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Abstract. The main result describes a bijective additive map h between prime rings with
nontrivial idempotents that satisfies h(x)h(y)h(z) = 0 whenever xy = yz = 0. The proof is
based on the consideration of a multiadditive map satisfying a related condition.

1. Introduction

The study of maps on rings and algebras that are determined by the action on pairs of
elements whose product is zero has a long history. We refer the reader to [1] and [9] for
references and historic details. In this paper we shall continue the study of such maps in
prime rings with nontrivial idempotents, the topic initiated in the influental paper [9] by
M. A. Chebotar, W.-F. Ke and P.-H. Lee.

In [9] the authors considered a bijective additive map h between prime rings A and B with
the property that xy = 0 implies h(x)h(y) = 0. Their main result in particular shows that
if A has a nontrivial idempotent (and satisfies a technical condition that was later removed
in [5]) then there exists λ in the extended centroid of B such that h(xy) = λh(x)h(y) for all
x, y ∈ A. In the case where A is unital the proof is much simpler and in fact λ then lies in
the center of B. In the non-unital case the proof is based on functional identities (see [6]).

In [5] the second author considered a more general condition where a map h : A → B
satisfies

(1) xy = yz = 0 =⇒ h(x)h(y)h(z) = 0 for all x, y, z ∈ A.

However, only the case where A is unital and h(1) = 1 was treated. In the present paper
we will deal with a considerably more involved non-unital case. We shall first consider a
more general problem concerning a triadditive map B from A3 = A × A × A to an additive
group X with the property that B(x, y, z) = 0 whenever xy = yz = 0. In the main result of
Section 2 we will actually consider a multiadditive map in an arbitrary number of variables
satisfying a condition of this sort (Theorem 2.1). Here we were motivated by several recent
works [1, 2, 7, 8, 10, 11, 14] dealing with biadditive maps satisfying some related conditions.
An application of Theorem 2.1 to maps satisfying (1) will lead to a functional identity which
is not covered by the general theory [6]. Still, by using some of the methods of functional
identities we will be able to obtain the desired conclusion (Theorem 3.2).
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The study of maps determined by the action on elements satisfying xy = yz = 0 was
motivated by applications to local derivations [5]. More precisely, the following condition on
a map d : A → A is relevant in this context:

(2) xy = yz = 0 =⇒ xd(y)z = 0 for all x, y, z ∈ A.

We will consider (2) in Section 4. The results that we will obtain are not really new. However,
it may be of some interest to show that the approach based on Theorem 2.1 makes it possible
for one to treat (1) and (2) in a unified manner.

2. Multiadditive maps and zero products

In the next theorem we do not assume the existence of unity in our ring A, but still formally
use the symbol 1 whose meaning is determined by 1x = x1 = x for every x ∈ A. This simplifies
our notation.

Theorem 2.1. Let A be a ring and let R be its subring generated by all idempotents in A.
Let X be an abelian group and let B : An → X , n ≥ 2, be a multiadditive map such that for
all xi ∈ A, 1 ≤ i ≤ n,

x1x2 = x2x3 = . . . = xn−1xn = 0 =⇒ B(x1, x2, . . . , xn) = 0.

Then for all ri ∈ R, 1 ≤ i ≤ n− 1, and all xi ∈ A, 1 ≤ i ≤ n, we have∑
B(x1s1, t1x2s2, t2x3s3, . . . , tn−2xn−1sn−1, tn−1xn) = 0,

where the sum is taken over all (si, ti) ∈ {(ri, 1), (1,−ri)}.

Proof. We first consider the case where n = 2. Our goal is to show that for every r ∈ R we
have B(x1r, x2) = B(x1, rx2) for all x1, x2 ∈ A. Note that the set of all r ∈ A satisfying
this condition is a subring of A. Therefore it suffices to show that B(x1e, x2) = B(x1, ex2)
holds for all x1, x2 ∈ A and every e = e2 ∈ A. This follows easily from the identities
x1e(x2 − ex2) = 0 and (x1 − x1e)ex2 = 0. Namely, according to our assumption they imply
that B(x1e, x2 − ex2) = 0 and B(x1 − x1e, ex2) = 0, and the desired formula follows.

We may now assume that n ≥ 3 and that the theorem holds for all integers smaller than n.
Let x2, x3, . . . , xn be such that x2x3 = x3x4 = . . . = xn−1xn = 0. Then for every idempotent
e ∈ A and every x1 ∈ A we have

x1e(x2 − ex2) = (x2 − ex2)x3 = . . . = xn−1xn = 0,

(x1 − x1e)ex2 = ex2 x3 = x3x4 = . . . = xn−1xn = 0.

Our assumption yields

B(x1e, x2 − ex2, x3, . . . , xn−1, xn) = 0,

B(x1 − x1e, ex2, x3, . . . , xn−1, xn) = 0,

which further implies

B(x1e, x2, x3, . . . , xn−1, xn)−B(x1, ex2, x3, . . . , xn−1, xn) = 0.(3)
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Thus, (3) holds for all x1 ∈ A, all idempotents e ∈ A, and all x2, . . . , xn ∈ A satisfying
x2x3 = x3x4 = . . . = xn−1xn = 0. Fixing x1 ∈ A and e = e2 ∈ A this means that the map
H : An−1 → X defined by

H(x2, x3, . . . , xn) = B(x1e, x2, x3, . . . , xn)−B(x1, ex2, x3, . . . , xn)

satisfies the condition of the induction assumption. Consequently, for all x2, x3, . . . , xn ∈ A
and all ri ∈ R we have ∑

H(x2s2, t2x3s3, . . . , tn−1xn) = 0,

where the sum is taken over all (si, ti) ∈ {(ri, 1), (1,−ri)}. That is,∑(
B(x1e, x2s2, t2x3s3, . . . , tn−1xn)−B(x1, ex2s2, t2x3s3, . . . , tn−1xn)

)
= 0.(4)

Since the set of all r ∈ A such that∑(
B(x1r, x2s2, t2x3s3, . . . , tn−1xn)−B(x1, rx2s2, t2x3s3, . . . , tn−1xn)

)
= 0

for all ri ∈ R, 2 ≤ i ≤ n − 1, and all xi ∈ A, 1 ≤ i ≤ n, where the sum is taken over all
(si, ti) ∈ {(ri, 1), (1,−ri)}, is readily seen to be a subring of A, and since, according to (4), it
contains all idempotents, the conclusion of the theorem follows. �

Let us restate Theorem 2.1 for n = 3, i.e., the case we shall consider in applications.

Corollary 2.2. Let A, R and X be as in Theorem 2.1. If B : A3 → X is a triadditive map
such that B(x, y, z) = 0 whenever x, y, z ∈ A satisfy xy = yz = 0, then

B(x, rys, z) +B(xr, y, sz) = B(xr, ys, z) +B(x, ry, sz)(5)

holds for all x, y, z ∈ A and r, s ∈ R.

Remark 2.3. For applications of these results it is important to note that the subring R
generated by all idempotents of a ring A is often large. In particular, it contains the ideal
I generated by all elements of the form ex − xe where e, x ∈ A and e is an idempotent [5,
Lemma 2.1]. Thus, if A is a prime ring containing a nontrivial idempotent (i.e., an idempotent
different from 0 and 1), then R contains a nonzero ideal of A. Namely, nontrivial idempotents
in a prime ring cannot be central.

Remark 2.4. If A is a simple ring with a nontrivial idempotent, then R = A in view of the
preceding remark. There are other important examples of rings for which R = A holds, cf.
[5]. If A is such a ring and furthermore A is unital, then Corollary 2.2 gives the optimal
conclusion about B. Namely, setting x = z = 1 we get

B(r, y, s) = B(r, ys, 1) +B(1, ry, s)−B(1, rys, 1)

for all r, y, s ∈ A. This implies thatB can be expressed through biadditive maps F,G : A2 → A
as follows

B(r, y, s) = F (ry, s) +G(r, ys), r, y, s ∈ A.
Conversely, if B is of such a form for some biadditive maps F and G, then the condition of
Corollary 2.2 clearly holds.

A similar remark can be stated with respect to Theorem 2.1.
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3. Maps satisfying (1)

In this section we shall use the extended centroid and related notions in our arguments.
We refer the reader to the book [3] for a full account on this topic. Let us mention here just
a few facts that will be needed. Let B be a prime ring. Then its symmetric Martindale ring
of quotients Qs(B) is a prime ring containing B as its subring, and has, in particular, the
following property: If q1, q2 ∈ Qs(B) and q1Bq2 = 0, then q1 = 0 or q2 = 0. The center C of
Qs(B) is a field, called the extended centroid of B. It coincides with the centralizer of B in
Qs(B). If a, b, c, d ∈ B are such that a 6= 0, c 6= 0, and aub = cud for all u ∈ B, then b and d
are linearly dependent over C.

Slightly different versions of the next lemma appear, sometimes just implicitly, in a number
of publications on functional identities. The proof of the version that we need is given in [4,
Example 2.5].

Lemma 3.1. Let B be a prime ring. Suppose there exist functions E,F : B → B and nonzero
elements c, d ∈ B such that E(u)vd = cuF (v) for all u, v ∈ B. Then there exists q ∈ Qs(B)
such that E(u) = cuq and F (v) = qvd for all u, v ∈ B.

We are now in a position to handle maps satisfying (1).

Theorem 3.2. Let A and B be prime rings. Assume that A contains a nontrivial idempotent.
If a bijective additive map h : A → B satisfies (1), then there exists λ ∈ C, the extended centroid
of B, such that h(xy) = λh(x)h(y) for all x, y ∈ A.
Proof. We shall write

f(x, y, z) = h(x)h(yz)− h(xy)h(z)

for all x, y, z ∈ A. Our first goal is to show that there exists a nonzero ideal J of A such that

(6) f(A, J, J) = 0 or f(J, J,A) = 0.

After establishing this it will be easy to complete the proof.
Note that Corollary 2.2 can be applied to B : A3 → B defined by

B(x, y, z) = h(x)h(y)h(z).

Hence it follows that

(7) h(x)h(rys)h(z) + h(xr)h(y)h(sz) = h(xr)h(ys)h(z) + h(x)h(ry)h(sz)

for all x, y, z ∈ A, r, s ∈ R. In particular, (7) holds for all r, s from a nonzero ideal I of R, cf.
Remark 2.3.

We can rewrite (7) as

f(x, r, ys)h(z) = f(x, r, y)h(sz),(8)

h(x)f(ry, s, z) = h(xr)f(y, s, z)(9)

for all x, y, z ∈ A, r, s ∈ I. Substituting zz′ for z in (8) we obtain

f(x, r, ys)h(zz′) = f(x, r, y)h(szz′) = f(x, r, ysz)h(z′).

A similar computation can be made after substituting xx′ for x in (9). Thus, we have

f(x, r, ysz)h(z′) = f(x, r, ys)h(zz′),(10)

h(x)f(x′ry, s, z) = h(xx′)f(ry, s, z)(11)
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for all x, y, z, x′, z′ ∈ A, r, s ∈ I. Note that (10) and (11) yield

(12) f(x, r, ysz)h(z′)f(s′y′, r′, x′) = f(x, r, ys)h(z)f(z′s′y′, r′, x′)

for all x, y, z, x′, y′, z′ ∈ A, r, s, r′, s′ ∈ I.
If f(x, r, ys) = 0 for all x, y ∈ A, r, s ∈ I, then the first identity in (6) holds for J = AI. We

may therefore assume that c = f(x1, r1, y1s1) 6= 0 for some x1, y1 ∈ A, r1, s1 ∈ I. Similarly, we
may assume that d = f(s2y2, r2, x2) 6= 0 for some y2, x2 ∈ A, s2, r2 ∈ I. Defining E,F : B → B
by

E(u) = f(x1, r1, y1s1h
−1(u)) and F (v) = f(h−1(v)s2y2, r2, x2)

we see from (12) that E(u)vd = cuF (v) for all u, v ∈ B. Lemma 3.1 implies, in particular,
that F (v) = qvd for all v ∈ B and some fixed q ∈ Qs(B). Writing h(z′) for v we thus have

f(z′s2y2, r2, x2) = qh(z′)d for all z′ ∈ A.

Using this in (12) we get(
f(x, r, ysz)− f(x, r, ys)h(z)q

)
h(z′)d = 0 for all x, y, z, z′ ∈ A, r, s ∈ I.

The primeness of B implies

(13) f(x, r, ysz) = f(x, r, ys)h(z)q for all x, y, z ∈ A, r, s ∈ I.

Again using (12) it now follows that

(14) f(zsy, r, x) = qh(z)f(sy, r, x) for all x, y, z ∈ A, r, s ∈ I.

We may assume that q 6= 0 since otherwise (6) holds with J = AIA.
Using (10) together with (13) we get

f(x, r, ys)h(zz′) = f(x, r, ys)h(z)qh(z′).

In particular, ch(zz′) = ch(z)qh(z′) holds for all z, z′ ∈ A. Consequently, for all x, y, z ∈ A
we have

ch(x)qh(yz) = ch(xyz) = ch(xy)qh(z) = ch(x)qh(y)qh(z).

Since c 6= 0 and B is prime it follows that

(15) qh(yz) = qh(y)qh(z) for all y, z ∈ A.

Similarly, from (11) and (14) one can derive

(16) h(yz)q = h(y)qh(z)q for all y, z ∈ A.

The last two identities will make it possible for us to simplify our fundamental formula (7).
Multiplying this formula from the right by q and using (16) we get

0 = h(x)h(rys)h(z)q + h(xr)h(y)h(sz)q − h(x)h(ry)h(sz)q − h(xr)h(ys)h(z)q

= h(x)h(rys)h(z)q + h(xr)h(y)h(s)qh(z)q − h(x)h(ry)h(s)qh(z)q − h(xr)h(ys)h(z)q

=
(
h(x)h(rys) + h(xr)h(y)h(s)q − h(x)h(ry)h(s)q − h(xr)h(ys)

)
h(z)q.

From the primeness of B it follows that

(17) h(x)h(rys) + h(xr)h(y)h(s)q = h(x)h(ry)h(s)q + h(xr)h(ys) for all x, y ∈ A, r, s ∈ I.



6 HANNES BIERWIRTH, MATEJ BREŠAR, MATEJA GRAŠIČ

Now multiply (17) by q from the left, use (15), and argue similarly as above. Then we get

(18) h(rys) + qh(r)h(y)h(s)q = h(ry)h(s)q + qh(r)h(ys) for all y ∈ A, r, s ∈ I.

If we now multiply (18) by q on both sides, and again use (15) and (16), we easily get(
q2h(r)− qh(r)q

)
h(y)

(
h(s)q2 − qh(s)q

)
= 0

for all y ∈ A, r, s ∈ I. Therefore either q2h(r) = qh(r)q for all r ∈ I or h(s)q2 = qh(s)q
for all s ∈ I. Let us consider only the first possibility. The second one can be considered
similarly. We have q2h(rx) = qh(rx)q for all r ∈ I and x ∈ A. Applying (15) it follows that
q2h(r)qh(x) = qh(r)qh(x)q, i.e., qh(r)q[q, u] = 0 for every u(= h(x)) in B; here, [q, u] denotes
the commutator qu − uq. Replacing u by uv and using [q, uv] = [q, u]v + u[q, v] we obtain
qh(I)qB[q,B] = 0. Thus either qh(I)q = 0 or [q,B] = 0. If the latter is true, then q ∈ C
and hence the conclusion of the theorem follows immediately from (15) (since λ = q is an
invertible element). Therefore we may assume that qh(I)q = 0. Then (16) yields h(AI)q = 0.
Substituting s by zs in (17) it then follows that h(x)h(ryzs) = h(xr)h(yzs) for all x, y, z ∈ A,
r, s ∈ I. This implies that the first identity of (6) holds for J = A2I. We have thereby finally
proved that (6) holds in any case.

Among two possibilities in (6) we choose to consider the first one. The second one can be
treated similarly. Thus, we have

(19) h(x)h(rs) = h(xr)h(s) for all x ∈ A, r, s ∈ J .

Accordingly,
h(x)h(yrs) = h(xyr)h(s) = h(xy)h(rs)

for all x, y ∈ A, r, s ∈ J . That is, by setting K = J2 we have

h(x)h(yt) = h(xy)h(t) for all x, y ∈ A, t ∈ K.

Of course, K is also a nonzero ideal of A. Consequently, for all x, y, z ∈ A and t, v, w ∈ K we
have

h(xy)h(z)h(w)h(tv) = h(xy)h(z)h(wt)h(v) = h(xy)h(zw)h(t)h(v)

= h(x)h(yzw)h(t)h(v) = h(x)h(y)h(zwt)h(v)

= h(x)h(y)h(z)h(wtv).

That is,

(20) h(xy)uh(w)h(tv) = h(x)h(y)uh(wtv) for all x, y ∈ A, t, v, w ∈ K, u ∈ B.

Since K3 6= 0, h(wtv) 6= 0 for some t, v, w ∈ K. From (20) it obviuosly follows that h(w)h(tv)
is also nonzero. Similarly we see that there exist x0, y0 ∈ A such that h(x0y0) 6= 0 and
h(x0)h(y0) 6= 0. By a well-known property of the extended centroid (mentioned above) we
deduce from (20) that there exists λ ∈ C such that h(wtv) = λh(w)h(tv). Accordingly,(

h(xy)− λh(x)h(y)
)
uh(w)h(tv) = 0 for all x, y ∈ A, u ∈ B.

This clearly implies h(xy) = λh(x)h(y) for all x, y ∈ A. �

Remark 3.3. The condition h(xy) = λh(x)h(y) can be expressed as that ϕ(x) = λh(x) is
a homomorphism. Thus, h is a homomorphism multiplied by a nonzero element in C, i.e.,
h(x) = λ−1ϕ(x).
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Theorem 3.2 extends [5, Theorem 3.1] which treats the same condition under the additional
assumption that A is unital and h(1) = 1 (which yields λ = 1, i.e., h is a homomorphism).
The arguments are considerably easier in this setting. On the other hand, Theorem 3.2 also
extends [5, Corollary 4.3] and [9, Theorem 1].

4. Maps satisfying (2)

The results that will be given in this section are not new. Neglecting some minor differences
they were basically obtained by Wang [15] who appropriately modified the arguments from
[5] in which only the unital case was treated. Still, it is perhaps of some interest to see how a
more conceptual approach, based on Corollary 2.2, easily yields the same conclusions.

There are several alternative definitions of the notion of a generalized derivation which are
“almost” equivalent, that is, they coincide on various nice classes of rings but may differ in
some special rings. Here we will choose the following definition: an additive map d from a
ring A into itself is called a generalized derivation if

(21) d(xyz) + xd(y)z = d(xy)z + xd(yz) for all x, y, z ∈ A.

If A is unital, then this is easily seen to be equivalent to the following condition: there are
a ∈ A and a derivation δ of A such that d(x) = δ(x) + ax for every x ∈ A.

Theorem 4.1. Let A be a prime ring with a nontrivial idempotent. If an additive map
d : A → A satisfies (2), then d is a generalized derivation.

Proof. Setting B(x, y, z) = xd(y)z and applying Corollary 2.2 it follows that

xd(rys)z + xrd(y)sz = xrd(ys)z + xd(ry)sz

for all x, y, z ∈ A, r, s,∈ R. Since A is prime, this gives

(22) d(rys) + rd(y)s = rd(ys) + d(ry)s for all y ∈ A, r ∈ R.

Recall that R contains a nonzero ideal I (Remark 2.3). Pick z ∈ A and s ∈ I, and let us now
make two substitutions in (22): the first one is replacing y by yz ∈ A, and the second one is
replacing s by zs ∈ I ⊆ R. Comparing the two identities, so obtained, we get

d(ryz)s+ rd(y)zs = d(ry)zs+ rd(yz)s.

Since s is an arbitrary element from a nonzero ideal I it follows that

(23) d(ryz) + rd(y)z = d(ry)z + rd(yz) for all y ∈ A, r ∈ R.

In a similar fashion, by letting r ∈ I and x ∈ A, first replacing y by xy in (23) and then
replacing r by rx in (23), it follows that (21) holds. �

The original motivation for studying the condition (2) was its connection to local derivations
and related maps, cf. [5, Section 3]. The concept of a local derivation was introduced inde-
pendently in [12] and [13] at the beginning of the 1990’s, and since then studied in numerous
papers.

Recall that a local generalized derivation of a ring A is an additive map d : A → A such
that for every y ∈ A there exists a generalized derivation dy of A satisfying d(y) = dy(y). If
x, y, z ∈ A are such that xy = yz = 0, then

xd(y)z = xdy(y)z = dy(xy)z + xdy(yz)− dy(xyz) = 0.
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Thus d satisfies the conditions of Theorem 4.1. Accordingly, we have

Corollary 4.2. Every local generalized derivation of a prime ring with a nontrivial idempotent
is a generalized derivation.
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M. Grašič, Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
E-mail address: mateja.grasic@imfm.si


