most 2χS(G− e) colors. We now prove that c is an S-
packing coloring of G. Suppose that c(x) = c(y) = p, where x 6= y. Since every color
q with q > χS(G−e) is assigned to only one vertex, we infer that p ∈ [χS(G−e)]. As
all p-problematic pairs were destroyed by recoloring one vertex from the pair, {x, y}
is not a problematic pair and hence, dG(x, y) ≥ sp + 1. Thus, c is an S-packing
coloring of G, which implies χS(G) ≤ 2χS(G− e) as stated.

We now prove the sharpness of the inequality. If S ∈ S1,3, let G be constructed
by taking two copies of the star K1,k with k ≥ 3 and connecting them by an edge
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e between two leaves. It is clear that χS(G − e) = χS(K1,k) = 2. We show that
χS(G) = 4. In G, the path P between the centers of the stars is an isometric
subgraph of diameter 3. Hence, either all four vertices of P get different colors, or
color 1 is assigned to two vertices. In the latter case, at least one center receives color
1, and then the k neighbors get pairwise different colors. In either case, the number
of colors is at least 4. On the other hand, a 4-packing-coloring can be obtained by
assigning color 1 to all leaves and one vertex of degree 2. Thus, χS(G) = 4 and G
is a sharp example for the bound in (i).

If S ∈ S2,5, let Gk, k ≥ 2, be the graph obtained from the disjoint union of
Kk and Kk+1 by adding a path of length 3 between a vertex of Kk and a vertex of
Kk+1. Let e be the edge of this path attached to Kk+1. As diam(Gk) = 5, no color
except 1 can be repeated in an S-packing coloring of Gk and it is easy to check that
χS(Gk) = 2k + 2 = 2χS(Gk − e).

Assume now that S ∈ S 3 and consider the following example. Let H be a graph
with a universal vertex and let G be the graph obtained from the disjoint union of
two copies of H by adding an edge e between a universal vertex of one copy of H
and a universal vertex of the other copy of H . Then diam(H) = 3 which implies
that χS(G) = 2n(H). On the other hand, χS(G − e) = n(H). This demonstrates
the sharpness of (i) for every S ∈ S 3.

(ii) Let S ∈ S1,1 ∪ S1,2. If the largest component of G contains at least three
vertices, χS(G − e) ≥ 2 holds for every e ∈ E(G). We prove that there is a color
t ∈ {1, 2} without a t-problematic pair in G. Assume that {x, y} is a 1-problematic
pair. Then dG(x, y) ≤ s1 = 1 and all shortest (x, y)-paths contain e = uv. It implies
{x, y} = {u, v} and c′(u) = c′(v) = 1. Consequently, for every two vertices x′ and
y′ with c′(x′) = c′(y′) = 2, either dG(x

′, y′) = dG−e(x
′, y′) ≥ s2 + 1 or, in G, every

shortest (x′, y′)-path contains e and dG(x
′, y′) ≥ 3 ≥ s2 + 1. It follows that one of

the colors 1 and 2 has no problematic pair, and then, the proof of part (i) can be
improved by claiming |Z| ≤ χS(G − e)− 1. We conclude χS(G) ≤ 2χS(G− e) − 1
as stated.

For a packing sequence S ∈ S1,1, we take the odd cycles which are 3-χS-critical
graphs according to Theorem 3.8 (i). Thus, χS(C2k+1) = 3 and χS(C2k+1 − e) = 2,
and the odd cycles are sharp examples for the inequality in (ii).

When S ∈ S1,2, we consider two vertex-disjoint stars K1,k, for k ≥ 3, and add
an edge e between the centers to obtain the graph G. It is easy to check that
χS(G − e) = 2 and χS(G) = 3. It provides then a sharp example for (ii). Remark
that C3 and P4 are also sharp examples for S ∈ S1,2, according to Theorem 3.8 (ii).

(iii) Assume that S ∈ S2,2,2 and χS(G − e) ≥ 3. We prove that for at least
one color t ∈ {1, 2, 3}, G contains no t-problematic pair. Let us choose t from
{1, 2, 3} such that t 6= c′(u) and t 6= c′(v). Then, for every two vertices x and y with
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c′(x) = c′(y) = t, all shortest (x, y)-paths contain e = uv and the distance dG(x, y) is
at least 3 = st+1. Therefore, we have |Z| ≤ χS(G− e)− 1 again and may conclude
χS(G) ≤ 2χS(G− e)− 1. �

We note that the inequalities in Theorem 5.2 (i) and (ii) remain valid if the
packing sequence S is finite and we suppose that G is S-packing colorable. Indeed,
if 2χS(G− e) ≤ |S|, the proof given above remains valid. If 2χS(G− e) > |S|, then
the S-packing colorability of G immediately implies χS(G) ≤ |S| ≤ 2χS(G− e)− 1
and the two inequalities follow.

Setting S = (1, 2, 3, . . .) in Theorem 5.2 (ii), we get the following:

Corollary 5.3 [5, Theorem 1] If e ∈ E(G), then χρ(G− e) ≥ χρ(G)+1

2
.

To see that the bound in Theorem 5.2 (i) is asymptotically sharp also when e
is not a cut-edge, consider the following example for the constant packing sequence
S = (3, 3, . . . ). Let H be a graph with two universal vertices x and y, and let H ′ be
an isomorphic copy of H with respective universal vertices x′ and y′. Let G be the
graph obtained from the disjoint union of H and H ′ by adding the edge e = xx′,
and by connecting y and y′ with a path of length 3.

Note that n(G) = 2n(H) + 2 and that diam(G) = 3. Therefore, χS(G) =
2n(H) + 2. Consider now G− e. Then we can assign color 1 to x and y′, color 2 to
y and x′, whilst assigning each color from {3, . . . , n(H)} to the remaining pairs of
vertices respectively, one from each of H and H ′. Two further colors, n(H) + 1 and
n(H) + 2 are used to color the two vertices outside V (H) ∪ V (H ′). In this way, we

infer that χS(G− e) = n(H) + 2. So limn→∞

χS(G−e)
χS(G)

= 1
2
.

If the removed edge is a cut-edge, we can slightly improve Theorem 5.2.

Proposition 5.4 Let S ∈ S and s2 ≤ 2. If e is a cut-edge in a graph G and

χS(G− e) ≥ 2, then χS(G− e) ≥
χS(G) + 1

2
.

Proof. Theorem 5.2 (ii) establishes the lower bound if s1 = 1 and s2 ≤ 2. Hence,
it suffices to prove the lower bound for s1 = s2 = 2. Let e = uv be a cut-edge in
G, and G1, G2 be the two components in G− e. We may suppose that u ∈ V (G1)
and v ∈ V (G2). We use the notations from the proof of Theorem 5.2. Assume first
that some color t ∈ {1, 2} is not in {c′(u), c′(v)} and c′(x) = c′(y) = t. If x and
y belong to the same component Gi, then dG(x, y) = dG−e(x, y) ≥ st + 1 as c′ is
an S-packing coloring in G − e. If x ∈ V (G1) and y ∈ V (G2), then the distance
dG(x, y) ≥ 3 = st + 1. We conclude that there is no t-problematic pair in G and
χS(G) ≤ 2χS(G− e)− 1 holds for this case.
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If both colors 1 and 2 are used on vertices u, v by c′, we define a coloring c′′

of G − e by switching colors 1 and 2 in G2. Since s1 = s2, coloring c′′ remains an
S-packing coloring. Moreover, as c′′(u) = c′′(v) holds, χS(G) ≤ 2χS(G − e) − 1
follows by the same reasoning as above. �

In the sharp examples with χS(G) = 2χS(G − e) given in the proof of Theo-
rem 5.2 (i), the edge e is always a cut-edge. Therefore, the inequality in Proposi-
tion 5.4 does not hold for all graphs when S ∈ S1,3 ∪ S2,5 ∪ S 3.

6 Concluding remarks

• In Theorems 3.8 and 3.9 we have characterized 4-χS-critical graphs for most of
the packing sequences S. The missing cases which remain to be considered are
S ∈ S1,1 ∪ S1,2. In fact, these are also the missing cases of 4-χS-vertex-critical
graphs.

• In Theorem 4.3 we have characterized cycles which are S-packing critical for
S ∈ S1,1, S ∈ S1,2,2, and S ∈ S1,2,3. The remaining cases are still to be
explored.

• In Theorem 5.2 we have demonstrated that there are infinitely many sharp
examples for the inequality χS(G− e) ≥ χS(G)

2
, for each S ∈ S1,3 ∪ S2,5 ∪ S 3,

where e is a cut-edge. We next provide another sporadic example for the
sharpness when S ∈ S2,3,11. For this purpose, consider P14 and its middle edge
e. Using case analysis, it can be checked that χS(P14) = 8. On the other hand,
P14 − e contains two components both of which are isomorphic to P7 and we
obtain χS(P14 − e) = 4 = χS(P14)

2
. Proposition 5.4 shows that if s2 ≤ 2 and

G contains a component with at least two edges, then the stronger inequality
χS(G− e) ≥ χS(G)+1

2
holds for every cut-edge e of G. The remaining cases are

packing sequences with

◦ s1 = 2, s2 = 3, and 3 ≤ s3 ≤ 10;

◦ s1 = 2, s2 = 4.

For these cases, it remains an open question whether χS(G − e) ≥ χS(G)+1
2

holds whenever e is a cut-edge of G.

• In the above example when S ∈ S2,3,11, we have stated that χS(P14) = 8.
Establishing this result is not completely straightforward. In general, it would
be of interest to determine χS(Pn) for any S ∈ S and any n.
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