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Abstract. The Maker-Breaker resolving game is a game played on a graph G by Resolver and
Spoiler. The players taking turns alternately in which each player selects a not yet played
vertex of G. The goal of Resolver is to select all the vertices in a resolving set of G, while
that of Spoiler is to prevent this from happening. The outcome o(G) of the game played
is one of R, S, and N , where o(G) = R (resp. o(G) = S), if Resolver (resp. Spoiler) has
a winning strategy no matter who starts the game, and o(G) = N , if the first player has
a winning strategy. In this paper, the game is investigated on corona products G � H of
graphs G and H. It is proved that if o(H) ∈ {N ,S}, then o(G � H) = S. No such result is
possible under the assumption o(H) = R. It is proved that o(G�Pk) = S if k = 5, otherwise
o(G� Pk) = R, and that o(G�Ck) = S if k = 3, otherwise o(G�Ck) = R. Several results
are also given on corona products in which the second factor is of diameter at most 2.
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1. Introduction

Graphs in this paper are finite and simple. If G = (V (G), E(G)) is a connected
graph and W ⊆ V (G), then W is a resolving set of G if for every pair of distinct
vertices x and y of G, there exists z ∈ W such that the shortest path distances
between x and z and between y and z are different. The metric dimension
dim(G) of G is the minimum of the cardinalities over all resolving sets of G.
A resolving set of cardinality dim(G) is a metric basis for G. This concept was
independently introduced in the 1970’s in [6,18] and afterwards investigated in
several hundreds of papers, see the recent survey [19]. A fundamental reason
for this incredible interest is that resolving sets and the metric dimension found
numerous applications in a wide spectrum of research fields.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-024-01132-7&domain=pdf
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The Maker-Breaker game was introduced by Erdős and Selfridge [4], also
in the 1970s. The game is played on an arbitrary hypergraph by two players
named Maker and Breaker. The players alternately select an unplayed vertex
of the hypergraph during the game. Maker’s aim is to occupy all the vertices
of some hyperedge, the goal of Breaker is to prevent him from doing it. The
game has been extensively researched, see the book [7], the recent papers
[2,5,8,14,17], and references therein.

In this paper we are interested in the Maker-Breaker game in which winning
sets are resolving sets. This game was introduced in [9]. Closely related Maker-
Breaker games with respect to distance-k resolving sets and strong resolving
sets were recently studied by Kang and Yi respectively in [10,11]. In the Maker-
Breaker resolving game (MBRG for short) two players, named Resolver and
Spoiler, alternately select unplayed vertices of a given graph G. The aim of
Resolver is to select all the vertices of some resolving set of G, while Spoiler
aims to select at least one vertex from every resolving set of G. If Resolver
starts the game we speak of an R-game, otherwise we speak of an S-game.

It was stated in [9] that for the outcome o(G) of the MBRG played on G
we have o(G) ∈ {R,S,N}, with the following meaning:

• o(G) = R: Resolver has a winning strategy no matter who starts the
game;

• o(G) = S: Spoiler has a winning strategy no matter who starts the game;
• o(G) = N : the first player has a winning strategy.

Besides knowing who wins the game, it is of interest also how fast the
winner can achieve this. The Maker-Breaker resolving number, RMB(G), is
the minimum number of moves of Resolver to win the R-game on G when
both players play optimally. The Maker-Breaker spoiling number, SMB(G),
is the minimum number of moves of Spoiler to win the R-game on G when
both players play optimally. For the S-game the corresponding invariants are
denoted by R′

MB(G) and S′
MB(G).

The corona product G � H of a connected graph G and a graph H is the
graph obtained by taking one copy of G and n(G) copies of H by joining the
ith vertex of G to each vertex in the ith copy of H, where n(G) = |V (G)|. For
some recent studies of corona products we refer to [1,3,12,15,16,20].

In this paper, we investigate the MBRG played on corona products. (We
note in passing that the Maker-Breaker strong resolving game has already been
studied on corona products in [11].) In the next section further definitions and
known results needed are stated. In Sect. 3 we prove that if o(H) ∈ {N ,S},
then o(G�H) = S. The situation when o(H) = R is more complex. We prove
that o(G�Pk) = S if k = 5, otherwise o(G�Pk) = R. In addition, o(G�Ck) =
S if k = 3, otherwise o(G � Ck) = R. We also give two sufficient conditions
which guarantee that o(G � H) = R. In the final section we consider corona
products in which the second factor is of diameter at most 2. Among other
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results we prove that if diam(H) = 2, o(H) = R, and RMB(H) = R′
MB(H),

then RMB(G � H) = R′
MB(G � H) = n(G)RMB(H).

2. Preliminaries

In this section we collect results to be used later on and along the way introduce
some additional concepts needed. The following result will be used throughout
the paper either explicitly or implicitly.

Lemma 2.1. [9, Lemma 2.2] If the Maker-Breaker game is played on a hyper-
graph, then in an optimal strategy of Maker to win in the minimum number
of moves it is never an advantage for him skip a move. Moreover, it never
disadvantage Maker for Breaker to skip a move.

Lemma 2.1 is known as No-Skip Lemma.

Proposition 2.2. [9, Proposition 2.3] If G is a connected graph, then the fol-
lowing hold.

(i) If o(G) = R, then R′
MB(G) ≥ RMB(G) ≥ dim(G).

(ii) If o(G) = S, then SMB(G) ≥ S′
MB(G).

Let A = {{u1, v1}, . . . , {uk, vk}} be a set of 2-subsets of V (G) such that
|⋃k

i=1 {ui, vi}| = 2k. Then A is a pairing resolving set if every set {x1, . . . , xk},
where xi ∈ {ui, vi}, is a resolving set of G.

Proposition 2.3. [9, Proposition 3.3] If a connected graph G admits a pairing
resolving set, then o(G) = R.

Let G be a connected graph and let H be a graph. In the rest we adapt the
following notation. First, V (G) = [n(G)], where we used the convention that
for a positive integer k, we write [k] = {1, . . . , k}. Second, in G � H, the copy
of H which corresponds to the vertex i ∈ V (G) will be denoted by Hi. We
will further set V (Hi) = {v

(i)
1 , . . . , v

(i)
n(H)} and denote the subgraph of G � H

induced by V (Hi) ∪ {i} by Ĥi.
Let diam(G) denote the diameter of G, that is, the largest distance between

all the pairs of vertices of G. The following proposition can be deduced from
[21, Lemma 1(iv)] and from the proof of [21, Theorem 3].

Proposition 2.4. Let G and H be connected graphs each of order at least two.
If S is a resolving set of G � H, then S ∩ V (Hj) is a resolving set in Hj.
Moreover, if diam(H) ≤ 2 and Si is a resolving set of Hi for i ∈ [n(G)], then
∪n(G)

i=1 Si is a resolving set of G � H.
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Let G be a graph. Then a vertex x ∈ V (G) is universal if its degree is equal
to n(G) − 1. The maximum degree of G is denoted by Δ(G). For a vertex
v ∈ V (G), its open neighbourhood is NG(v) = {u ∈ V (G) : uv ∈ E(G)}.
S ⊆ V (G) is a locating set of G if NG(u) ∩ S 	= NG(v) ∩ S for every two
vertices u, v ∈ V (G)\S. If in addition NG(u) ∩ S 	= S, for every u ∈ V (G)\S,
then S is a strictly locating set of G. We need the following result which can
be read off from [13, Theorem 3.6].

Theorem 2.5. Let H be a connected graph and S ⊆ V (H). Then S is a resolv-
ing set of K1 � H if and only if S is a strictly locating set of H.

It is worth to observe the following consequence of Theorem 2.5.

Corollary 2.6. If Resolver has a strategy to select a strictly locating set of a
connected graph H in both R-game and S-game, then o(K1 � H) = R.

From [9] we recall that if X is a graph of order at least two, then RMB(X) =
1 if and only if X is a path. Similarly, R′

MB(X) = 1 if and only if X is a path.
In addition, SMB(X) ≥ 2 and S′

MB(X) ≥ 2. From these facts we can easily
deduce that RMB(G � H) = 1 = R′

MB(G � H) if and only if G � H ∼= Pk,
where k ∈ {2, 3, 4}.

3. Outcome of the game

In this section, we consider the outcome of the MBRG played on corona prod-
ucts. We first show that in the case when o(H) ∈ {N ,S}, the outcome on
G � H is always S. The situation when o(H) = R is more complex. This is
demonstrated by the first main result of the section in which we determine
the outcome for corona products G � Pk. In the second main result we deter-
mine o(G � Ck). We conclude the section by two sufficient conditions which
guarantee that o(G � H) = R.

Proposition 3.1. Let G and H be connected graphs with at least two vertices.
If o(H) ∈ {N ,S}, then o(G � H) = S.
Proof. Assume that o(H) ∈ {N ,S}. Then Spoiler has a winning strategy in H
when she starts the game. Consider an MBRG played on G�H with Resolver
as the first player. Let his first move be from the subgraph Ĥi. Let j ∈ [n(G)]
be an arbitrary index with j 	= i. Then Spoiler responds by an optimal vertex
with respect to the MBRG played on Hj . (This is possible as n(G) ≥ 2.) In
the continuation of the game, Spoiler selects vertices from Hj according to
her optimal strategy played on Hj . In view of No-Skip Lemma 2.1, no matter,
whether Resolver plays some vertices of Hj or not, Spoiler can select a subset
of vertices of Hj such that she wins the game restricted to Ĥj . When the game
is over, by the first assertion of Proposition 2.4 we can conclude that Resolver
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cannot form a resolving set in G � H, which in turn implies that Spoiler wins
the MBRG on G � H as a second player. Therefore, by applying the No-Skip
Lemma she also wins the game as the first player. Hence o(G � H) = S. �

If o(H) = R, then the outcome of the MBRG played on G � H cannot
be determined in general. This is demonstrated by the next theorem in which
o(G�Pk) is determined. Recall that o(Pk) = R for k ≥ 2 and that o(Ck) = R
for k ≥ 4 [9].

To prove the main results, we need the following lemma.

Lemma 3.2. Let � ≥ 3 and let V (P2�) = V (C2�) = [2�]. If W = {w1, . . . , w�},
where wi ∈ {2i − 1, 2i} for i ∈ [�], then W is a strictly locating set of P2� as
well as a a strictly locating set of C2�.

Proof. Consider arbitrary vertices x, y ∈ V (P2�)\W . If x = 1, then 2 ∈ W , and
then, no matter whether 3 ∈ W or 4 ∈ W , we have NP2�

(1)∩W 	= NP2�
(y)∩W .

If x = 2, then 1 ∈ W and 1 is clearly not in NP2�
(y). The cases x = 2� and

x = 2� − 1 are symmetric. In the rest hence assume that 3 ≤ x, y ≤ 2� − 2.
Let x = 2j − 1. Then 2j ∈ W . If 2j − 2 ∈ W , then we easily see that

NP2�
(x) ∩ W 	= NP2�

(y) ∩ W . And if 2j − 3 ∈ W then we again reach the
same conclusion. The cases when x = 2j are done analogously. This proves the
assertion for paths.

To prove the result for cycles, note that the only obstruction for W not to
form a strictly locating set, is that there exist five consecutive vertices of it
such that only the middle one belongs to W . But it readily follows that this
cannot happen. �

Theorem 3.3. If G is a connected graph of order at least two and k ≥ 1, then

o(G � Pk) =

{
S; k = 5,

R; otherwise.

Proof. We distinguish several cases.

Case 1: k = 1.
Recall that v

(i)
1 , i ∈ [n(G)], is the vertex of (P1)i. Then {{1, v

(1)
1 }, . . . ,

{n(G), v(n(G))
1 }} is a pairing resolving set, hence by Proposition 2.3 we have

o(G � P1) = R.
Case 2: k = 2.
In this case the set {{v(1)

1 , v
(1)
2 }, . . . , {v

(n(G))
1 , v

(n(G))
2 }} is pairing resolving,

hence we can again apply Proposition 2.3 to conclude that o(G � P2) = R.
Case 3: k = 3.
In this case the strategy of Resolver is to select one of the degree two vertices

in each of (P3)i. He can clearly achieve this goal and it is straightforward to
see that the selected vertices form a resolving set.

Case 4: k = 4.
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Let v
(i)
1 , v

(i)
2 , v

(i)
3 , v

(i)
4 be the consecutive vertices of (P4)i. Then sets

{v
(i)
1 , v

(i)
3 } and {v

(i)
2 , v

(i)
4 } form a pairing resolving set for K1 � (P4)i. Hence

the result is true in this case also.
Case 5: k = 5.
We are going to show that Spoiler has a winning strategy no matter who

starts the game. Assume without loss of generality that the first move of Re-
solver is in (P̂5)i, where i > 1. Then Spoiler replies by selecting the vertex
v
(1)
3 . If the next move of Resolver is v

(1)
1 , then Spoiler replies by v

(1)
5 . In the

rest of the game Spoiler will be able to select at least one of v
(1)
2 and v

(1)
4 . In

either case she will win the game. In the second subcase let the next move of
Resolver be v

(1)
2 . Then Spoiler replies by the vertex v

(1)
4 , and afterwards she

will be able to select at least one of v
(1)
1 and v

(1)
5 to win the game again. The

remaining cases are symmetric, hence we have o(G � P5) = S.
Case 6: k = 2�, � ≥ 3.
To prove that o(G � Pk) = R, Resolver follows the strategy that in each

subgraph (Pk)i he selects one vertex from each of the sets {v
(i)
2j−1, v

(i)
2j }, j ∈ [�].

This strategy is indeed possible no matter who starts the game because he just
follows Spoiler and as soon as she selects one vertex from {v

(i)
2j−1, v

(i)
2j }, j ∈ [�],

he selects the other one.
Using the described strategy, Resolver selects in each subgraph (Pk)i a set

Wi which is by Lemma 3.2 a strictly locating set of Pk
∼= (Pk)i. By Theorem 2.5

we can conclude that Resolver wins the game.
Case 7: k = 2� + 1, � ≥ 3.
In this case we partition the vertex set of (Pk)i, i ∈ [n(G)], as follows:

Zi =
{

{v
(i)
1 , v

(i)
2 }, {v

(i)
3 , v

(i)
4 }, . . . , {v

(i)
2�−3, v

(i)
2�−2}, {v

(i)
2�−1, v

(i)
2� , v

(i)
2�+1}

}
.

The strategy of Resolver is the following. As soon as Spoiler selects a vertex
from some part {v

(i)
2j−1, v

(i)
2j }, Resolver selects the other vertex from this part.

Let now Spoiler selects for the first time a vertex from the part {v
(i)
2�−1, v

(i)
2� ,

v
(i)
2�+1}.

Assume that the first vertex selected from {v
(i)
2�−1, v

(i)
2� , v

(i)
2�+1} is v

(i)
2�−1. In

the case that v
(i)
2�−2 has not yet been selected, Resolver selects it. Since before

the end of the game Resolver will be able to select also one of v
(i)
2� and v

(i)
2�+1,

he will select in this way a strictly locating set of (Pk)i. Consider next the
subcase when v

(i)
2�−2 has already been selected. If v

(i)
2�−2 has been selected by

Resolver (and hence v
(i)
2�−3 by Spoiler), then Resolver selects next the vertex

v
(i)
2� . And if v

(i)
2�−2 has been selected by Spoiler (and hence v

(i)
2�−3 by Resolver),

then Resolver selects next the vertex v
(i)
2�+1. In each of the cases the vertices
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selected by Resolver form a strictly locating set of (Pk)i. Using Proposition 2.3
once more we obtain o(G � Pk) = R.

If the first vertex selected from {v
(i)
2�−1, v

(i)
2� , v

(i)
2�+1} is v

(i)
2� or v

(i)
2�+1, then

Resolver replies by selecting v
(i)
2�−1. We can then argue as above that in this

way Resolver has constructed a strictly locating set of (Pk)i. �
The result parallel to Theorem 3.3 for the case G = K1 is the following.

Theorem 3.4. If k ≥ 2, then

o(K1 � Pk) =

{
N ; k ∈ {2, 5},

R; otherwise.

Proof. The proof proceeds along with the same lines as the proof of Theo-
rem 3.3, hence we skip the details here. We only emphasize that the different
outcome for P2 and P5 comes from the fact that in G � Pk, where n(G) ≥ 2,
there are at least two different subgraphs Ĥi, hence in one of them Resolver
can be the first player to select a vertex, while in another it is Spoiler who
selects the first vertex. �
Theorem 3.5. If G is a connected graph and k ≥ 3, then

o(G � Ck) =

{
S; k = 3,

R; otherwise.

Proof. If k = 3, then Spoiler can play at least two vertices in at least one
subgraph (C3)i. Hence she wins the game.

If k ∈ {4, 5}, then Resolver follows the strategy to select two adjacent
vertices in each subgraph (Ck)i. Such two vertices form a strictly locating set
of (Ck)i and hence in view of Theorem 2.5 Resolver is the winner.

Assume next that k ≥ 6 is even. Then the strategy of Resolver is to select
in each subgraph (Ck)i a set of vertices Wi as described in Lemma 3.2. This
can be achieved by accordingly responding to the moves of Spoiler. Hence we
get the assertion also for even k ≥ 6 by Theorem 2.5.

Let now k = 2�+1 ≥ 7. Using the proposed notation, let v
(i)
1 , v

(i)
2 , . . . , v

(i)
2�+1

be the consecutive vertices of (C2�+1)i. We may without loss of generality
assume that Spoiler starts the game by selecting the vertex v

(1)
2�+1. Resolver

replies by playing the vertex v
(1)
2� . After that, Resolver continues using the

following strategy on (C2�+1)1. Consider the subsets Zi = {v
(1)
2i−1, v

(1)
2i }, i ∈

[� − 2]. Set also Z ′ = {v
(1)
2�−3, v

(1)
2�−2, v

(1)
2�−1}. Whenever Spoiler selects a vertex

from some set Zi, Resolver replies by playing the other vertex from the set.
At some point Spoiler will select a vertex from Z ′. If this vertex is v

(1)
2�−3 or

v
(1)
2�−1, then Resolver replies by playing v

(1)
2�−2. And if the first vertex from Z ′

selected by Spoiler is v
(1)
2�−2, then Resolver replies by playing v

(1)
2�−1.
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We claim that using the above described strategy, Resolver constructs a
strictly locating set of (C2�+1)1. To show it, we need to demonstrate that no
four consecutive vertices were selected by Spoiler, and that there are no five
consecutive vertices such that only the middle one was selected by Resolver.
The first situation cannot happen because in every set Zi Resolver selected one
vertex and because in Z ′ he has also selected one vertex. The second situation
could only happen if Spoiler selects v

(1)
2�+1 and v

(1)
1 , but then since Resolver

selected one of the vertices v
(1)
2�−1 and v

(1)
2�−2, this also does not happen in this

case. This proves the claim.
Using the No-Skip Lemma, Resolver can select a strictly locating set in

every (C2�+1)i. By Theorem 2.5 we can conclude that Resolver is the win-
ner. �

To conclude the section we determine two sufficient conditions which guar-
antee that o(G � H) = R. In the first we add the assumption diam(H) ≤ 2
to o(H) = R. For the second recall that we have seen that the assumption
o(H) = R does not necessarily imply o(G � H) = R.

Theorem 3.6. Let G and H be connected graphs with n(G) ≥ 2 and n(H) ≥ 2,
and let at least one of the following two conditions hold:

(i) o(H) = R and diam(H) ≤ 2,
(ii) o(K1 � H) = R.

Then o(G � H) = R.

Proof. (i) Since diam(H) ≤ 2, we infer that dHi
(v(i)

j , v
(i)
k ) = dG�H(v(i)

j , v
(i)
k )

holds for any two vertices v
(i)
j , v

(i)
k in Hi. Consider an MBRG played on G�H

with Spoiler as the first player. Spoiler selects either a vertex in G say v
(i)
j

or a vertex in Hi of G � H. Then Resolver responds optimally by choosing a
non-played vertex in Hi and applies his winning strategy in Hi as a second
player. In the continuation of the game, the strategy of Resolver is to follow
Spoiler in all of the subgraphs Hj .

Using the above strategy, Resolver forms a resolving set Si in each Hi. Since
diam(H) ≤ 2, Proposition 2.4 implies that

⋃n(G)
i Si is a resolving set of G�H.

Hence Resolver wins in this game as a second player. Therefore Resolver wins
the game as the first player too and o(G � H) = R.

(ii) Assume that o(K1 � H) = R. Then Resolver has a strategy to win
the MBRG played on K1 � H no matter who starts the game. The strategy
of Resolver is to apply his optimal strategy in each of the subgraphs Ĥi,
i ∈ [n(G)], by following Spoiler in these subgraphs. In this way Resolver forms
a resolving set Si in each Ĥi. Since

⋃n(G)
i=1 Si is a resolving set of G � H,

Resolver wins the game. �
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4. Games on G � H, where diam(H) ≤ 2

In this section we consider corona products in which the second factor is of
diameter at most 2. We distinguish the cases when the first factor is K1 or
has at least two vertices, and bound or determine exactly the corresponding
Maker-Breaker resolving numbers.

In Theorem 3.6(i) we have seen that if G is a graph of order at least 2, H
is a graph with n(H) ≥ 2, o(H) = R, and diam(H) ≤ 2, then o(G � H) = R.
A parallel result for the G = K1 reads as follows.

Proposition 4.1. Let H be a graph with diam(H) = 2, Δ(H) ≤ n(H) − 2, and
o(H) = R. Then o(K1 � H) = R, RMB(K1 � H) = RMB(H), and R′

MB(K1 �
H) = R′

MB(H).

Proof. In both, R-game and S-game, played on K1 � H, Resolver plays only
on the subgraph H by mimicking his optimal strategy in the games played
on H. Since Δ(H) ≤ n(H) − 2, the only universal vertex in K1 � H is the
vertex of K1. Hence, having in mind that diam(H) = 2, the set of vertices
selected by Resolver in H is also a resolving set of K1 � H. It follows that
o(K1 � H) = R, RMB(K1 � H) ≤ RMB(H), and R′

MB(K1 � H) ≤ R′
MB(H).

Moreover, the equality holds in the last two inequalities because otherwise by
finishing a game on K1�H faster, Resolver could also be able to finish a game
on H faster than in RMB(H) moves or in R′

MB(H) moves. �

The special case of Proposition 4.1 when H is the Petersen graph comple-
ments [9, Theorem 4.7].

The assumption Δ(H) ≤ n(H)−2 in Proposition 4.1 is needed to avoid the
situation in which K1 � H has more than one universal vertex. For instance,
let Y be the paw graph, that is, the graph obtained from K3 by attaching a
pendant vertex to one of its vertices. Then one can check that o(Y ) = R but
o(K1 � Y ) = N .

A result parallel to Proposition 4.1 for graphs G of order at least two read
as follows.

Proposition 4.2. Let G be a connected graph with n(G) ≥ 2, and let H be a
graph with diam(H) = 2 and o(H) = R. Then

RMB(G � H) ≤ R′
MB(G � H) ≤ n(G)R′

MB(H).

If, in addition, RMB(H) = R′
MB(H), then

RMB(G � H) = R′
MB(G � H) = n(G)RMB(H).

Proof. Let G and H be graphs as assumed by the proposition. By Theorem 3.6
we have o(G � H) = R. Moreover, from the proof of the same theorem we
infer that Resolver will select at most R′

MB(H) vertices in each subgraph Ĥi.
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Since o(G � H) = R, we know from Proposition 2.2(i) that RMB(G � H) ≤
R′

MB(G � H). It follows that RMB(G � H) ≤ R′
MB(G � H) ≤ n(G)R′

MB(H).
Assume now that RMB(H) = R′

MB(H). Then Resolver selects exactly
RMB(H) = R′

MB(H) vertices in each Ĥi. It follows that RMB(G � H) ≤
R′

MB(G � H) ≤ n(G)RMB(H). To complete the argument, we claim that
RMB(G � H) ≥ n(G)RMB(H). Indeed, if this is not the case, then by us-
ing his optimal strategy, Resolver selects strictly less than RMB(H) vertices
in some Ĥi. But this would mean that Resolver can also finish the game in
strictly less than RMB(H) moves in H, which is not possible. �

Considering the outcome of the MBRG on corona products K1 � H is
equivalent to considering o(G), where G is a graph with a universal vertex.
Note also that such a graph G has diam(G) ≤ 2. This problem appears very
difficult in general.

To conclude the paper we propose a stronger assumption o(G � H) = R
and get the following result.

Proposition 4.3. Let G and H be connected graphs of order at least two and
let diam(H) ≤ 2. If o(G � H) = R, then

n(G)RMB(H) ≤ RMB(G � H) ≤ RMB(H) + (n(G) − 1)R′
MB(H).

Proof. By Proposition 3.1 it follows that o(H) = R. Therefore all MBRG
parameters associated with the R-game played on G � H and H are well
defined.

The lower bound follows from the fact that the union of resolving sets of Hi

forms a resolving set of G � H. For the upper bound, recall that RMB(H) ≤
R′

MB(H) since o(H) = R. Since in at least one subgraph Ĥi Resolver will
be the first to select a vertex, we can conclude that he will win in at most
RMB(H) + (n(G) − 1)R′

MB(H) moves. �
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