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Abstract. The maximal algebra of quotients of a semiprime Lie algebra was introduced
recently by M. Siles Molina. In the present paper we answer some natural questions concerning
this concept, and describe maximal algebras of quotients of certain Lie algebras that arise
from associative algebras.

1. Introduction

The theory of algebras (or rings) of quotients of associative algebras (rings) has a rich
history and is still an active research area. In the recent paper [22] the fourth author initiated
the study of algebras of quotients of Lie algebras. Adapting some ideas from the associative
(and also Jordan [18]) context, she introduced the notion of a general (abstract) algebra of
quotients of a Lie algebra, and also, as a special concrete example, the notion of the maximal
algebra of quotients Qm(L) of a semiprime Lie algebra L. The reason for this name is that
every algebra of quotients of L can be embedded into Qm(L).

The introductory paper [22] was followed by [6, 20], and the present paper is the fourth one
in the series. While the preceding papers mostly considered abstract properties of algebras of
quotients, our main objective is to compute Qm(L) for some Lie algebras L. Specifically, we
are interested in Lie algebras of the form L = A−/Z where A− is the Lie algebra associated
to a prime associative algebra A and Z is the center of A, and in Lie algebras of the form
L = K/ZK where K is the Lie algebra of skew elements of a prime associative algebra with
involution and ZK is its center.

In section 2 we gather together basic definitions and elementary properties needed through-
out the paper. Section 3 begins with some observations concerning the question of whether
Qm(I), where I is an essential ideal of a Lie algebra L, is equal to Qm(L). These are applied
to the question of when is Qm(A−/Z) ∼= Qm(Der(A)), where A is a prime algebra and Der(A)
is the Lie algebra of all derivations of A. The answer that we obtain is used in subsequent
sections. In section 4 we compute Qm(A−/Z) - it turns out that (under a very mild technical
assumption) it is equal to a certain Lie algebra that arises from derivations from nonzero ideals
of A into A. Its definition is a bit too technical to be stated here; let us just mention that
this Lie algebra lies between Der(A) and Der(Qs(A)), where Qs( . ) denotes the symmetric
Martindale algebra of quotients. So if A is such that A = Qs(A) (for example, if A is simple),
then we have Qm(A−/Z) = Der(A). Section 5 yields similar results for K/ZK - the analogy
with the A−/Z case is perfect, the only difference is that we have to deal only with derivations
δ that preserve ∗ (in the sense that δ(x∗) = δ(x)∗). The main tool in both sections 4 and 5
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is the description of Lie derivations on various Lie subalgebras of (associative) prime algebras
[1, 2] (see also the recent book [5]). Finally, in section 6 we consider the question of whether
Qm((Qm(L)) is equal to Qm(L). We show that in certain special situations this is true, namely,
if L is a simple algebra or if L = A−/Z where A is either a simple algebra (satisfying a minor
technical assumption) or an affine PI prime algebra (i.e. a finitely generated prime algebra
which satisfies a polynomial identity). In general, however, it is not true that Qm((Qm(L))
agrees with Qm(L). More concretely, we show that Qm(Qm(A−/Z)) ) Qm(A−/Z), where
A = K[ t ][x, y | xy = tyx]. This algebra was already used by Passman in [19] to settle a simi-
lar question for Qs( . ). That is, he proved that this algebra is such that Qs(Qs(A)) ) Qs(A).
Our approach requires an analysis of derivations on Qs(A) in order to show that A is also
suitable for our purposes.

2. Preliminaries

Throughout the paper we consider Lie and associative algebras, and we tacitly assume that
all of them are algebras over a fixed commutative unital ring of scalars Φ. Lie algebras will
be usually denoted by L, and associative ones by A. For convenience we assume that all our
algebras are 2-torsion-free (i. e. 2x 6= 0 for every nonzero x in an algebra), although this
assumption is not always necessary. We will use it without further mention. For associative
algebras we do not assume that they must be unital. Let us also mention that for commutative
algebras our results are either trivially true or trivially false, so we are only interested in the
noncommutative ones.

Now we recall some definitions and introduce the basic notation.
A Φ-module L together with a bilinear map [ , ] : L × L → L, denoted by (x, y) 7→ [x, y]

(called the bracket of x and y), is said to be a Lie algebra over Φ if the following axioms
are satisfied: (i) [x, x] = 0, and (ii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (the so-called Jacobi
identity). Let X be a subset of L. The set

Ann(X) = AnnL(X) = {a ∈ L | [a, x] = 0 for every x ∈ X}

is called the annihilator of X in L. It is easy to check (by using the Jacobi identity) that
Ann(X) is an ideal of L when X is also an ideal of L. In the special situation that X = L,
Ann(L) is called the center of L and will be denoted by ZL.

In case A is an associative algebra and X is a subset of A, the annihilator of X in A is
defined as

Ann(X) = AnnA(X) = {a ∈ A | ax = 0 = xa for every x ∈ X}.
It will be clear from the context whether Ann(X) denotes the annihilator in the associative
or in the Lie algebra setting. Note that Ann(X) is an ideal of A whenever X is an ideal of A.

We say that a Lie algebra L is semiprime if for every nonzero ideal I of L, [I, I] 6= 0. In
the sequel we shall usually denote [I, I] by I2. It is easy to see that L is semiprime if and
only if I ∩ Ann(I) = 0 for all ideals I of L [22, Lemma 1.2 (i)]. Next, L is said to be prime
if for every nonzero ideals I, J of L, [I, J ] 6= 0. An ideal I of L is said to be essential if its
intersection with any nonzero ideal is again a nonzero ideal. If L is semiprime, then an ideal
I of L is essential if and only if Ann(I) = 0 [22, Lemma 1.2 (ii)]. It is easy to see that in this
case I2 is also an essential ideal. Further, the intersection of essential ideals is clearly again
an essential ideal. Note also that a nonzero ideal of a prime algebra is automatically essential.
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One defines the notions of semiprimeness, primeness, and essentiality of an ideal for asso-
ciative algebras in exactly the same way as for Lie algebras, just that of course the bracket
must be replaced by the associative product.

Every associative algebra A gives rise to a Lie algebra A− by considering the same module
structure and the bracket given by [x, y] = xy − yx. Ideals of A− are called Lie ideals of A;
so, a Φ-submodule U of A is a Lie ideal if [U,A] ⊆ U . Clearly, if I is an ideal of A, then it
is also a Lie ideal of A. A more important example is [I, A], the linear span of all [y, x] with
y ∈ I and x ∈ A, which is a Lie ideal (but not necessarily an ideal) of A. Note that ZA−
agrees with the associative center Z of A, and clearly it is a Lie ideal of A. So we can form
the Lie algebra A−/Z. We will be primarily interested in this type of Lie algebras, and in Lie
algebras that arise from algebras with involution: If A has an involution ∗, then the set of its
skew elements

K = KA = {x ∈ A | x∗ = −x}

is a subalgebra of A−. We will consider the Lie algebra K/ZK .
Let B be a subalgebra of an algebra A. A linear map δ : B → A is called a derivation if

δ(xy) = δ(x)y + xδ(y) for all x, y ∈ B. By a derivation of A we simply mean a derivation
from A into A. Let Der(A) denote the set of all derivations of A. Clearly Der(A) becomes a
Φ-module by defining operations in the natural way, and moreover, it becomes a Lie algebra
if we define the bracket by [δ, µ] = δµ− µδ, δ, µ ∈ Der(A). Any element x of A determines a
map adx : A → A defined by adx(y) = [x, y] which is a derivation of A. For every Lie ideal
U of A, the restriction of the map ad : A→ Der(A) to U ,

U → Der(A)
y 7→ ad y

defines a Lie algebra homomorphism with kernel AnnU (A), which allows us to identify the
algebra U/AnnU (A) with the subalgebra ad (U) of Der(A). For any y ∈ U and δ ∈ Der(A),
[δ, ad y] = ad δ(y), hence ad (U) is an ideal of Der(A) whenever δ(U) ⊆ U for every δ ∈ Der(A).
The ideal ad (A) of Der(A) is usually denoted by Inn(A); the elements of Inn(A) are called
inner derivations of A. Note that A−/Z ∼= Inn(A).

Derivations are defined analogously in the Lie algebra context. So, if M is a subalgebra of a
Lie algebra L, then a linear map δ : M → L is called a derivation if δ([x, y]) = [δ(x), y]+[x, δ(y)]
for all x, y ∈ M . By Der(L) we will denote the Lie algebra of all derivations from L into L.
Incidentally, if δ is a derivation of an associative algebra A, then it is also a derivation of
the Lie algebra A−. The converse is not true in general. Derivations of A− are called Lie
derivations of A. For example, every linear map from A into the center of A that vanishes on
[A,A] is a Lie derivation.

Various constructions of algebras of quotients of associative algebras are known. In the
present paper we shall come across to one of them. A symmetric Martindale algebra of quo-
tients of a prime algebra A is an algebra Qs(A) satisfying the following properties:

(i) A is a subalgebra of Qs(A);
(ii) for every q ∈ Qs(A) there exists a nonzero ideal I of A such that qI ∪ Iq ⊆ A;
(iii) for evey q ∈ Qs(A) and every nonzero ideal I of A, qI = 0 or Iq = 0 implies q = 0;
(iv) if I is a nonzero ideal ofA and f : IA → AA and g : AI → AA are such that xf(y) = g(x)y

for all x, y ∈ I, then there exists q ∈ Q such that f(x) = qx and g(x) = xq for all x ∈ I.
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It is a fact that Qs(A) exists and is characterized up to isomorphism through these four
properties. Its center C is a field called the extended centroid of A. We refer the reader to [3]
and to [13] for an account on these concepts.

We also have to define the concept of the degree of a prime algebra A. The reason for
this is that algebras of certain low degrees must be excluded in the results on Lie derivations
[1, 2] that we are going to apply. On the other hand, we shall need to use results that appear
in [4, 7, 14, 15], which also require degree restrictions. For every x ∈ A we define deg(x) as the
degree of algebraicity of x over the extended centroid C, provided that x is algebraic. If x is
not algebraic, then we define deg(x) = ∞. Further we define deg(A) = sup{deg(x) | x ∈ A}.
It is well-known that deg(A) < ∞ if and only if A is a PI algebra. Furthermore, it is known
that deg(A) = n <∞ if and only if A satisfies the standard polynomial identity of degree 2n,
but does not satisfy any polynomial identity of degree < 2n, and this is further equivalent to
the condition that A can be embedded into the matrix algebra Mn(F ) for some field F (say,
one can take the algebraic closure of C for F ), but cannot be embedded into Mn−1(K) for any
commutative algebra K.

We now recall the definition of what is the main object of this paper. Let L be a subalgebra
of a Lie algebra Q. We say that Q is an algebra of quotients of L if for every nonzero q ∈ Q there
exists an ideal I of L such that AnnL(I) = 0 and 0 6= [I, q] ⊆ L (see [22, Proposition 2.15]).
We are interested in a particular algebra of quotients, the so-called maximal one. We now
have to confine ourselves to the case where L is a semiprime algebra. The definition is based
on derivations from essential ideals of L into L. We first define that two pairs (δ, I), (µ, J),
where I, J are essential ideals of L and δ : I → L, µ : J → L are derivations, are equivalent
if δ and µ agree on some essential ideal contained in I ∩ J . This is an equivalence relation.
Denote by δI the equivalence class determined by (δ, I). The set of all such classes becomes
a Lie algebra if we define addition, scalar multiplication, and bracket as follows:

δI + µJ = (δ + µ)I∩J , α(δI) = (αδ)I , [δI , µJ ] = (δµ− µδ)(I∩J)2 .

(see [22, Theorem 3.4]). This Lie algebra is called the maximal algebra of quotients of L,
and will be denoted by Qm(L). One may identify L with a subalgebra of Qm(L) via the
embedding x 7→ adxL. It turns out that the following three properties characterize Qm(L)
up to an isomorphism: (i) for every q ∈ Q there exists an essential ideal I of L such that
[I, q] ⊆ L, (ii) [q, I] 6= 0 for every nonzero q ∈ Q and every essential ideal I of L, and (iii)
for every essential ideal I of L and any derivation δ : I → L there exists q ∈ Q such that
δ(x) = [q, x] for all x ∈ I (see [22, Theorem 3.8]). As already mentioned, every algebra of
quotients of L can be embedded into Qm(L) (see [22, Proposition 3.6]). We remark that one
can easily show that Qm(L) = L if L is a finite dimensional semisimple Lie algebra [22, Lemma
3.9].

3. The maximal Lie algebra of quotients of an essential ideal

The purpose of this section is to consider the problem of whether Qm(I) is isomorphic to
Qm(L), for an ideal I of a semiprime Lie algebra L. Of course, this question only makes
sense if we assume that I itself is a semiprime algebra, so that Qm(I) exists at all. Under
this assumption we will give a positive answer provided that L satisfies a certain additional
condition.
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We remark that similar questions have been studied also in the associative context, but
apparently they can be solved more easily (see e. g. [3, Proposition 2.1.10]).

Following [17], we say that a Lie algebra L is strongly semiprime (resp. strongly prime) if:

(i) L is semiprime (prime).
(ii) For each n, given 0 6= Un � . . . � U2 � U1 � L there exists 0 6= W � L such that

W ⊆ Un.

We shall use SSP (or SP) as shorthand for strong semiprimeness (respectively, strong prime-
ness). We will also say that Un as in the definition above is an n-subideal. Of course, 1-subideals
are just ideals.

In [17] this concept was introduced for any nonassociative algebra, but here we are interested
only in Lie algebras. The proof of the following lemma is included in the proof of [17, Theorem
6.2].

Lemma 3.1. A Lie algebra L is SSP (SP) if and only if

(i) L is semiprime (prime), and
(ii) given 0 6= U2 � U1 � L, there exists 0 6= W � L such that W ⊆ U2.

Lemma 3.2. Let L be an SSP Lie algebra. Then, for any n-subideal Un of L there exists an

ideal Ũn of L, which is the largest ideal Ũn of L contained in Un. If Ui is essential in Ui−1,

i = 2, . . . n, and U1 is essential in L, then Ũn is an essential ideal of L.

Proof. The first assertion is obvious: one just defines Ũn as the sum of all ideals of L contained
in Un. Assume now that Ui is essential in Ui−1 and U1 is essential in L. This implies that

I ∩ Un 6= 0 for every nonzero ideal I of L. Suppose that I ∩ Ũn = 0. Since L is an SSP Lie

algebra, I ∩Un contains a nonzero ideal J of L. By hypothesis, J ∩ Ũn = 0, and Ũn + J is an

ideal of L bigger than Ũn and contained in Un, which contradicts the maximality of Ũn. �

A different proof of the previous lemma can be obtained from [17, Remark 1.2] and [22,
Lemma 2.11].

Theorem 3.3. Let I be an essential ideal of an SSP Lie algebra L. Then Qm(I) is the
maximal algebra of quotients of L, i. e. Qm(I) ∼= Qm(L).

Proof. Notice that I viewed as an algebra is SSP (see [17, Remark 2.11]), so we can consider
Qm(I). Define

ϕ : Qm(L) → Qm(I)
δJ 7→ δ(J∩I)2

The map ϕ is well-defined: Since AnnI(J ∩ I) ⊆ AnnL(J ∩ I) = 0, this means that J ∩ I is
an essential ideal of I. Hence (J ∩ I)2 is also an essential ideal of I. Finally, note that δ maps
(J ∩ I)2 into I.

It is straightforward to verify that ϕ is a Lie algebra monomorphism. To see the surjectivity
take γI′ ∈ Qm(I) with I ′ an essential ideal of I. By Lemma 3.2 there exists an essential ideal
J of L contained in I ′. Then, for γJ ∈ Qm(L) we have ϕ(γJ) = γ(I∩J)2 = γI′ and the proof is
complete. �

Remark 3.4. Let A be a semiprime algebra. For every Lie ideal I of A, ZI = I ∩ Z since
[y, I] = 0, with y ∈ I, implies y ∈ Z; indeed, this follows from [8, Sublemma, p. 5] which
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states an element y in a semiprime algebra A must lie in the center of A if [y, [y, x]] = 0 for
all x ∈ A. Moreover, we have the following isomorphism

I/ZI = I/(I ∩ Z) ∼= (I + Z)/Z.

Let A be an algebra. Then the Lie algebra A− is isomorphic to KA⊕A0 and hence A−/Z
is isomorphic to KA⊕A0/ZKA⊕A0 , where A0 denotes the opposite algebra of A, and A ⊕ A0

is endowed with the exchange involution. This fact allows us to use the results from [17], as
follows.

It is proved in [12, Lemma 6 and Theorem 4] ([12, Lemma 4 and Theorem 2]) that Inn(A)
and Der(A) are semiprime (resp. prime) Lie algebras. Taking into account the considerations
above, apply [17, Theorem 6.2] to obtain that A−/Z ∼= Inn(A) is an SSP (resp. SP) Lie
algebra. Let us record this observation.

Proposition 3.5. Let A be a semiprime (resp. prime) algebra. Then A−/Z ∼= Inn(A) is an
SSP (resp. SP) Lie algebra.

Corollary 3.6. Let A be a semiprime algebra. Then:

Qm([A, A]/Z[A,A]) ∼= Qm(A−/Z).

Proof. Applying Remark 3.4 we have Z[A,A] = [A, A] ∩ Z from which it immediately follows
that the map determined by [x, y]+Z[A,A] 7→ [x, y]+Z is a well-defined Lie algebra monomor-

phism from [A, A]/Z[A,A] into A−/Z. Identifying [A, A]/Z[A,A] with its image, we can regard

it as an ideal of A−/Z. We will prove now that [A, A]/Z[A,A] is essential in A−/Z. To this

end, given a ∈ A\Z it is enough to show that [a, A] * Z[A,A] (see [22, Lemma 1.2 (ii)]). Since

a /∈ Z by [8, Sublemma, p. 5] it follows that [a, [a, A]] 6= 0; this means that [a, A] * Z which
implies that [a,A] * Z[A,A], as desired. In view of Proposition 3.5, the conclusion follows
directly from Theorem 3.3. �

Corollary 3.7. Let A be a prime algebra. If Der(A) is SP then

Qm(A−/Z) ∼= Qm(Der(A)).

Proof. Apply Theorem 3.3. �

The last result needs the assumption that Der(A) is strongly prime. It does not seem clear
how to verify whether this condition is fulfilled. Below we give a criterion based only on the
ideal lattice of A. First we gather together several lemmas.

The proof of the following lemma is included in the proof of [20, Theorem 2.12].

Lemma 3.8. Let A be a semiprime algebra. Then A−/Z is semiprime and for every essential
ideal I of A, (I + Z)/Z is an essential ideal of A−/Z.

Remark 3.9. By the previous lemma, an essential ideal I of a noncommutative semiprime
algebra A cannot be central.

Lemma 3.10. Let A be a semiprime algebra and let Ĩ be a nonzero ideal of Inn(A). Then

there exists an ideal U of A such that 0 6= ad ([U,A]) ⊆ Ĩ.
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Proof. It is easy to see that I = {x ∈ A | adx ∈ Ĩ } is a noncentral Lie ideal of A (use
[8, Sublemma, p. 5]). Apply [10, Theorem 5] to find a nonzero ideal U of A satisfying

0 6= [U,A] ⊆ I, that is, U is an ideal of A such that 0 6= ad ([U,A]) ⊆ Ĩ and the lemma is
proved. �

Lemma 3.11. Let A be a prime algebra. Assume that for every nonzero ideal U of A there

exists a nonzero ideal Ũ of Der(A) such that Ũ ⊆ ad ([U,A]). Then Der(A) is an SP Lie
algebra.

Proof. Let 0 6= Ĩ � J̃ � Der(A). Apply [22, Lemma 2.13] to obtain that Der(A) is an algebra

of quotients of J̃ ∩ Inn(A). Hence, given 0 6= δ ∈ Ĩ ⊆ Der(A) there exists x ∈ A satisfying

0 6= adx ∈ J̃ ∩ Inn(A) and [δ, adx] 6= 0. Since Ĩ is an ideal of J̃ , [δ, adx] ∈ Ĩ and [δ, adx] =

ad δ(x) ∈ Inn(A), therefore Ĩ ∩ Inn(A) 6= 0. Consider 0 6= Ĩ ∩ Inn(A) � J̃ ∩ Inn(A) � Inn(A).

Since Inn(A) is an SP Lie algebra, there exists a nonzero ideal K̃ of Inn(A) contained in

Ĩ ∩ Inn(A). Apply Lemma 3.10 to find a nonzero ideal U of A such that 0 6= ad ([U,A]) ⊆ K̃.

Now, by the hypothesis there exists a nonzero ideal Ũ of Der(A) satisfying Ũ ⊆ ad ([U,A]) ⊆ Ĩ,
as desired. �

Theorem 3.12. Let A be a prime algebra. Then the following conditions are equivalent:

(i) Der(A) is SP.
(ii) Every nonzero ideal of A contains a nonzero ideal of A invariant under every element

of Der(A).

Moreover, if these conditions hold, then

Qm(A−/Z) ∼= Qm(Der(A)).

Proof. Identify A−/Z with Inn(A).
(i)⇒ (ii). Let I be a nonzero ideal of A. By Remark 3.9, ad (I) is a nonzero ideal of Inn(A).

Consider 0 6= ad (I)�Inn(A)�Der(A); by the hypothesis there exists 0 6= Ĩ�Der(A) contained
in ad (I). It is clear that J :=

∑
δ∈Ĩ Aδ(A)A is a nonzero ideal of A. Moreover, J is indeed

invariant under every element of Der(A). In fact, for x, y, z ∈ A, δ ∈ Ĩ, µ ∈ Der(A) we have
µ(xδ(y)z) = µ(x)δ(y)z+xµδ(y)z+xδ(y)µ(z) = µ(x)δ(y)z+x[µ, δ](y)z+xδµ(y)z+xδ(y)µ(z) ∈
J since δ, [µ, δ] ∈ Ĩ. This shows that µ(J) ⊆ J for every µ ∈ Der(A). Finally, taking into

account that Ĩ ⊆ ad (I) we have J ⊆ AĨ(A)A ⊆ A[I, A]A ⊆ I.
(ii)⇒ (i). To prove the strong primeness of Der(A) we will use Lemma 3.11. Let us therefore

consider 0 6= ad ([U,A]) � Inn(A) � Der(A), for U an ideal of A. By the hypothesis, there
exists a nonzero ideal J of A, which is contained in U and is invariant under every element of
Der(A). Since ad ([J,A]) is contained in ad ([U,A]), the proof will be complete by showing that
ad ([J,A]) is a nonzero ideal of Der(A). It is straightforward to verify that ad ([J,A]) is an ideal
of Der(A). The containment ad ([J,A]) ⊆ ad ([U,A]) is obvious. The ideal [J,A] is noncentral;
otherwise, apply the fact that Z is a prime ideal of A− (see [12, Lemma 4]) to obtain J ⊆ Z,
which is impossible by Remark 3.9. Thus, [J,A] * Z and therefore ad ([J,A]) 6= 0.

The last assertion follows directly from Corollary 3.7. �

Example 3.13. If A is a prime algebra such that every nonzero ideal I of A contains a nonzero
idempotent ideal J , then Der(A) is SP. This follows from Theorem 3.12 together with the fact
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that J = J2 implies δ(J) = δ(J2) ⊆ J for every δ ∈ Der(A). In particular, this holds if A is a
prime von Neumann regular algebra or, more generally, if A is an exchange algebra with zero
Jacobson radical.

We conclude this section by a straightforward corollary to Theorem 3.12.

Corollary 3.14. Let A be a simple algebra. Then

Qm(A−/Z) ∼= Qm(Der(A)).

4. The maximal Lie algebra of quotients of A−/Z

Our aim in this section is to give a description of Qm(A−/Z), where A is a (semi)prime
algebra. Recall that the elements of the maximal algebra of quotients of a Lie algebra arise from
partial derivations defined on essential Lie ideals. Since in this particular case A−/Z comes
from an associative algebra A, it seems natural to consider instead associative derivations that
are defined on essential associative ideals. With this idea in mind we proceed to introduce a
new Lie algebra.

Given essential ideals I, J of A and associative derivations δ : I → A, µ : J → A, we say
that the pairs (δ, I), (µ, J) are equivalent if δ and µ agree on some essential ideal contained
in I ∩ J . One can easily show that this is an equivalence relation. Denote by δI the class
determined by (δ, I) and by Derm(A) the set of all equivalence classes.

Lemma 4.1. Let A be a semiprime algebra. Then Derm(A) is a Lie algebra under the following
operations:

δI + µJ = (δ + µ)I∩J , α(δI) = (αδ)I , [δI , µJ ] = (δµ− µδ)(I∩J)2 .

Proof. The only not entirely obvious part in proving that Derm(A) is a Lie algebra is to show
that the Lie bracket is well defined on Derm(A). Let δI , µJ ∈ Derm(A); for every u, v ∈ I ∩ J
we have [δ, µ](uv) = δµ(uv)−µδ(uv) = δ((µu)v+u(µv))−µ((δu)v+u(δv)), which makes sense
because (µu)v, u(µv), (δu)v, u(δv) ∈ I ∩ J . Since δ and µ are derivations, [δ, µ] : (I ∩ J)2 → A
is a derivation too. �

Lemma 4.2. Let A be a semiprime algebra and let Q be a subalgebra of Qs(A) that contains
A. If δ : Q→ Qs(A) is a derivation such that δ|A = 0, then δ = 0.

Proof. Suppose on the contrary that δ(q) 6= 0 for some q ∈ Q. Since Qs(A) is a left quotient
algebra of A, there exists a ∈ A satisfying aq ∈ A and aδ(q) 6= 0. By the hypothesis,
0 = δ(aq) = δ(a)q + aδ(q) = aδ(q), which is a contradiction. �

Lemma 4.3. If A is a prime algebra, then

Der(A) ⊆ Derm(A) ⊆ Der(Qs(A)).

Proof. Define
φ : Der(A) → Derm(A)

δ 7→ δA
It is straightforward to verify that φ is a well-defined Lie algebra homomorphism. To

prove the injectivity, take δ ∈ Der(A) such that δA = 0; this means that δ(I) = 0 for some
nonzero ideal I of A. Since Qs(I) = Qs(A) (see [3, Proposition 2.1.10]) applying Lemma 4.2
to I ⊆ A ⊆ Qs(I) we obtain that δ = 0, as desired.
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Let δI be in Derm(A), with I a nonzero ideal of A and δ : I → A a derivation. Apply [3,
Proposition 2.5.1] to extend δ uniquely to a derivation δ′ of Qs(A). Consider

(4.1)
ϕ : Derm(A) → Der(Qs(A))

δI 7→ δ′

If δI = µJ , then there exists a nonzero ideal U of A contained in I ∩ J such that δ|U = µ|U .
Extend δ and µ to derivations δ′ and µ′, respectively, of Qs(A). Since δ′|U = δ|U = µ|U = µ′|U
and Qs(A) = Qs(U) (see [3, Proposition 2.1.10]), by Lemma 4.2 applied to U ⊆ A ⊆ Qs(U)
we obtain that δ′|A = µ′|A, and again by Lemma 4.2 it follows that δ′ = µ′, which proves that
ϕ is well-defined. Finally, note that ϕ is a Lie algebra monomorphism. �

If I is a Lie ideal of A, we denote by I the ideal (I + Z)/Z of A−/Z.

Lemma 4.4. Let U be a Lie ideal of a semiprime algebra A such that U is an essential ideal
of A−/Z. Then the associative subalgebra 〈U〉 of A generated by U contains an essential ideal
of A.

Proof. First we show that 〈U〉 contains a nonzero ideal of A. It is clear that [〈U〉, U ] ⊆ 〈U〉.
Moreover, [〈U〉, U ] 6= 0; otherwise [x, U ] = 0 for every x ∈ U . This would imply, by [8,
Sublemma, p. 5], x ∈ Z and, consequently, U ⊆ Z, a contradiction. Therefore [10, Theorem
3] yields our claim.

Hence, let I be a nonzero ideal contained in 〈U〉. Since the sum of all ideals contained in
〈U〉 is again an ideal contained in U , there is no loss of generality in assuming that I is the
largest ideal contained in 〈U〉.

We will show that I is an essential ideal of A. First, we see that Ann(I)∩U ⊆ Z. Otherwise,
by [10, Theorem 3], there exists a nonzero ideal J of A contained in 〈Ann(I)∩U〉 ⊆ Ann(I)∩
〈U〉. Since I ∩ Ann(I) = 0 because A is semiprime, I  I ⊕ J ⊆ 〈U〉, which contradicts
the maximality of I. Since U is an essential ideal of A−/Z, AnnA−/Z(U) = 0. Note that
[Ann(I), U ] ⊆ Ann(I) ∩ U ⊆ Z implies (Ann(I) + Z)/Z = 0, that is, Ann(I) ⊆ Z ⊆ U . Now,
I ⊆ I⊕Ann(I) ⊆ 〈U〉 and the maximality of I imply Ann(I) = 0, hence I is an essential ideal
of A. �

Proposition 4.5. Let A be a semiprime algebra. Define

ϕ : Derm(A) → Qm(A−/Z)
δI 7→ δ̄I

where
δ̄ : I → A−/Z

ȳ 7→ δ(y)

Then ϕ is a Lie algebra homomorphism with kernel {δI ∈ Derm(A) | δ(I) ⊆ Z}.

Proof. The map δ̄ is well-defined. Indeed, taking into account Lemma 3.8 we see that it is
enough to show that for I an essential ideal of A, and δ ∈ Der(I, A), y ∈ I ∩ Z implies
δ(y) ∈ Z. Note that for every x ∈ I we have [δ(y), x] = δ([y, x])− [y, δ(x)] = 0. But this yields
δ(y) ∈ Z. Namely, only central elements can commute with every element from an essential
ideal. Indeed, [a, u] = 0 for every u ∈ I yields [a, x]u = [a, xu] = 0 for all x ∈ A and u ∈ I,
and hence [a, x] = 0 since I is essential.
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It is easy to see that ϕ is a well-defined Lie algebra homomorphism. Let us now compute its
kernel. First we show that if δI ∈ Derm(A) is such that δ(J) ⊆ Z for some essential ideal J of
A contained in I, then δ(I) ⊆ Z. For x ∈ I and u ∈ J we have xu ∈ J , and so δ(u), δ(xu) ∈ Z.
Accordingly, δ(x)u = δ(xu) − xδ(u) commutes with x, that is, δ(x)ux = xδ(x)u. Replacing
u by uy, where u ∈ J and y ∈ A, it follows that δ(x)uyx = xδ(x)uy = δ(x)uxy. Thus,
δ(x)u[x, y] = 0 for all x ∈ I, y ∈ A and u ∈ J . Linearizing this identity we get δ(x)u[z, y] +
δ(z)u[x, y] = 0 for all x, z ∈ I, y ∈ A, u ∈ J . Consequently, for u, v ∈ J , x, z ∈ I and y ∈ A we
have δ(x)u[z, y]vδ(x)u[z, y] = −δ(x)u[z, y]vδ(z)u[x, y] ∈ δ(x)J [x, y] = 0. Since J is essential,
aJa = 0 with a ∈ A implies a = 0. Therefore, δ(x)u[z, y] = 0 for all u ∈ J , x, z ∈ I, y ∈ A.
In particular, [δ(x), z]J [δ(x), z] = 0 for all x, z ∈ I, which yields [δ(x), z] = 0. Since elements
commuting with all elements from an essential ideal of A must lie in the center of A, it follows
that δ(x) ∈ Z, as desired.

Denote by T the set {δI ∈ Derm(A) | δ(I) ⊆ Z}. Clearly, T is contained in the kernel of ϕ.
For the converse containment, suppose δ̄I = 0 for δI an element in Derm(A). Then there exists

an essential ideal U of A−/Z, contained in I, such that δ̄(U) = 0. Consider V := π−1(U) ∩ I,
for π : A → A−/Z the canonical projection. The ideal V is essential because U and I are.
By Lemma 4.4, there is an essential ideal J of A such that J ⊆ 〈V + Z〉 ⊆ I + 〈Z〉. For an
element x in the essential ideal I ∩ J of A, δ̄(x̄) ∈ δ̄(U) = 0, that is, δ(I ∩ J) ⊆ Z. By what
was proved in the preceding paragraph it now follows that δI ∈ T . �

Lemma 4.6. Let A be a prime noncommutative algebra, I an ideal of A and δ : I → A a
derivation. If δ(I) ⊆ Z then δ = 0.

Proof. Suppose that δ(I) ⊆ Z and let u ∈ I. Then u2 ∈ I, so δ(u2) ∈ Z, that is, 2uδ(u) ∈ Z.
Given x ∈ A we have that 0 = [2uδ(u), x] = 2δ(u)[u, x] and since A is prime, this implies
that u ∈ Z or δ(u) = 0. Thus, for every u ∈ I we have either u ∈ Z or δ(u) = 0. Taking
into account Remark 3.9 there exists y ∈ I \ Z and so δ(y) = 0. Now take v ∈ I. If v /∈ Z,
then δ(v) = 0, and if v ∈ Z, then v + y /∈ Z whence δ(v + y) = 0. Therefore δ(v) = 0 in any
case. �

Theorem 4.7. Let A be a prime algebra such that either deg(A) 6= 3 or char(A) 6= 3. Then
Derm(A) ∼= Qm(A−/Z).

Proof. Consider the map ϕ in Proposition 4.5. Its injectivity is proved by Lemma 4.6. Let
us prove the surjectivity. Let δ̄J be in Qm(A−/Z), with J a nonzero ideal of A−/Z and

δ̄ : J → A−/Z a derivation. Let π : A → A−/Z be the canonical projection. Note that J can
be represented as J/Z where J = π−1(J) is a noncentral Lie ideal of A. Define δ : J → A−/Z
by δ = δ̄π. It is clear that δ is a derivation in the sense of [2]. In view of the assumptions on
the degree and the characteristic, we are now in a position to apply [2, Theorem 1.3]. Picking

any set-theoretic map γ : J → A such that γ(x) = δ(x) for every x ∈ J , it follows that there
exists a derivation d : 〈J〉 → 〈J ∪ γ(J)〉C + C, where C is the extended centroid of A, and a
map µ : J → C such that d(x) = γ(x) + µ(x) for all x ∈ J . As above, here 〈S〉 denotes the
subalgebra generated by the set S.

For x, y ∈ J we have d([x, y]) = [d(x), y] + [x, d(y)] = [γ(x), y] + [x, γ(y)] since µ(J) ⊆ C.
This shows that d([J, J ]) ⊆ J , which in turn implies d(〈[J, J ]〉) ⊆ 〈J〉 ⊆ A. As [J, J ] is a
noncentral Lie ideal of A, there exists a nonzero ideal I of A contained in 〈[J, J ]〉 (cf. the first
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step of the proof of Lemma 4.4). Note that dI is an element of Derm(A), and that ϕ(dI) = δJ .
This concludes the proof. �

Corollary 4.8. Let A be a prime algebra such that either deg(A) 6= 3 or char(A) 6= 3. If
A = Qs(A), then

Qm(A−/Z) ∼= Der(A).

Proof. By Lemma 4.3 we obtain that Der(A) ∼= Derm(A) and applying Theorem 4.7 it follows
that Derm(A) ∼= Qm(A−/Z), as desired. �

Corollary 4.9. Let A be a simple algebra such that either deg(A) 6= 3 or char(A) 6= 3. Then

Qm(A−/Z) ∼= Qm(Der(A)) ∼= Der(A).

Proof. Apply Corollary 3.14 to show that Qm(Der(A)) ∼= Qm(A−/Z) and Corollary 4.8 to
have that Qm(A−/Z) ∼= Der(A), which completes the proof. �

In our final corollary we will extend Corollary 4.8 by considering prime algebras A such
that Qs(A) = AZ−1, i. e. every element in Qs(A) is of the form a

λ , where a ∈ A and λ ∈ Z.
However, we have to add the assumption that A is affine, i. e. generated by a finite number
of elements.

Corollary 4.10. Let A be an affine prime algebra such that Qs(A) = AZ−1 and either
deg(A) 6= 3 or char(A) 6= 3. Then

Qm(A−/Z) ∼= Der(Qs(A)).

Proof. Consider the monomorphism ϕ : Derm(A) → Der(Qs(A)) defined in (4.1). In order
to check that ϕ is surjective it is enough to show that given δ in Der(Qs(A)) there exists a
nonzero ideal I of A such that δ(I) ⊆ A. Indeed, if this was true, then we could consider
δI ∈ Derm(A) and then applying Lemma 4.2 for the case I ⊆ A ⊆ Qs(A) = Qs(I) conclude
that δ = ϕ(δI).

So pick δ ∈ Der(Qs(A)). Let x1, . . . , xn be generators of A. According to our assumption,
for each i = 1, . . . , n we have δ(xi) = yi

λi
for some yi ∈ A, λi ∈ Z. Set λ =

∏n
i=1 λi ∈ Z.

It is clear that δ(A) ⊆
∑n

i=1Aδ(xi)A, which in turn implies that λδ(A) ⊆ A. Accordingly,
δ(λ2x) = 2λδ(λ)x+ λ2δ(x) ∈ A for every x ∈ A. That is, δ maps the ideal I = λ2A 6= 0 of A
into A. �

5. The maximal Lie algebra of quotients of K/ZK

The purpose of the current section is to obtain results on the maximal algebra of quotients
of the Lie algebra K/ZK that arises from an associative algebra with involution. Our line of
argument benefits from the approach developed in sections 3 and 4, although the proofs do
not carry over verbatim.

In particular, we have to take into account whether the involution is of the first kind or
of the second kind (see below). It is also natural to restrict our attention to the Lie algebra
SDer(A) of those derivations that commute with the involution ∗ and to construct a Lie
algebra SDerm(A) similar to Derm(A) as in Section 3, considering partial derivations defined
on ∗-ideals (i.e. ideals invariant under ∗). The main results are then parallel to Theorem 3.12
and Theorem 4.7.
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Let A be a semiprime algebra with involution ∗. Then ∗ induces an involution on C, the
extended centroid of A. It is said that the involution on A is of the first kind if C ∩K = 0;
otherwise it is said to be of the second kind, that is, C ∩K 6= 0.

The set
SDer(A) := {δ ∈ Der(A) | δ(x∗) = δ(x)∗ for all x ∈ A}

is a Lie subalgebra of Der(A). As usual, we will denote by ad (K) the Lie algebra of derivations
adx : A→ A with x in K.

Lemma 5.1. Let A be a semiprime algebra with involution ∗. Then:

(i) ad (K) ⊆ Inn(A) ∩ SDer(A).
(ii) δ(K) ⊆ K for every δ ∈ SDer(A).
(iii) ad (K) is an ideal of SDer(A).

Proof. (i). For every a ∈ K and x ∈ A, ((ad a)x)∗ = [a, x]∗ = [x∗, a∗] = [a, x∗] = (ad a)(x∗).
This implies ad a ∈ SDer(A).

(ii). Let δ be in SDer(A). For every x ∈ K, δ(x)∗ = δ(x∗) = δ(−x) = −δ(x). This shows
δ(K) ⊆ K.

(iii). For a ∈ K and δ ∈ SDer(A) we have [δ, ad a] = ad δ(a), which, together with condition
(ii), implies (iii). �

The following result is a generalization of [4, Lemma 2.9].

Lemma 5.2. Let A be a prime algebra with involution ∗ of the first kind such that deg(A) > 2.
If t ∈ K and [t, K] = 0, then t = 0.

Proof. By [15, Lemma 2], the subalgebra generated by [K, K] contains a nonzero ideal I of
A. For t ∈ K satisfying [t, K] = 0, use induction and the identity [a, bc] = [a, b]c + b[a, c]
which holds for all a, b, c ∈ A to show that [t, I] = 0. Now, apply [4, Lemma 2.5] to obtain
t ∈ K ∩ Z = 0, as desired. �

Lemma 5.3. Let A be a prime algebra with involution ∗. Then:

(i) If ∗ is of the second kind, then ZK = Z ∩K and δ(ZK) ⊆ ZK for every δ ∈ SDer(A).
(ii) If ∗ is of the first kind and deg(A) > 2, then ZK = Z ∩K = 0.

Proof. (i) follows taking into account Lemma 5.1(ii) and applying [12, Lemma 2 (ii)] and [4,
Theorem 2.13]. To prove (ii) it is enough to apply Lemma 5.2. �

Remark 5.4. Let A be a prime algebra with involution ∗. The map

K → ad (K)
x 7→ adx

is a Lie algebra epimorphism with kernel ZK ; this allows to identify K/ZK with the ideal
ad (K) of SDer(A). If the involution is of the first kind and deg(A) > 2, it is in fact an
isomorphism, by Lemma 5.3 (ii).

On the other hand, for every ideal I of K, the restriction of the map above to I, that is,

I → ad (K)
y 7→ ad y

is a Lie algebra homomorphism with kernel ZI = I ∩ ZK , if the involution is of the second
kind, or zero, if it is of the first kind and deg(A) > 2. Indeed, [y, I] = 0, with y ∈ I, implies
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[y, [y,K]] = 0. Then apply [4, Theorem 2.13] or Lemma 5.2 to have y ∈ ZK or y = 0.
Moreover,

I/ZI = I/(I ∩ ZK) ∼= (I + ZK)/ZK �K/ZK .

Lemma 5.5. Let A be a prime algebra with involution ∗ such that deg(A) > 2. Then [I ∩
K,K] 6= 0 for every nonzero ∗-ideal I of A.

Proof. Consider a nonzero ∗-ideal I of A and suppose I ∩K ⊆ ZK = Z ∩K. By Remark 3.9
we have I * Z. Hence, there exists x ∈ I such that x /∈ Z. By the hypothesis, [x, I ∩K] ⊆ Z
and taking into account [14, Theorem 2] if ∗ is of the second kind or [14, Theorem 3] if it is
of the first kind we obtain I ⊆ Z, which is a contradiction. �

Lemma 5.6. Let A be a prime algebra with involution ∗ such that deg(A) > 4. Then, for

every nonzero ideal Ĩ of ad (K) there exists a ∗-ideal U of A such that 0 6= ad ([U ∩K,K]) ⊆ Ĩ.

Proof. The set I := {x ∈ K | adx ∈ Ĩ } is an ideal of K not contained in ZK and, therefore,
it is not contained in Z. Apply [7, Theorem 1] if ∗ is of the second kind or [7, Theorem 5 and
Lemma 7] if it is of the first kind to find a nonzero ∗-ideal U of A satisfying [U ∩K,K] ⊆ I,

that is, ad ([U ∩K,K]) ⊆ Ĩ. Note that [U ∩K,K] * ZK as otherwise, U ∩K ⊆ ZK , which
contradicts Lemma 5.5. �

By [17, Theorem 6.2] we have that, if A is a prime algebra with involution, K/ZK ∼= ad (K)
is an SP Lie algebra. Moreover, by [11, Theorem 2], the Lie algebra SDer(A) is prime. As in
section 3, the question of whether SDer(A) is SP is more delicate and is related to the ideal
structure of A.

The proof of the following result is similar to that of Lemma 3.11, applying in this case
Lemma 5.6 instead of Lemma 3.10.

Lemma 5.7. Let A be a prime algebra with involution ∗ and such that deg(A) > 4. Assume

that for every ∗-ideal U of A there exists a nonzero ideal Ũ of SDer(A) such that Ũ ⊆ ad [U ∩
K,K]. Then SDer(A) is an SP Lie algebra.

Let A be an algebra and Ĩ a nonzero ideal of Der(A). In the proof of Theorem 3.12 we
have shown that J :=

∑
δ∈Ĩ Aδ(A)A is a nonzero ideal of A invariant under every element of

Der(A). If A has an involution ∗ and Ĩ is a nonzero ideal of SDer(A) then J , defined as above,
is a ∗-ideal of A invariant under every element of SDer(A). Combining this with Lemmas 5.5
and 5.7 the proof of the following theorem is similar to that of Theorem 3.12, and therefore
we omit the details.

Theorem 5.8. Let A be a prime algebra with involution ∗ and such that deg(A) > 4. Then
the following conditions are equivalent:

(i) SDer(A) is SP.
(ii) Every nonzero ∗-ideal of A contains a nonzero ∗-ideal of A invariant under every

element of SDer(A).

Moreover, if the previous conditions are satisfied we have

Qm(K/ZK) ∼= Qm(SDer(A)).

With Theorem 5.8 at hand, the proof of the following corollary is a repetition of the proof
of Corollary 3.14.
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Corollary 5.9. Let A be a prime algebra with involution ∗ such that deg(A) > 4. If A is a
∗-simple algebra, then:

Qm(K/ZK) ∼= Qm(SDer(A)).

We now turn to the question of having a good description of the Lie algebra Qm(K/ZK),
in the case that A is prime and has an involution. As already mentioned, to this end we shall
introduce a new Lie algebra, whose definition is based on partial ∗-preserving derivations.

If I, J are nonzero ∗-ideals of A and δ : I → A, µ : J → A are derivations of A which
preserve ∗, we say that the two pairs (δ, I), (µ, J), are equivalent if δ and µ agree on some
nonzero ∗-ideal contained in I ∩ J . It is easy to verify that this is an equivalence relation.
Denote by δI the equivalence class determined by (δ, I) and by SDerm(A) the set of these
equivalence classes.

Lemma 5.10. Let A be a prime algebra with involution. Then SDerm(A) is a Lie algebra
under the natural operations defined as in Lemma 4.1.

It is known that every involution ∗ defined on a prime algebra A can be lifted uniquely to
an involution, also denoted by ∗, on Qs(A) (see [3, Proposition 2.5.1]). Thus, in this case, it
makes sense to consider SDer(Qs(A)). The following result is analogous to Lemma 4.3. In
order to prove it, it is enough to show that every δ ∈ SDer(A) can be uniquely extended to a
derivation δ′ in SDer(Qs(A)). This can be shown by standard methods. Basically, it follows
from the fact that Qs(A) is an algebra of left quotients of A, coupled with the fact that every
derivation on A can be extended uniquely to a derivation of Qs(A) ([3, Proposition 2.5.1]).

Lemma 5.11. If A is a prime algebra with involution, then

SDer(A) ⊆ SDerm(A) ⊆ SDer(Qs(A)).

Our aim now is to construct an isomorphism between the Lie algebra SDerm(A) defined
in Lemma 5.10 and the maximal algebra of quotients of the Lie algebra K/ZK . Retain the
notation 〈X〉 for the subalgebra of an algebra A generated by a set X.

Lemma 5.12. Let A be a prime algebra with involution ∗ such that deg(A) > 4, and let U be
an ideal of K such that U * ZK . Then the algebra 〈U〉 contains a nonzero ∗-ideal of A.

Proof. Clearly 〈U〉∗ = 〈U〉, and 〈U〉 * Z since U * ZK . On the other hand, note that
[〈U〉,K] ⊆ 〈U〉. This follows by an induction argument using the identity [uv, x] = u[v, x] +
[u, x]v, for every u, v, x ∈ A. Next, apply [15, Theorem 2] to obtain the desired conclusion. �

Lemma 5.13. Let A be a prime algebra with involution ∗ such that deg(A) > 2. If δI is an
element of SDerm(A) such that δ(I ∩K) ⊆ ZK then δI = 0.

Proof. It is well known that deg(I) = deg(A) (because A is prime, see, e.g. [3, Theorem
6.4.1]). Therefore [16, Theorem 3] applies to show that, since [x, δ(x)] = 0 for any y ∈ KI by
our assumption and deg(I) > 2, necessarily δI = 0. �

Theorem 5.14. Let A be a prime algebra with involution ∗ such that deg(A) > 4. Then
SDerm(A) ∼= Qm(K/ZK).
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Proof. Consider
ϕ : SDerm(A) → Qm(K/ZK)

δI 7→ δ̄I
where I = ((I ∩K) + ZK)/ZK and

δ̄ : I → K/ZK
ȳ 7→ δ(y)

The map δ̄ is well-defined. To see this, it is enough to check, by Lemma 5.5, that δ((I ∩
K) ∩ ZK) ⊆ ZK , whenever I is a nonzero ∗-ideal of A and δ ∈ SDer(I, A). By Lemma 5.1, if
y ∈ I ∩ ZK we have y ∈ Z and arguing as in the proof of Proposition 4.5 we obtain δ(y) ∈ Z.
Consequently δ(y) ∈ δ(K) ∩ Z ⊆ ZK .

It is easy to see that ϕ is a well-defined Lie algebra homomorphism. We first prove it is
one-to-one. Let δI be an element in SDerm(A) such that δ̄I = 0. Then there exists a nonzero

ideal J := J/ZK of K/ZK contained in I such that δ̄(J) = 0. Consider J1 := π−1(J) ∩ I,
where π : K → K/ZK is the canonical projection, and note that the ideal (J1 + ZK)/ZK is
nonzero because J and I are nonzero. By Lemma 5.12, there is a nonzero ∗-ideal U of A such
that U ⊆ 〈J1 +ZK〉 ⊆ (I ∩K)+ 〈ZK〉. Since δ̄(ū) ∈ δ̄(J) = 0 for any element u in (U ∩I)∩K,
we see that δ((U ∩ I) ∩K) ⊆ ZK and, by Lemma 5.13, we conclude δI = 0.

Now we show that ϕ is surjective. Let δ̄J be in Qm(K/ZK), with J a nonzero ideal of K/ZK
and δ̄ : J → K/ZK a derivation. Note that J can be represented as J/ZK where J = π−1(J)
is a noncentral ideal of K. Define δ : J → A−/Z by δ = iδ̄π, where i : K/ZK → A−/Z is given
by i(x̄) = x̄ ∈ A−/Z. Since ZK = Z ∩K (see Lemma 5.1) it is straightforward to verify that
i is a Lie algebra monomorphism. On the other hand, it is clear that δ is a Lie derivation in
the sense of [1] and that K satisfies the conditions in [1, Theorem 3.2]. Therefore, take any

set-theoretic map γ : J → K such that γ(x) = δ(x) for every x ∈ J (note that we may actually
choose γ with image contained in K because δ(J) ⊆ K/ZK), and then it follows that there
exists a derivation d : 〈J〉 → 〈J ∪ γ(J)〉C + C, where C is the extended centroid of A, and a
map µ : J → C such that d(x) = γ(x) + µ(x) for all x ∈ J .

For x, y ∈ J we have

d([x, y]) = [d(x), y] + [x, d(y)] = [γ(x), y] + [x, γ(y)]

since µ(J) ⊆ C. This shows that d([J, J ]) ⊆ [K,J ] ⊆ J , which in turn implies d(〈[J, J ]〉) ⊆
〈J〉 ⊆ A. Apply Lemma 5.12 to the ideal [J, J ] of K (which is not contained in ZK) to find a
nonzero ∗-ideal I of A contained in 〈[J, J ]〉. Note that dI is an element of SDerm(A). Finally,
since µ(I) ⊆ K ∩ C = K ∩ A ∩ C = K ∩ Z = ZK (by using [22, Lemma 1.3 (i)] and Lemma
5.1) it follows that ϕ(dI) = δJ . This concludes the proof. �

Corollary 5.15. Let A be a prime algebra with involution ∗ such that deg(A) > 4. If A =
Qs(A), then

Qm(K/ZK) ∼= SDer(A).

Proof. By Lemma 5.11 we obtain that SDer(A) ∼= SDerm(A) and applying Theorem 5.14 it
follows that SDerm(A) ∼= Qm(K/ZK), as desired. �

Corollary 5.16. Let A be a simple algebra with involution such that deg(A) > 4. Then:

Qm(K/ZK) ∼= Qm(SDer(A)) ∼= SDer(A).
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Proof. Apply Corollary 5.9 to obtain that Qm(SDer(A)) ∼= Qm(K/ZK). Corollary 5.15 implies
Qm(K/ZK) ∼= SDer(A). �

6. Max-closed algebras

This final section is devoted to the problem of whether taking the maximal algebra of
quotients is a closure operation, that is, if Qm(Qm(L)) = Qm(L) holds for every semiprime
Lie algebra L. Notice that this question makes sense since Qm(L) is also semiprime ([22,
Proposition 2.7 (ii)]). Although in some interesting special cases the answer is positive, we
will prove that in general the containment Qm(L) ⊆ Qm(Qm(L)) is strict. This justifies the
terminology in the definition below.

Definition 6.1. We say that a semiprime Lie algebra L is max-closed if Qm(Qm(L)) = Qm(L).

In the next three results we present various examples of max-closed Lie algebras. The first
one follows immediately from Corollary 4.9.

Corollary 6.2. Let A be a simple algebra such that either deg(A) 6= 3 or char(A) 6= 3. Then
A−/Z is max-closed.

Theorem 6.3. If L is a simple Lie algebra, then Qm(L) ∼= Der(L) is an SP Lie algebra and
L is max-closed.

Proof. In view of the simplicity of L we clearly have Qm(L) ∼= Der(L). Moreover, these two
Lie algebras are prime by [22, Proposition 2.7 (ii)].

We claim that L is isomorphic to the smallest nonzero ideal of Der(L). Indeed, since ZL = 0

we have L ∼= ad(L) � Der(L). Identify L with ad(L) and consider 0 6= Ũ � Der(L). Taking

into account the simplicity of L and that 0 6= Ũ ∩ L� L we obtain Ũ ∩ L = L, which implies

L ⊆ Ũ .
For 0 6= Ĩ � J̃ � Der(L) apply what we have proved to obtain L ⊆ J̃ . We claim that

U = Ĩ ∩ L is a nonzero ideal of L. In fact, [U,L] ⊆ L and [U,L] ⊆ [U, J̃ ] ⊆ Ĩ, which implies

[U,L] ⊆ Ĩ ∩ L = U . To show that U 6= 0, consider 0 6= δ ∈ Ĩ. Since ZL = 0 there exists x ∈ L
such that 0 6= ad δ(x) ∈ L. Moreover, ad δ(x) = [δ, adx] ∈ Ĩ; hence, 0 6= ad δ(x) ∈ U . Thus,

U is a nonzero ideal of a simple Lie algebra L, so that L = U ⊆ Ĩ. From Lemma 3.1 we now
see that Der(L) is an SP Lie algebra.

It remains to show that L is max-closed. We have Qm(Qm(L)) ∼= Qm(Der(L)). Since L
is a nonzero ideal of an SP Lie algebra Der(L), it follows from Theorem 3.3 that Qm(L) ∼=
Qm(Der(L)). �

Theorem 6.4. Let A be a prime affine PI algebra such that either deg(A) 6= 3 or char(A) 6= 3,
and let J be a noncentral Lie ideal of A. Then the Lie algebra J/(J ∩ Z) is max-closed.

Proof. Recall that A−/Z ∼= Inn(A) is an SP Lie algebra (see the discussion before Corol-
lary 3.6). Accordingly, applying Theorems 3.3 and 4.7 it follows that Qm(J/(J ∩ Z)) ∼=
Qm(A−/Z) ∼= Derm(A). It is well-known that A, as a prime PI algebra, satisfies Qs(A) =
AZ−1, and moreover, that Qs(A) is a simple algebra (see e. g. [21, Theorem 1.7.9] or [9, Theo-
rem 1.4.3] from which this can be easily derived). Therefore we infer from Corollary 4.10 that
Derm(A) ∼= Der(Qs(A)). On the other hand, Corollary 4.9 shows that Qm(Der(Qs(A))) ∼=
Der(Qs(A)), and the proof is thereby complete. �
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We will finish this paper by finding an example of a Lie algebra which is not max-closed.
The algebra A we shall deal with is the one that Passman used in [19] to show that Qs( . ) is
not a closure operation.

Let K be a field and let A = K[ t ][x, y | xy = tyx]. In [19] the following properties of A
were established:

(i) A is a domain with center Z = K[ t ];
(ii) Qs(A) = K(t)[x, y | xy = tyx];
(iii) Qs(Qs(A)) = K(t)[x−1, x, y−1, y | xy = tyx].

We shall make use of (iii) in the proof below, but not in an explicit way.

Theorem 6.5. Let A = K[ t ][x, y | xy = tyx]. Then the Lie algebra A−/Z is not max-closed.

Proof. We shall write Q for Qs(A). Note that the conditions of Corollary 4.10 are again
fulfilled. Therefore, this corollary together with Theorem 4.7 shows that

Qm(A−/Z) ∼= Derm(A) ∼= Der(Q).

Therefore it is enough to prove that Qm(Der(Q)) ) Der(Q).
Note that Qx = xQ = QxQ; this will be frequently used in the sequel without mention.

We also remark that Q is the vector space direct sum of Qx and
∑∞

i=0K(t)yi.
Let δ be a derivation of Q. Since xy = tyx it follows that δ(x)y + xδ(y) = δ(t)yx +

tδ(y)x + tyδ(x), and hence δ(x)y − tyδ(x) ∈ Qx. Writing δ(x) = qx +
∑m

i=0 λi(t)y
i, where

q ∈ Q and λi(t) ∈ K(t), it follows that
∑m

i=0 λi(t)y
i+1 −

∑m
i=0 tλi(t)y

i+1 ∈ Qx. That is,∑m
i=0(1− t)λi(t)yi+1 ∈ Qx. But then

∑m
i=0(1− t)λi(t)yi+1 = 0 and hence λi(t) = 0 for each i.

This proves that δ(x) ∈ Qx, which in turn implies δ(Qx) ⊆ Qx. Thus, Qx is invariant under
every derivation of Q.

Let I be the linear span of all inner derivations of the form ad (δ1 . . . δn(x)), where n ∈ N
and δ1, . . . , δn ∈ Der(Q). We claim that I is a nonzero Lie ideal of Der(Q). Indeed, for every
δ ∈ Der(Q) we have

[δ, ad (δ1 . . . δn(x))] = ad (δδ1 . . . δn(x)) ∈ I,

showing that I is an ideal, and ad (ad y(x)) = ad [y, x], and so I 6= 0. Define ∆: I → Der(Q)
by ∆(d) = [adx−1, d] for every d ∈ I, so that

∆(ad (δ1 . . . δn(x))) = [adx−1, ad (δ1 . . . δn(x))] = ad [x−1, δ1 . . . δn(x)];

this makes sense since δ1 . . . δn(x) ∈ Qx by what was proved in the preceding paragraph.
Clearly ∆ is a derivation. This allows us to consider ∆I ∈ Qm(Der(Q)). We claim that ∆I

is not in Der(Q). Suppose this was not true. Then ∆I = ad δDer(Q) for some δ ∈ Der(Q).
This means that there exists a nonzero ideal J of Der(Q) contained in I and such that ∆|J =
(ad δ)|J . It is easy to see that derivations defined on I which agree on a nonzero ideal J
contained in I, must agree on the entire I. Thus, ∆ = (ad δ)|I . That is,

[adx−1, ad (δ1 . . . δn(x))] = [δ, ad (δ1 . . . δn(x))] = ad (δδ1 . . . δn)(x)

for all δ1, . . . , δn ∈ Der(Q). In particular,

ad [x−1, [y, x] ] = [adx−1, ad [y, x] ] = ad (δ([y, x])),
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which implies [x−1, [y, x] ] − δ([y, x]) ∈ ZQ = K(t). Since δ, as a derivation of Q, leaves Qx
invariant, it follows that [x−1, [y, x] ] ∈ Qx+K(t). However,

[x−1, [y, x] ] = x−1(yx− xy)− (yx− xy)x−1 = t−1y − y − y + ty = (t−1 + t− 2)y,

a contradiction. �
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[1] K. I. Beidar, M. Brešar, M.A. Chebotar, W. S. Martindale 3rd, On Herstein’s Lie map conjectures,
II, J. Algebra 238 (2001), 239–264.
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Departamento de Álgebra, Geometŕıa y Topoloǵıa, Universidad de Málaga, 29071 Málaga,
Spain

E-mail address: jsanchez@agt.cie.uma.es, mercedes@agt.cie.uma.es


