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Abstract. The main result of the paper characterizes continuous bi-
linear maps φ from C1[0, 1] × C1[0, 1] into a Banach space X with the
property that φ(f, g) = 0 whenever fg = 0. This is applied to the
study of zero product preserving operators on C1[0, 1], and operators
on C1[0, 1] satisfying a version of the condition of the locality of an
operator.

1. Introduction

The recent paper [2] introduces the class of Banach algebras A with the
following property: Every continuous bilinear map φ from A×A into an ar-
bitrary Banach space X such that φ(a, b) = 0 whenever ab = 0, satisfies the
condition φ(ab, c) = φ(a, bc) for all a, b, c ∈ A. If A is unital, then this con-
dition is equivalent to the one that φ(a, b) = P (ab) for all a, b and some con-
tinuous linear operator P : A→ X; indeed, one defines P by P (a) = φ(a, 1).
It turns out that this class of Banach algebras is quite large. In particular
it includes C∗-algebras, group algebras, and Banach algebras generated by
idempotents. Further, it is shown in [2] that a variety of problems, which
were previously considered only in some special algebras, can be handled in
this class of algebras. Most of these problems concern linear operators, but
they can be reduced to bilinear ones having the aforementioned property.
Let us just mention one typical example in order to illustrate this idea. A
linear operator T between Banach algebras A and B is said to be zero prod-
uct preserving if for all a, b ∈ A, ab = 0 implies Ta · Tb = 0. The problem
of describing such operators has been thoroughly studied in the literature.
Now, if A belongs to our class, then by considering φ(a, b) = Ta · Tb one
immediately realizes that T satisfies T (ab) ·Tc = Ta ·T (bc) for all a, b, c ∈ A.
Under some additional assumptions one can then derive that T is a weighted
homomorphism.

One of the most notable examples of Banach algebras that does not belong
to this class is C1[0, 1], the algebra of continuously differentiable functions
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from [0, 1] to C. Indeed, the bilinear map φ : C1[0, 1] × C1[0, 1] → C[0, 1]
defined by φ(f, g) = fg′ satisfies the property that φ(f, g) = 0 whenever
fg = 0 (namely, fg = 0 yields f ′g + fg′ = 0, hence f2g′ = 0 and so
fg′ = 0), but clearly does not satisfy φ(fg, h) = φ(f, gh) for all f, g, h ∈
C1[0, 1]. Other typical examples are maps (f, g) 7→ f ′g and (f, g) 7→ f ′g′.
Therefore, it seems to be a challenging problem to describe the general form
of a continuous bilinear map φ from C1[0, 1]× C1[0, 1] into a Banach space
X such that fg = 0 implies φ(f, g) = 0. We solve this problem in Section 2.
The result is that φ can be expressed as φ(f, g) = P (fg) +Q(fg′) +R(f ′g′)
where P,Q,R are continuous linear operators (the term involving f ′g is
missing simply because f ′g = (fg)′−fg′). The rest of the paper is devoted to
applications of this result. In Section 3 we consider operators from C1[0, 1]
into a left Banach A-module X with the property that fg = 0 implies
f · Tg = 0; this condition can be viewed as an algebraic version of the
condition that an operator is local. Section 4 is devoted to zero product
preserving operators on C1[0, 1].

The methods used in this paper are applicable to the algebra Cn[0, 1]
with n > 1. However, considering these algebras would make the paper
rather lengthy, without bringing really new ideas. Therefore we shall restrict
ourselves to the C1[0, 1] case.

2. Zero product preserving bilinear maps on C1[0, 1]

As usual, we endow C1[0, 1] with the norm ‖ · ‖1 given by ‖f‖1 = ‖f‖∞+
‖f ′‖∞ for each f ∈ C1[0, 1]. Then C1[0, 1] becomes a Banach algebra which
is generated by polynomials (see e.g. [3, Theorem 4.4.1]). By 1 and x we
denote the functions on [0, 1] given by

1(t) = 1, x(t) = t, (t ∈ [0, 1]).

Further, we will make use of the continuous linear operator

V : C[0, 1]→ C1[0, 1], (V f)(t) =

∫ t

0
f(s)ds, (f ∈ C[0, 1], t ∈ [0, 1]).

By X we denote an arbitrary Banach space.

Theorem 2.1. Let φ : C1[0, 1]×C1[0, 1]→ X be a continuous bilinear map
satisfying

f, g ∈ C1[0, 1], fg = 0 ⇒ φ(f, g) = 0.

Then there exist continuous linear operators P : C1[0, 1]→ X and Q,R : C[0, 1]→
X such that

(1) φ(f, g) = P (fg) +Q(fg′) +R(f ′g′)

for all f, g ∈ C1[0, 1].

Proof. The proof consists in proving that the continuous linear operators
R,S, T defined by

P : C1[0, 1]→ X, Pf = φ(f,1)
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and

Q,R : C[0, 1]→ X, Qf = φ(1, V f)− φ(V f,1),

Rf = φ(V f,x)− φ(x · V f,1) + φ(V 2f,1)− φ(1, V 2f)

satisfy (1). By using the continuity and the density of the polynomials on
C1[0, 1], it suffices to check that (1) holds for all monomials f = xm and
g = xn with m,n ∈ N∪{0}. In the case where either m = 0 or n = 0 this is
easily checked. Therefore, in the sequel we restrict our attention to the case
m,n ≥ 1 and thus we shall prove the truthfulness of the identity

φ (xm,xn) = φ
(
xm+n,1

)
+ φ

(
1, n

m+nx
m+n

)
− φ

(
n

m+nx
m+n,1

)
+ φ

(
mn

m+n−1x
m+n−1,x

)
− φ

(
mn

m+n−1x
m+n,1

)
+ φ

(
mn

(m+n)(m+n−1)x
m+n,1

)
− φ

(
1, mn

(m+n)(m+n−1)x
m+n

)
.

(2)

To this end we first observe that the map φ gives rise to a continuous
linear operator Φ on the projective tensor product A = C1[0, 1] ⊗π C1[0, 1]
defined through

Φ(f ⊗ g) = φ(f, g), (f, g ∈ C1[0, 1]).

Every element in A can be thought of as a function in C([0, 1] × [0, 1]) by
defining

(3) (f ⊗ g)(s, t) = f(s)g(t), (f, g ∈ C1[0, 1], s, t ∈ [0, 1]).

We claim that Φ(H) = 0 whenever H ∈ A is such that

(4) supp(H) ∩ {(s, s) : s ∈ [0, 1]} = ∅.

Let H ∈ A be satisfying (4), write H =
∑∞

n=1 fn⊗ gn with fn, gn ∈ C1[0, 1],
let δ > 0 be such that

δ ≤ |t− r|+ |s− r|, ((s, t) ∈ supp(H), r ∈ [0, 1]),

and let p ∈ N be such that 4/p < δ. For k = 0, 1, . . . , p, consider the open
subset Uk of [0, 1] defined by

Uk =

{
t ∈ [0, 1] :

∣∣∣∣t− k

p

∣∣∣∣ < 1

p

}
(k = 0, . . . , p).

Since ∪pk=oUk = [0, 1], it follows that there exist smooth functions ω0, . . . , ωp
on [0, 1] with

(5) ω0 + · · ·+ ωp = 1

and supp(ωk) ⊂ Uk for k = 0, . . . , p. It is easily seen that

supp(H) ∩ (Uj × Uk) = ∅
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whenever Uj and Uk are such that Uj∩Uk 6= ∅. This later property, together
with (5) implies that

H = H

p∑
j=0

p∑
k=0

ωj ⊗ ωk =

∑
Uj∩Uk=∅

H
(
ωj ⊗ ωk

)
=

∑
Uj∩Uk=∅

∞∑
n=1

(
fnωj

)
⊗
(
gnωk

)
.

Finally, we observe that

Φ(H) =
∑

Uj∩Uk=∅

∞∑
n=1

φ
(
fnωj , gnωk

)
= 0,

because

supp(fnωj) ∩ supp(gnωk) ⊂ supp(ωj) ∩ supp(ωk) ⊂ Uj ∩ Uk.
Let (σε) be the family of 2π-periodic functions introduced in [1, Lemma

2.1] as follows. Let 0 < ε < π/2 and define σε : R→ R by

σε(t) =


0, −π < t ≤ −2ε;

−2ε− t, −2ε < t ≤ −ε;
t, −ε < t ≤ ε;

2ε− t, ε < t ≤ 2ε;
0, 2ε < t ≤ π;

σε(t+ 2π) = σε(t) (t ∈ R).

Then

σ̂ε(0) = 0, σ̂ε(k) =
i

πk2
[sin(2kε)− 2 sin(kε)] (k ∈ Z \ {0}),

where, as usual σ̂ε stands for the Fourier transform of σε.
We recall a standard fact of the classical Fourier analysis that the function∫ t

0 σε(s)ds satisfies

(6)

∫ t

0
σε(s)ds =

∑
k 6=0

σ̂ε(k)

ik
eikt −

∑
k 6=0

σ̂ε(k)

ik
, (t ∈ R),

where the first series in (6) converges uniformly on R, and the right side of
(6) is the Fourier series of the function on the left side. Then the function∫ t

0

∫ s
0 σε(r)drds satisfies

(7)

∫ t

0

∫ s

0
σε(r)drds+

∑
k 6=0

σ̂ε(k)

ik

 t =
∑
k 6=0

σ̂ε(k)

(ik)2
eikt−

∑
k 6=0

σ̂ε(k)

(ik)2
, (t ∈ R),

where the first series in (7) converges uniformly on R, and the right side of
(7) is the Fourier series of the function on the left side. We define

τε : R→ R, τε(t) = 6

∫ t

0

∫ s

0
σε(r)drds, (t ∈ R).
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We also define

ρε : [0, 1]× [0, 1]→ C, ρε(s, t) = τε(s− t), (s, t ∈ [0, 1]).

It is immediate to see that ρε(s, t) = (s− t)3 whenever s, t ∈ [0, 1] are such
that |s− t| ≤ ε. On the other hand, we have

ρε(s, t) =
∑
k 6=0

6
σ̂ε(k)

(ik)2
eikse−ikt−

∑
k 6=0

6
σ̂ε(k)

(ik)2
−

∑
k 6=0

6
σ̂ε(k)

ik

 (s−t), (s, t ∈ [0, 1]),

so that

ρε =
∑
k 6=0

6
σ̂ε(k)

(ik)2
exp
(
ik(·)

)
⊗ exp

(
−ik(·)

)

−

∑
k 6=0

6
σ̂ε(k)

(ik)2

1⊗ 1−

∑
k 6=0

6
σ̂ε(k)

ik

 (x⊗ 1− 1⊗ x) ∈ A

and

‖ρε‖A ≤
∑
k 6=0

6
|σ̂ε(k)|
k2

∥∥exp
(
ik(·)

)∥∥
1

∥∥exp
(
−ik(·)

)∥∥
1

+

∑
k 6=0

6
|σ̂ε(k)|
k2

 ‖1‖1‖1‖1
+

∑
k 6=0

6
|σ̂ε(k)|
|k|

 (‖x‖1‖1‖1 + ‖1‖1‖x‖1)

=
∑
k 6=0

6
|σ̂ε(k)|
k2

(1 + |k|)2 +
∑
k 6=0

6
|σ̂ε(k)|
k2

+
∑
k 6=0

24
|σ̂ε(k)|
|k|

≤54
∑
k 6=0

|σ̂ε(k)| = µ(ε),

(8)

where µ : R→ R is the function defined by

(9) µ(t) = 54
∑
k 6=0

| sin(2kt)− 2 sin(kt)|
πk2

.

Since the series in the right side of (9) converges uniformly on R, it follows
that µ is continuous.

Of course, proving (2) is equivalent to proving that

(10) Φ(F ) = 0,

where F ∈ A is given by

F = xm ⊗ xn − xm+n ⊗ 1− n
m+n1⊗ xm+n

+ n
m+nx

m+n ⊗ 1− mn
m+n−1x

m+n−1 ⊗ x
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+ mn
m+n−1x

m+n ⊗ 1− mn
(m+n)(m+n−1)x

m+n ⊗ 1 + mn
(m+n)(m+n−1)1⊗ xm+n.

Of course, on account of the identification given in (3), F can be thought of
as the polynomial in two variables given by

F (s, t) =smtn − sm+n − n
m+n t

m+n + n
m+ns

m+n − mn
m+n−1s

m+n−1t

+ mn
m+n−1s

m+n − mn
(m+n)(m+n−1)s

m+n + mn
(m+n)(m+n−1) t

m+n.

It is straightforward to check that

F (s, s) = 0,
∂F (s, s)

∂t
= 0,

∂2F (s, s)

∂t2
= 0, (s ∈ R)

and so

(11) F (s, t) = (s− t)3G(s, t)

for some polynomial G. We now define Fε ∈ A by Fε = ρεG. On account of
(11), we have

supp(F − Fε) ∩ {(s, s) : s ∈ [0, 1]} = ∅.
Consequently, Φ(F ) = Φ(Fε). On the other hand, according to (8), we have

‖Φ(Fε)‖ ≤ ‖Φ‖‖Fε‖A ≤ ‖Φ‖‖G‖A‖ρε‖A ≤ ‖Φ‖‖G‖Aµ(ε).

Since µ is continuous and µ(0) = 0, it follows that

‖Φ(F )‖ = lim
ε→0
‖Φ(Fε)‖ = 0

and therefore that Φ(F ) = 0, which completes the proof. �

3. Local-like operators on C1[0, 1]

An operator T from a subalgebra A of a function algebra C(Ω) into C(Ω)
is said to be local if the support of f contains the support of Tf . Under
mild restrictions this is equivalent to the condition that for all f, g ∈ A,

(12) fg = 0 ⇒ f · Tg = 0;

see [5, Lemma 1]. The purpose of this section is to consider the condition (12)
for an operator T from C1[0, 1] into a left Banach C1[0, 1]-module X. Let
us mention in this context also a result by Johnson who defined the notion
of a local operator from a function algebra into its left Banach module in a
somewhat different way, and showed that every such operator T from C0(R)
into an essential left Banach C0(R)-module is a multiplier [4, Proposition
3.1], i.e. it satisfies T (fg) = f · Tg for all f, g ∈ C0(R).

Of course, multipliers certainly satisfy (12). Since C1[0, 1] contains 1,
every multiplier T : C1[0, 1]→ X is of the form Tf = f · ξ for some ξ ∈ X.
But there can be other operators from C1[0, 1] into X satisfying (12). For
instance, a classical result by Peetre [6] implies that T : C1[0, 1] → C[0, 1]
is a local operator if and only if there exist h, k ∈ C[0, 1] such that T (f) =
fh + f ′k for all f ∈ C1[0, 1]; in the abstract situation where the role of
C[0, 1] is replaced by X, we can thus consider the map T (f) = f · ξ + f ′ · η
which also satisfies (12), provided of course that f ′ · η makes sense (say, if
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X is also a C[0, 1]-module). However, more complicated examples can be
constructed:

Example 3.1. Let X = C1[0, 1]∗ be the dual of C1[0, 1]. Then X is a left
Banach C1[0, 1]-module via (f ·η)(h) = η(fh), η ∈ X, f, h ∈ C1[0, 1]. Define
T : C1[0, 1]→ X by

(Tf)(h) =

∫ 1

0
f ′h′

Since fg = 0 implies fg′ = f ′g′ = 0, one can easily check that T is a
continuous operator satisfying (12). If f ∈ C2[0, 1], then we clearly have

(Tf)(h) = f ′(1)h(1)− f ′(0)h(0)−
∫ 1

0
f ′′h

In particular, for all f ∈ C3[0, 1] we thus have

Tf = f ′ · η + f ′′ · ζ,

where η, ζ ∈ X are defined by

η(h) = h(1)− h(0), ζ(h) = −
∫ 1

0
h

This example nicely illustrates the next theorem.

Theorem 3.2. Let X be a unital left Banach C1[0, 1]-module and let T :
C1[0, 1] → X be a continuous linear operator. Then the following two con-
ditions are equivalent:

(i) for all f, g ∈ C1[0, 1], fg = 0 implies f · Tg = 0;
(ii) there exist ξ, η, ζ ∈ X such that

Tf = f · ξ + f ′ · η + f ′′ · ζ (f ∈ C3[0, 1]).

Proof. Let us first show that (i) implies (ii). So assume that T satisfies (12).
Set ξ = T1. Replacing T by the map f 7→ Tf − f · ξ we see that there is no
loss of generality in assuming that T1 = 0, i.e. ξ = 0. Now we set

η = Tx, ζ =
1

2
Tx2 − x · η.

Our goal is to show that Tf = f ′ · η + f ′′ · ζ for all f ∈ C3[0, 1]. Since the
polynomials are dense in the Banach algebra C3[0, 1] (see e.g. [3, Theorem
4.4.1]), it suffices to show that this identity holds only for f = xn, n ≥ 0.
Thus, we have to show that

(13) Txn = nxn−1 · η + n(n− 1)xn−2 · ζ (n ≥ 3).

By Theorem 2.1 there exist continuous linear operators P : C1[0, 1]→ X
and Q,R : C[0, 1]→ X such that

(14) f · Tg = P (fg) +Q(fg′) +R(f ′g′) (f, g ∈ C1[0, 1]).
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Setting g = 1 in (14) it follows immediately that P = 0. Next, setting f = 1
we see that Tg = Qg′ for all g ∈ C1[0, 1]. Accordingly, TV h = Qh for all
h ∈ C[0, 1], and so (14) becomes

(15) f · Tg = TV (fg′) +R(f ′g′) (f, g ∈ C1[0, 1]).

Setting f = x and g = xn in (15) we get

(16) x · Txn − n

n+ 1
Txn+1 = nRxn−1

On the other hand, setting f = xn and g = x in (15) we get

(17) xn · η − 1

n+ 1
Txn+1 = nRxn−1

Comparing (16) and (17) we arrive at

x · Txn − n

n+ 1
Txn+1 = xn · η − 1

n+ 1
Txn+1,

that is
n− 1

n+ 1
Txn+1 = x · Txn − xn · η.

From this identity (13) follows immediately by induction on n.
Next we prove that (ii) implies (i). Observe that it is enough to prove

the following claim: for every f ∈ C1[0, 1] and every ε > 0 there exists a
smooth function F on [0, 1] such that the zero set of F contains the zero set
of f and

‖F − f‖C1[0,1] < ε.

Then we can find a sequence {fn}∞n=1 of smooth functions on [0, 1] which in
the C1 sense converges to f and such that the zero set of every function fn
contains the zero set of f .

From the nature of this claim one might suspect that it is already known.
However, we were unable to find any reference for it and therefore we include
its proof.

Let f ∈ C1[0, 1]. If f is identically equal to 0, the claim is trivial. Also, if
f has no zeros, the claim follows from the fact that polynomials are dense
in C1[0, 1]. So henceforth we will assume that f 6≡ 0 and that it has zeros
on [0, 1].

Let Zf be the intersection of the zero sets of f and f ′. It is a closed
subset of [0, 1] and every zero of f outside of Zf is isolated. Also, given a
neighbourhood U of Zf there are only finitely many zeros of f outside U .

Let ε > 0 and let
Uε = {|f | < ε, |f ′| < ε}.

We choose ε so small that Uε is a proper subset of [0, 1]. The set Uε is an open
subset of [0, 1] and hence it is at most countable union of pairwise disjoint
intervals {Ij}∞j=1, where each Ij is either an open interval or a semiclosed

interval of the form [0, b) or (a, 1]. Let

d = dist(Zf , [0, 1] \ Uε) > 0.
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Without changing the notation we replace Uε with an open subset which we
get as the union of all those intervals Ij for which Zf ∩ Ij 6= ∅. There are
only finitely many such intervals and their union contains Zf .

Let Ij ⊆ Uε be an open interval. The length of Ij is greater or equal

to 2d and we define Ĩj = (aj , bj) ⊆ Ij as the largest open subinterval such

that the distance of each end point of Ĩj from Zf is exactly d
2 . Finally, let

Jj = [aj + d
4 , bj −

d
4 ]. If Ij ⊆ Uε is a semiclosed interval these definitions are

appropriately modified. We denote the union of Ĩj-s by Ũε and the union of
Jj-s by Vε. Then Zf ⊂ Vε.

Let ϕ be a nonnegative smooth function on R such that ϕ = 0 outside
[−1, 1], ϕ > 0 on (−1, 1) and ∫ ∞

−∞
ϕ(y) dy = 1.

We define

χ(x) =
4

d

∫
[0,1]\Ũε

ϕ(4
x− y
d

) dy

Then χ is a smooth function on R with values between 0 and 1.

Since ϕ is a nonnegative smooth function on R and since the set [0, 1]\ Ũε
has no isolated points, we have that χ(x) = 0 if and only if

ϕ(4
x− y
d

) = 0 for all y ∈ [0, 1] \ Ũε.

That is, χ(x) = 0 if and only if |x − y| ≥ d
4 for all y ∈ [0, 1] \ Ũε, which

means that the distance d(x, [0, 1] \ Ũε) ≥ d
4 . Therefore χ = 0 exactly on

Vε and so also on Zf . On the other hand we have that χ(x) = 1 if and

only if the whole support of ϕ(4x−yd ) lies in [0, 1] \ Ũε, that is, the distance

d(x, Ũε) ≥ d
4 . Hence χ = 1 outside Uε.

Let us define F = χf . Then

|F − f | = |χ− 1||f | < ε

because χ = 1 outside Uε and |f | < ε on Uε. We also have

|F ′ − f ′| ≤ |χ− 1||f ′|+ |χ′||f |.
The first term is estimated as above. For the second term we should observe
the following. From the definition of function χ we have

|χ′| ≤ M

d
.

Here M is a constant which does not depend on d. Also, χ′ can be different
from 0 only on the set of those points x from Uε \Vε such that d(x, Vε) ≤ d

2 .
Hence for every such point x there exists a point x0 from Zf so that

|x− x0| ≤ d. Since |f ′| < ε on Uε we get

|f(x)| = |f(x)− f(x0)| = |
∫ x

x0

f ′(y) dy| ≤ ε d.



10 J. ALAMINOS, M. BREŠAR, M. ČERNE, J. EXTREMERA, AND A. R. VILLENA

So

|χ′f | ≤ M

d
εd = M ε.

Hence F is a C1 function on [0, 1] such that

‖F − f‖C1[0,1] ≤ (2 +M)ε

and the zero set of F equals the union of Vε and the isolated zeros of f
outside Vε.

From here on we will assume that the zero set of f consists of finitely
many isolated zeros and finitely many closed intervals Jj . Let V be the
union of Jj-s. Let K = (a, b) be an open interval from [0, 1] \ V such that
its end points a and b belong to V . We know that there exists a sequence of
polynomials {Pn}∞n=1 which in the C1 sense on [0, 1] converges to f . Let us
observe their restrictions to [a, b]. Adding appropriate linear polynomials,
that is,

Pn(x)− Pn(a)− x− a
b− a

(Pn(b)− Pn(a)),

we may assume that Pn(a) = Pn(b) = 0. Further, adding appropriate cubic
polynomials we may also assume that P ′n(a) = P ′n(b) = 0. Finally, we may
add appropriate polynomials so that every zero of f on (a, b) is also a zero
of Pn and still the sequence {Pn}∞n=1 in the C1 sense converges to f on [a, b].
If K is a semiclosed interval the argument is similar.

Gluing Pn-s with the zero function on V we get C1 functions fn on [0, 1]
which have zeros at all zeros of f , which in the C1 sense converge to f and
which are smooth at all points of [0, 1] except at the boundary points of Jj-s.

Let ε > 0. With the same procedure as in the beginning of the proof of the
claim we first find a smooth function χ̃ which equals 0 in a neighbourhood
of V and such that

‖χ̃f − f‖C1[0,1] <
ε

2
.

Then for n large enough we have

‖χ̃fn − χ̃f‖C1[0,1] ≤ ‖χ̃‖C1[0,1]‖fn − f‖C1[0,1] <
ε

2

and so the smooth function F = χ̃fn does the required approximation.
�

4. Zero product preserving operators on C1[0, 1]

This section is devoted to zero product preserving operators T from
C1[0, 1] into another Banach algebra A. It should be mentioned here that
such operators on function algebras are more commonly known as disjoint-
ness preserving operators, separating operators or Lamperti operators. Any-
way, we shall keep the terminology from [2] which is more standard in al-
gebraic and noncommutative setting. For historic comments and references
about these operators we refer the reader to [2] and [5].



MAPS PRESERVING ZERO PRODUCTS 11

In our basic result we consider the most general situation where A is an
arbitrary (commutative) Banach algebra and there are no other restrictions
on T besides that it preserves zero products.

Theorem 4.1. Let A be a commutative Banach algebra and let T : C1[0, 1]→
A be a continuous linear zero product preserving operator. Then there exist
a, b ∈ A such that

(18) c2 · Tf = a ·Ψf + b ·Ψf ′ (f ∈ C1[0, 1])

where c = (Tx)2 − T1 · Tx2 and Ψ : C[0, 1] → A is a continuous linear
operator satisfying c ·Ψ(fg) = Ψf ·Ψg for all f, g ∈ C[0, 1].

Proof. Theorem 2.1 tells us that

(19) Tf · Tg = P (fg) +Q(fg′) +R(f ′g′) (f, g ∈ C1[0, 1]),

where P : C1[0, 1] → A and Q,R : C[0, 1] → A are continuous linear opera-
tors. Let

u = T1, w = Tx.

First set f = 1 in (19), and then g = 1; since u commutes with Tf it follows
easily that Pf = u · Tf and Q = 0. Thus, we have

(20) Tf · Tg − u · T (fg) = R(f ′g′) (f, g ∈ C1[0, 1]).

Writing f = x and g = xr+1 in (20) we obtain

(21) R(xr) =
1

r + 1

(
w · Txr+1 − u · Txr+2

)
.

Therefore, setting f = xk and g = xl in (20) it follows from (21) that

Txk · Txl = u · Txk+l + klRxk+l−2

= u · Txk+l +
kl

k + l − 1

(
w · Txk+l−1 − u · Txk+l

)
.

Thus,

(22) Txk · Txl =
1

k + l − 1

(
klw · Txk+l−1 − (k − 1)(l − 1)u · Txk+l

)
.

Now define Ψ : C[0, 1]→ A by

Ψf = w · TV f − u · T (x · V f).

In particular,

(23) Ψxn =
1

n+ 1

(
w · Txn+1 − u · Txn+2

)
(n ≥ 0).

Our goal is to show that c · Ψ(fg) = Ψf · Ψg for all f, g ∈ C[0, 1]. Since Ψ
is continuous, it suffices to show that

(24) c ·Ψ(xn+m) = Ψxn ·Ψxm (n,m ≥ 0).
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We have

Ψxn ·Ψxm

=
1

(n+ 1)(m+ 1)

(
w · Txn+1 − u · Txn+2

)(
w · Txm+1 − u · Txm+2

)
=

1

(n+ 1)(m+ 1)

(
w2 · Txn+1 · Txm+1 − uw · Txn+2 · Txm+1

−uw · Txn+1 · Txm+2 + u2 · Txn+2 · Txm+2
)
.

Using (22) it follows that

(n+ 1)(m+ 1)Ψxn ·Ψxm

=
(n+ 1)(m+ 1)

n+m+ 1
w3 · Txn+m+1 − nm

n+m+ 1
uw2 · Txn+m+2

−(n+ 2)(m+ 1)

n+m+ 2
uw2 · Txn+m+2 +

(n+ 1)m

n+m+ 2
u2w · Txn+m+3

−(n+ 1)(m+ 2)

n+m+ 2
uw2 · Txn+m+2 +

n(m+ 1)

n+m+ 2
u2w · Txn+m+3

+
(n+ 2)(m+ 2)

n+m+ 3
u2w · Txn+m+3 − (n+ 1)(m+ 1)

n+m+ 3
u3 · Txn+m+4.

By a straightforward computation one can check that this yields

Ψxn ·Ψxm =
1

n+m+ 1
w3 · Txn+m+1

− 3n+ 3m+ 4

(n+m+ 1)(n+m+ 2)
uw2 · Txn+m+2

+
3n+ 3m+ 8

(n+m+ 2)(n+m+ 3)
u2w · Txn+m+3

− 1

n+m+ 3
u3 · Txn+m+4.

(25)

Let us now consider the left-hand side of (24). We have

(n+m+ 1)c ·Ψ(xn+m)

= (n+m+ 1)w2 ·Ψxn+m − (n+m+ 1)u · Tx2 ·Ψxn+m

= w3 · Txn+m+1 − uw2 · Txn+m+2

−uw · Tx2 · Txn+m+1 + u2 · Tx2 · Txn+m+2.
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Using (22) we now get

c ·Ψ(xn+m)

=
1

n+m+ 1
w3 · Txn+m+1 − 1

n+m+ 1
uw2 · Txn+m+2

− 2(n+m+ 1)

(n+m+ 1)(n+m+ 2)
uw2 · Txn+m+2

+
n+m

(n+m+ 1)(n+m+ 2)
u2w · Txn+m+3

+
2(n+m+ 2)

(n+m+ 1)(n+m+ 3)
u2w · Txn+m+3

− 1

n+m+ 3
u3 · Txn+m+4.

Comparing this result with (25) one easily checks that (24) holds.
Now set a = u · c and b = w · c− u ·Ψx, and let us show that (18) holds.

It suffices to consider the case where f = xn, n ≥ 0. We have

a ·Ψxn + b ·Ψ(xn)′

= u · c ·Ψxn + nc · w ·Ψxn−1 − nu ·Ψx ·Ψxn−1.

Since Ψx ·Ψxn−1 = c ·Ψxn by (24), it follows that

a ·Ψxn + b ·Ψ(xn)′

= c
(

(1− n)u ·Ψxn + nw ·Ψxn−1
)

= c
(1− n
n+ 1

u ·
(
w · Txn+1 − u · Txn+2

)
+ w ·

(
w · Txn − u · Txn+1

))
= c

( −2n

n+ 1
uw · Txn+1 − 1− n

n+ 1
u2 · Txn+2 + w2 · Txn

)
.

Since w2 = c+ u · Tx2, we see by using (22) that

w2 · Txn = c · Txn + u · Tx2 · Txn

= c · Txn +
1

n+ 1
u ·
(
2nw · Txn+1 − (n− 1)u · Txn+2

)
.

Returning to the previous identity, it now clearly follows that

a ·Ψxn + b ·Ψ(xn)′ = c2 · Txn,

as desired. �

Remark 4.2. The assumption in Theorem 4.1 that A is commutative can
be replaced by a milder assumption that T1 commutes with Tf for every
f ∈ C1[0, 1]. Namely, inspecting the beginning of the proof we see that
under this assumption one can derive (20), from which it clearly follows
that the range of T is commutative. But then one can assume with no loss
of generality that A is commutative.
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How useful is the information given in Theorem 4.1? It depends on c. The
most favorable situation is when c is invertible in A. Then the conclusion of
the theorem can be stated as

(26) Tf = g · Φf + h · Φf ′

for some g, h ∈ A and an algebra homomorphism Φ : C[0, 1] → A; namely,
we define Φf = c−1 ·Ψf , g = c−1a and h = c−1b. This of course characterizes
zero product preserving operators. Let us point out a special case when this
occurs (also taking into account Remark 4.2).

Corollary 4.3. Let A be an arbitrary unital Banach algebra and let T :
C1[0, 1] → A be a continuous linear zero product preserving operator such
that T1 = 0 and Tx = 1. Then there exist a continuous algebra homomor-
phism Ψ : C[0, 1]→ A such that Tf = Ψf ′ for all f ∈ C1[0, 1].

The other extreme case is when c2 = 0 (in particular, if c = 0). Then
Theorem 4.1 is meaningless. Unfortunately, this can occur. Just consider
any operator T such that Tf · Tg = 0 for all f, g ∈ C1[0, 1]. Not only that
c = 0 in this case, but (26) does not necessarily hold. By taking direct
sums of algebras one can find more subtle examples. All these suggest that
in this generality, i.e. when A is an arbitrary algebra, the characterization
of arbitrary zero product preserving operators seems to be beyond reach.
Thus one might consider some special algebras A. In the next corollary we
will handle the case where A = `∞(S), the Banach algebra of all bounded
functions on a non-empty set S. We will basically show that (26) holds in
this case.

Corollary 4.4. Let T : C1[0, 1]→ `∞(S) be a continuous linear zero product
preserving operator. Then there exist functions g, h ∈ `∞(S) and a function
µ : S → [0, 1] such that

(Tf)(s) = g(s)f(µ(s)) + h(s)f ′(µ(s)) (f ∈ C1[0, 1], s ∈ S).

Proof. Let us first consider a continuous linear zero product preserving op-
erator T from C1[0, 1] into C (thus, T satisfies the condition that Tf = 0 or
Tg = 0 whenever fg = 0). As we shall see, the general case can be easily
reduced to this one. First we note that if c from Theorem 4.1 is not 0, then
T takes the form (26) for some homomorphism Φ : C1[0, 1] → C. Since ev-
ery nonzero homomorphism from C1[0, 1] into C is an evaluation functional,
the desired conclusion that Tf = gf(µ) + hf ′(µ) for some g, h ∈ C and
µ ∈ [0, 1] follows immediately in this case. So we may assume that c = 0,
that is, uTx2 = (Tx)2, where u = T1. Suppose that u = 0. Then also
w = Tx = 0. Returning back to the beginning of the proof of Theorem 4.1,
we see from (22) that (Txk)2 = 0. Hence Txk = 0 and so T = 0. Therefore
we may assume that u 6= 0. From (24) it clearly follows that Ψ = 0, and
so, by (23), uTxn+2 = TxTxn+1. A simple induction argument shows that
this implies uk−1Txk = (Tx)k for all k ≥ 1. Consequently, the functional
Θ : C1[0, 1]→ C given by Θf = u−1Tf satisfies Θxn+m = ΘxnΘxm and so
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it is a nonzero homomorphism. But then there exists µ ∈ [0, 1] such that
Θf = f(µ), and hence Tf = uf(µ).

Now consider the general case with T : C1[0, 1] → `∞(S). For every
s ∈ S, the operator f 7→ (Tf)(s) is a zero product preserving operator
from C1[0, 1] into C. Therefore, by what we have just proved, there exist
g(s), h(s) ∈ C and µ(s) ∈ C such that (Tf)(s) = g(s)f(µ(s))+h(s)f ′(µ(s)).
It only remains to show that the functions s 7→ g(s) and s 7→ h(s) are
bounded. But this follows immediately by first setting f = 1 and then
f = x in the above formula. �

Corollary 4.4 is of course also applicable to zero product preserving op-
erators from C1[0, 1] into algebras of continuous bounded functions. One
might then wonder whether (or better, where) the functions g, h and µ are
continuous in this case. But we shall not consider this question here. Let us
refer the reader to the paper by Kantrowitz and Neumann [5] which consid-
ers a zero product preserving continuous linear operator T which is defined
on Cm(Ω), where m ≥ 0 and Ω is an open subset of Rn, and maps into C(Γ)
where Γ is a locally compact Hausdorff space. Although there are some dif-
ferences in the general setting, Kantrowitz and Neumann have treated in [5]
a more general problem and Corollary 4.4 is not really surprising in view of
their achievements. Yet this corollary is of some interest because of its proof
which does not use standard tools of the theory of zero product preserving
operators between function algebras such as support points.
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différentiels”, Math. Scand. 8 (1960), 116-120.

J. Alaminos, J. Extremera, and A. R. Villena, Departamento de Análisis
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