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Abstract

Let G be a graph of order n(G), local metric dimension diml(G), and clique
number ω(G). It has been conjectured that if n(G) ≥ ω(G) + 1 ≥ 4, then

diml(G) ≤
(
ω(G)−2
ω(G)−1

)
n(G). In this paper the conjecture is confirmed for the

case ω(G) = 3. Consequently, a problem regarding the local metric dimension
of planar graphs is also resolved.
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1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). We
denote the clique number of G by ω(G) and the order of G by n(G). The open
neighborhood NG(u) of u ∈ V (G) is the set of vertices adjacent to u. The degree
dG(u) of u is the cardinality of NG(u). The maximum degree of G is denoted by
∆(G). If V ′ is a subset of the vertex set V (G), then the notation G[V ′] refers to the
subgraph of G that is induced by V ′. Additionally, if H and H ′ are subgraphs of G,
then EG(H,H ′) denotes the set of edges connecting vertices from H to vertices in
H ′. The union G∪G′ of graphs G and G′ is the graph with vertex set V (G)∪V (G′)
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and edge set E(G) ∪ E(G′). For a positive integer l ≥ 1, the notation [l] represents
the set {1, . . . , l}. We also set [0] = ∅.

The distance dG(u, v) between vertices u, v ∈ V (G) is the length of shortest u, v-
path in G. The vertices u and v are distinguished by w ∈ V (G), or equivalently, w
distinguishes u and v, if dG(u,w) ̸= dG(v, w). A subset W ⊆ V (G) is a resolving set
for G if, for any two vertices u and v in V (G)−W , there exists at least one vertex
in W that distinguishes u and v. Similarly, W is referred to as a local resolving set
if, for any adjacent vertices u and v from V (G) − W , there is a vertex in W that
distinguishes u and v. The metric dimension dim(G) and the local metric dimension
diml(G) of G are defined as the sizes of the smallest resolving sets and the smallest
local resolving sets for G, respectively. Clearly, diml(G) ≤ dim(G).

The metric dimension of graphs has a rich history, initially defined by Harary
and Melter [10] and by Slater [19]. Determining the metric dimension is known to
be NP-complete for general graphs [12] and also for restricted cases involving planar
graphs with a maximum degree six [4]. Research in this area is extensive, partly
because metric dimension has numerous real-world applications, including robot
navigation, image processing, privacy in social networks, and tracking intruders in
networks. The 2023 overview [20] of the essential results and applications of metric
dimension contains well over 200 references.

Several variations of metric dimension gained a wider attention. The survey [15]
focusing on these variants also cites over 200 papers. One particularly interesting
variation is the local metric dimension, introduced in 2010 by Okamoto, Phinezy,
and Zhang [17]. Like the standard metric dimension, the local metric dimension
is computationally challenging [5, 6] and has been explored in several studies [1–3,
7, 8, 14, 16, 18]. We should also mention closely related research on the fractional
local metric dimension [11] and the nonlocal metric dimension [13]. Okamoto et
al. [17] proved several important relationships between local metric dimension and
clique number: diml(G) = n(G) − 1 if and only if G ∼= Kn(G); diml(G) = n(G) − 2
if and only if ω(G) = n(G) − 1; diml(G) = 1 if and only if G is bipartite; and
diml(G) ≥ max

{
⌈log2 ω(G)⌉, n(G)− 2n(G)−ω(G)

}
. Furthermore, Abrishami et al. [1]

established that diml(G) ≤ 2
5
n(G) when ω(G) = 2 and n(G) ≥ 3. They also posed:

Problem 1. [1, Problem 1] If G is a planar graph with n(G) ≥ 2, is it then true
that

diml(G) ≤
⌈
n(G) + 1

2

⌉
?

In [1] it was confirmed that Problem 1 has a positive answer for triangle-free
planar graphs. On the other hand, it was demonstrated in [9] that the problem
has a negative answer when ω(G) = 4. Additionally, in [8] it was proved that
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diml(G) ≤
(

ω(G)−1
ω(G)

)
n(G), with equality holding if and only if G ∼= Kn(G), thus

verifying a conjecture from [1].
Our second main motivation is:

Conjecture 2. [8, Conjecture 2] If G is a graph with n(G) ≥ ω(G) + 1 ≥ 4, then

diml(G) ≤
(
ω(G)− 2

ω(G)− 1

)
n(G) .

It is demonstrated in [8] that if Conjecture 2 is true, then the bound is asymp-
totically best possible, and that Conjecture 2 holds for all graphs G with ω(G) ∈
{n(G)− 1, n(G)− 2, n(G)− 3}. It is also established that when ω(G) = n(G)− 2,
then n(G) − 4 ≤ diml(G) ≤ n(G) − 3, and that when ω(G) = n(G) − 3, then
n(G)− 8 ≤ diml(G) ≤ n(G)− 3.

The main result of this paper reads as follows.

Theorem 3. If G is a graph with n(G) ≥ 4 > ω(G), then

diml(G) ≤
⌊
n(G)

2

⌋
.

Theorem 3 implies that Problem 1 and Conjecture 2 have positive answers when
ω(G) = 3. Additionally, there exist infinitely many planar graphs that achieve the
equality stated in the theorem. For any positive odd number n, let G = n−1

2
K2+K1,

that is, a graph constructed from n−1
2

disjoint complete graphs K2 by adding a new
vertex and connecting it to all the vertices of the n−1

2
K2. It is straightforward

to observe that the local metric dimension of G equals ⌊n
2
⌋. Therefore, there are

infinitely many planar graphs G such that diml(G) =
⌊
n(G)
2

⌋
.

So, Problem 1 has a positive answer for planar graph G with ω(G) ≤ 3, while we
know from before that there are planar graph G containing K4 for which the bound
of Problem 1 does not apply. It is important to highlight that Conjecture 2 remains
unresolved for graphs G where 4 ≤ ω(G) ≤ n(G)− 4.

2 Proof of Theorem 3

We begin the proof by describing a key approach to it. First, let Fi, i ∈ [9], be the
graphs of order at most 4 and with no isolated vertices, except K4, as illustrated in
Fig. 1.

Let now G be a graph with n(G) ≥ 4 > ω(G). In the following, we will se-
quentially select in G and in its induced subgraphs maximum sets of vertex disjoint
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F1 F2 F3 F4

F5 F6 F7 F8 F9

a1

a4

a3

a2

b1

b4

b2

b3

c1

c3 c2

Figure 1: All non-complete graphs with at most 4 vertices and no isolated vertex.

induced subgraphs isomorphic to some Fi. Such a selection is not necessarily unique,
but we will select one and fix it, so the following notation is well-defined for the pur-
poses of the proof.

• Let F1(G) be a maximum set of vertex disjoint induced subgraphs of G iso-
morphic to F1.

• Set G1 = G. For i = 2, 3, . . . , 9, let Fi(G) be a maximum set of vertex disjoint
induced subgraphs of Gi = Gi−1 −

⋃
H∈Fi−1(G) V (H) isomorphic to Fi.

• Note that G9 −
⋃

H∈F9(G) V (H) is a set of isolated vertices, let F10(G) be the
set of these induced subgraphs isomorphic to K1.

• Let F(G) = {Fi(G) : i ∈ [10]}, and call it a local vertex division of G.

• For i ∈ [10], let Vi = ∪H∈Fi(G)V (H).

The sets Vi, i ∈ [10], form a partition of V (G). We further emphasize that
some of these sets may be empty, that is, some of the sets Fi(G) may be empty.
The definition of the local vertex division and the assumption ω(G) ≤ 3 imply the
following facts, where we use vertex labels from Fig. 1.

1. Let H ∈ F1(G) and v ∈ V (G −H). If for some i ∈ {2, 4}, vai ∈ E(G), then
there exists j ∈ {1, 3} such that vaj ̸∈ E(G).

2. Let H ∈ F2(G) and v ∈ V (G2 − H). Then at most one vertex in the set
{b1, b2, b4} is adjacent to v.

3. Let H ∈ F4(G) and v ∈ V (G4 − H). Then at most two vertices of H are
adjacent to v, and G[V (H) ∪ {v}] does not contain cycles of length 3.
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4. Let H ∈ F5(G) and v ∈ V (G5 −H). Then at most two vertices of H can be
adjacent to v, and G[V (H) ∪ {v}] does not contain cycles of length 3 or 4.

5. For i ∈ {6, 7, 8, 9}, let H ∈ Fi(G) and v ∈ V (Gi − H). Then at most one
vertex of H is adjacent to v.

Based on the above five statements we claim that there exists a subset S of
V (G− ∪H∈F3(G)H) such that

• for any H ∈ Fi(G), i ∈ [10] \ {3}, we have |S ∩ V (H)| ≥ 1
2
n(H), and

• V (G)− S is a local resolving set for G.

We construct S as follows, where we initially set S = ∅. For any graph H1 ∈ F1(G),
we add to S its vertices a2 and a4 (see Fig. 1). Similarly, for any H2 ∈ F2(G), add
to S either b1 and b2, or b2 and b4. Next, for any graph H ∈ F4(G) ∪ F5(G) ∪
F6(G) ∪ F7(G), add to S two arbitrary non-adjacent vertices of H. Further, for
any H8 ∈ F8(G), add to S two arbitrary vertices of H8, while for any element
H9 ∈ F9(G), add to S an arbitrary vertex of H9. Finally, set S = S ∪F10(G). Since
it is evident that S satisfies the required two conditions, the claim is proved.

If F3(G) is empty, then the above constructed local resolving set V (G) − S
yields the theorem’s assertion. Hence assume in the rest that F3(G) ̸= ∅. Then the
following statements hold, where in each case the argument is based on the fact that
otherwise we could increase the cardinality of F1(G) or F2(G).

I. Let H and H ′ be two disjoint elements in the set F3(G). Then, for any
h ∈ V (H) and any h′ ∈ V (H ′), it holds that hh′ ̸∈ E(G).

II. There is no edge between the vertices that lie on the elements of F3(G) and
those that lie on the elements of ∪10

i=4Fi(G). In other words, for each u ∈(
∪H∈F3(G)V (H)

)
and v ∈

(
∪10
i=4 ∪H∈Fi(G) V (H)

)
, it holds that uv /∈ E(G).

III. Let F ∈ F3(G) and V (F ) = {c1, c2, c3}. If for v ∈
(
∪2

i=1 ∪H∈Fi(G) V (H)
)
and

i ∈ [3], we have vci ∈ E(G), then v distinguishes either (ci and cj) or (ci and
ck), where [3]− {i} = {j, k}.

IV. If for H ∈ F2(G) and F, F ′ ∈ F3(G), we have V (H) ∩
(
∪v∈V (F )NG(v)

)
̸= ∅

and V (H) ∩
(
∪u∈V (F ′)NG(u)

)
̸= ∅, then

|
(
V (H) ∩

(
∪v∈V (F )NG(v)

))
∪
(
V (H) ∩

(
∪u∈V (F ′)NG(u)

))
| = 1.

In the rest of the proof we are going to add to the above constructed set S some
of the vertices from the triangles from F3(G), such that V (G) − S remains a local
resolving set for G. For this sake, some additional notation is needed.
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• Let F3(G) ̸= ∅, and let A be a subset of F3(G). For H ∈ F1(G), let
η1(H,F3(G),A) represent the set of elements in F3(G)−A such that at least
one vertex from each of these elements is adjacent to some vertices of H, that
is,

η1(H,F3(G),A) = {F : F ∈ F3(G)−A, |EG(H,F )| ≥ 1}.

• Analogously, forH ′ ∈ F2(G), let η2(H
′,F3(G),A) represent the set of elements

in F3(G) − A such that at least one vertex from each of these elements is
adjacent to some vertices of H ′, that is,

η2(H
′,F3(G),A) = {F : F ∈ F3(G)−A, |EG(H

′, F )| ≥ 1}.

• Also, let H ′′ ∈ F1(G) ∪ F2(G). For a subset U of V (H ′′) and a subset Y of
F3(G), the notation D(U, Y ) represents the largest set of two-subsets {x, y}
such that the following conditions hold: (i) xy is an edge from a triangle in
Y ; (ii) x and y are distinguished by a vertex from U ; (iii) any triangle from Y
has at most one two-subset in D(U, Y ).

1st process:

(1.1) Set A = ∅ and consider the above-defined set S.

(1.2) Select H ∈ F1(G) such that η1(H,F3(G),A) has maximum cardinality.

(1.3) If |η1(H,F3(G),A)| ≤ 1, then return S and A, and end the process, otherwise
go to (1.4).

(1.4) If |η1(H,F3(G),A)| ≥ 4, then set

S = (S − V (H)) ∪ D(V (H), η1(H,F3(G),A)),

A = A ∪ η1(H,F3(G),A),

and proceed to (1.2), otherwise go to (1.5).

(1.5) If |η1(H,F3(G),A)| ∈ {2, 3} and h ∈ V (H) has the property η1(H,F3(G),A) =
η1(H − h,F3(G),A), then set

S = (S − V (H)) ∪ D(V (H)− {h}, η1(H,F3(G),A)) ∪ {h},
A = A ∪ η1(H,F3(G),A),

and proceed to (1.2).
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2nd process:

(2.1) Consider the sets A and S that are returned in the 1st process.

(2.2) Select H ∈ F2(G) such that η2(H,F3(G),A) has maximum cardinality.

(2.3) If |η2(H,F3(G),A)| ≤ 1, then return S and A, and end the process, otherwise
go to (2.4).

(2.4) For h ∈ V (H) such that dH(h) ≥ 2 and h is adjacent to no vertex from
η2(H,F3(G),A), set

S = (S − V (H)) ∪ {h} ∪ D(V (H)− {h}, η2(H,F3(G),A)),

A = A ∪ η2(H,F3(G),A),

and proceed to (2.2).

3rd process:

(3.1) Consider the sets A and S that are returned in the 2nd process.

(3.2) If F3(G) − A ≠ ∅, then go to (3.3), otherwise return S and A, and end the
process.

(3.3) Take an element F of F3(G). If there exists an element H in F1(G) such that
for a vertex h of it, dH(h) = 3 and h is adjacent to a vertex of F , then set

S = S ∪D({h}, {F}),
A = A ∪ {F},

and proceed to (3.2), otherwise go to (3.4).

(3.4) If there exists an element H in F2(G) such that for a vertex h of it, dH(h) ≤ 2
and h is adjacent to a vertex of F , then for h1, h2 ∈ V (H) such that dH(h1) = 2,
dH(h2) = 3, and h1 ̸= h, set

S = (S − V (H)) ∪ {h1, h2} ∪ D({h}, {F}),
A = A ∪ {F},

and proceed to (3.2).
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Before starting the 4th process, let’s consider the sets A and S that are returned
in the 3rd process. Also, if z1 and z2 are integers such that z1 + z2 = |F3(G) − A|,
then let F3(G) − A = {F 1

i : i ∈ [z1]} ∪ {F 2
j : j ∈ [z2]}, where for i ∈ [z1], F

1
i

has adjacency with an element in F1(G), and for j ∈ [z2], F
2
j has adjacency with

an element in F2(G). Now, assume for i ∈ [z1], H
1
i ∈ F1(G) has adjacency with

F 1
i , and for j ∈ [z2], H

2
j ∈ F2(G) has adjacency with F 2

j . Also, for i ∈ [z1], let’s
consider V (F 1

i ) = {f 1
i1
, f 1

i2
, f 1

i3
}, V (H1

i ) = {h1
i1
, h1

i2
, h1

i3
, h1

i4
}, dH1

i
(h1

i2
) = dH1

i
(h1

i4
) =

2, dH1
i
(h1

i1
) = dH1

i
(h1

i3
) = 3, f 1

i1
h1
i2

̸∈ E(G), and f 1
i2
h1
i2

∈ E(G). Plus, for j ∈
[z2], let’s consider V (F 2

j ) = {f 2
j1
, f 2

j2
, f 2

j3
}, V (H2

j ) = {h2
j1
, h2

j2
, h2

j3
, h2

j4
}, dH2

j
(h2

j1
) =

dH2
j
(h2

j4
) = 2, dH2

j
(h2

j2
) = 3, dH2

j
(h2

j3
) = 1, and f 2

j2
h2
j2
∈ E(G).

4th process:

(4.1) Consider the set S that is returned in the 3rd process and set Z1 = [z1].

(4.2) If there is i ∈ Z1 and x ∈ F10(G) such that {xh1
i1
, xh1

i4
} ⊆ E(G), then go to

(4.3), otherwise return S, Z1, F10(G) and end the process.

(4.3) Set

S = (S − {x, h1
i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},
F10(G) = F10(G)− {x},

and proceed to (4.2).

Before starting the 5th process, let’s set up F9(G) = {F 9
1 , . . . , F

9
|F9(G)|}.

5th process:

(5.1) Consider the sets S and Z1 that are returned in the 4th process. Also, for
i ∈ [|F9(G)|], set V 9

i = V (F 9
i ).

(5.2) If there is i ∈ Z1 and j ∈ [|F9(G)|], such that for a vertex x in V 9
j we have

{xh1
i1
, xh1

i4
} ⊆ E(G), then go to (5.3), otherwise return S, Z1, and end the

process.

(5.3) Set

S = ((S ∪ V 9
j )− {x, h1

i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},
V 9
j = V 9

j − {x},

and proceed to (5.2).
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Before starting the 6th process, let’s set up F8(G) = {F 8
1 , . . . , F

8
|F8(G)|}.

6th process:

(6.1) Consider the sets S and Z1 that are returned in the 5th process. Also, for
i ∈ [|F8(G)|], set V 8

i = V (F 8
i ).

(6.2) If there is i ∈ Z1 and j ∈ [|F8(G)|], such that for a vertex x in V 8
j we have

{xh1
i1
, xh1

i4
} ⊆ E(G), then go to (6.3), otherwise return S, Z1, and end the

process.

(6.3) Set

S = ((S ∪ V 8
j )− {x, h1

i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},
V 8
j = V 8

j − {x},

and proceed to (6.2).

We set up next F7(G) = {{xi1xi2 , yi1yi2} : i ∈ [|F8(G)|]}.

7th process:

(7.1) Consider the sets S and Z1 that are returned in the 6th process. Also, for
i ∈ [|F7(G)|] and a ∈ {x, y}, set V 7

ai
= {ai1 , ai2}.

(7.2) If there is i ∈ Z1 and j ∈ [|F7(G)|], such that for a ∈ {x, y} and v ∈ V 7
aj

we

have {vh1
i1
, vh1

i4
} ⊆ E(G), then go to (7.3), otherwise return S, Z1, and end

the process.

(7.3) Set

S = ((S ∪ V 7
aj
)− {v, h1

i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},
V 7
aj

= V 7
aj
− {v},

and proceed to (7.2).
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Let’s set up F6(G) = {F 6
i : i ∈ [|F6(G)|]}. Also, for i ∈ [|F6(G)|], set up V (F 6

i ) =
{f 6

i : i ∈ [4]} and dF 6
i
(f 6

4 ) = 3.

8th process:

(8.1) Consider the sets S and Z1 that are returned in the 7th process. Also, for
i ∈ [|F6(G)|], set V 6

i = V (F 6
i ).

(8.2) If there is i ∈ Z1 and j ∈ [|F6(G)|], such that for a vertex v in V 6
j we have

{vh1
i1
, vh1

i4
} ⊆ E(G), then go to (8.3), otherwise return S, Z1, and end the

process.

(8.3) If |V 6
j | ≤ 2, then set

S = ((S ∪ V 6
j )− {v, h1

i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},
V 6
j = V 6

j − {v},

and proceed to (8.2), otherwise set

S = ((S ∪ (V 6
j ∩ {f 6

i : i ∈ [3]})− {v, h1
i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},
V 6
j = V 6

j − {v},

and proceed to (8.2).

Set up now F5(G) = {F 5
i : i ∈ [|F5(G)|]}, and for X ⊆ V (G), let X be a

maximum subset of X such that E(G[X]) = ∅.
9th process:

(9.1) Consider the sets S and Z1 that are returned in the 8th process. Also, for
i ∈ [|F5(G)|], set V 5

i = V (F 5
i ).

(9.2) If there is i ∈ Z1 and j ∈ [|F5(G)|], such that for a vertex v in V 5
j we have

{vh1
i1
, vh1

i4
} ⊆ E(G), then go to (9.3), otherwise return S, Z1, and end the

process.

(9.3) Set

X = V 5
j − {v},

S = ((S ∪ X)− {v, h1
i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},
V 5
j = V 5

j − {v},

and proceed to (9.2).
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Next, set up F4(G) = {F 4
i : i ∈ [|F4(G)|]}.

10th process:

(10.1) Consider the sets S and Z1 that are returned in the 9th process. Also, for
i ∈ [|F4(G)|], set V 4

i = V (F 4
i ).

(10.2) If there is i ∈ Z1 and j ∈ [|F4(G)|], such that for a vertex v in V 4
j we have

{vh1
i1
, vh1

i4
} ⊆ E(G), then go to (10.3), otherwise return S, Z1, and end the

process.

(10.3) Set

X = V 4
j − {v},

S = ((S ∪ X)− {v, h1
i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},
V 4
j = V 4

j − {v},

and proceed to (10.2).

11th process:

(11.1) Consider the sets S and Z1 that are returned in the 10th process. Also, set
Z2 = [z2].

(11.2) If there are i ∈ Z1 and j ∈ Z2 such that {h1
i1
h2
j3
, h1

i4
h2
j3
} ⊆ E(G), then go to

(11.3), otherwise return S, Z1, Z2, and end the process.

(11.3) Set

S = (S − {h1
i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
, f 1

j1
},

Z1 = Z1 − {i},
Z2 = Z2 − {j},

and proceed to (11.2).

12th process:

(12.1) Consider the sets S and Z1 that are returned in the 11th process.

(12.2) If there are i, j ∈ Z1 such that {h1
i1
h2
j4
, h1

i4
h2
j4
} ⊆ E(G), then go to (12.3),

otherwise return S, Z1, and end the process.
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(12.3) Set

S = (S − {h1
i2
, h2

j2
, h2

j4
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
, h2

j3
, f 2

j1
, f 2

j2
},

Z1 = Z1 − {i, j},

and proceed to (12.2).

13th process:

(13.1) Consider the sets S and Z1 that are returned in the 12th process.

(13.2) If Z1 ̸= ∅, then take an element i of Z1 and go to (13.3), otherwise return S
and end the process.

(13.3) Set

S = (S − {h1
i2
}) ∪ {h1

i3
, f 1

i1
, f 1

i2
},

Z1 = Z1 − {i},

and proceed to (13.2).

14th process:

(14.1) Consider the set F10(G) that is returned in the 4th process, the set Z2 that is
returned in the 11th process, and the set S that is returned in the 13th process.

(14.2) If there is i ∈ Z2 and x ∈ F10(G) such that {xh2
i2
, xh2

i3
} ⊆ E(G), then go to

(14.3), otherwise return S, Z2, and end the process.

(14.3) Set

S = (S − {x, h2
i2
}) ∪ {h2

i3
, f 2

i1
, f 2

i2
},

Z2 = Z2 − {i},
F10(G) = F10(G)− {x},

and proceed to (14.2).

15th process:

(15.1) Consider the sets S and Z2 that are returned in the 14th process.

(15.2) If Z2 ̸= ∅, then take an element i of Z2 and go to (15.3), otherwise return S
and end the process.
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(15.3) Set

S = (S − {h2
i2
}) ∪ {h2

i3
, f 2

i1
, f 2

i2
},

Z2 = Z2 − {i},

and proceed to (15.2).

Now, let’s examine the set S that is produced in the 15th processes. It is clear
that |S| ≥ n(G)

2
. Furthermore, by utilizing ω(G) ≤ 3 and the maximality of Fi(G)

for i ∈ [9], we can observe that V (G)−S serves as a local resolving set for G. Since
diml(G) is an integer, we have proved Theorem 3.
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[9] A. Ghalavand, S. Klavžar, X. Li, Interplay between the local metric dimension
and the clique number of a graph, arXiv:2412.17074 [math.CO] (22 Dec 2024).

[10] F. Harary, R.A. Melter, The metric dimension of a graph, Ars Combin. 2 (1976)
191–195.

[11] I. Javaid, H. Benish, M. Murtaza, The fractional local metric dimension of
graphs, Contrib. Discrete Math. 19 (2024) 163–177.

[12] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl.
Math. 70 (1996) 217–229.
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