
ALGEBRAS IN WHICH NONSCALAR ELEMENTS HAVE SMALL

CENTRALIZERS

MATEJ BREŠAR

Abstract. We describe algebras in which the centralizer of every nonscalar element is equal
to the subalgebra generated by this element, and finite dimensional algebras (over perfect
fields) in which the centralizer of every nonscalar element is commutative.

1. Introduction

Let A be a unital algebra over a field F . We identify F with F ·1, the set of scalar multiples
of 1. Let C(a) denote the centralizer of an element a ∈ A in A. The goal of the paper is to
classify algebras in which every nonscalar element has trivial centralizer, i.e.,

(tc) C(a) = F [a] for every a ∈ A \ F ,

and finite dimensional algebras (over perfect fields) in which every nonscalar element has a
commutative centralizer, i.e.,

(cc) C(a) is commutative for every a ∈ A \ F .

In Theorem 3.1 we will show that only subalgebras of the 2 × 2 matrix algebra M2(F ) and
certain finite dimensional central division algebras satisfy (tc); in particular, every algebra
satisfying (tc) is finite dimensional. The class of finite dimensional algebras satisfying (cc) is
somewhat larger and will be described in Theorem 6.1. We do not consider infinite dimensional
algebras satisfying (cc) as this class of algebras seems to be too broad. For example, it includes
free algebras and the first Weyl algebra (cf. [3, Example 2]).

With M2(F ) and the quaternions H presenting themselves as immediate examples of alge-
bras satisfying (tc), we have found this condition interesting in its own right. Apparently
quite similar conditions in rings have been studied in [1]; however, as it is evident from the
results, these conditions are of a different nature and can occur mostly in finite rings. We
also remark that a similar yet slightly less restrictive condition in groups has been considered
recently in [2].

Our main motivation for studying the condition (cc) comes from the paper by Dolžan,
Klep, and Moravec [3] dealing with weakly commutative transitive rings. These are rings in
which C(a) is commutative for every noncentral element a. Note that an algebra satisfying
(cc) can be described as a weakly commutative transitive algebra which is either commuta-
tive or central, i.e., its center consists of scalar multiples of unity. Restricting to such weakly
commutative transitive algebras makes the classification problem more approachable. We re-
mark that [3] primarily deals with finite rings and so has only a very small overlap with the
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present paper. Let us also mention the paper [4] which classifies finite dimensional Lie algebras
(over algebraically closed fields with characteristic 0) whose nonzero elements have commu-
tative centralizers. Finally, it should be pointed out that the concept of (weak) commutative
transitivity has an origin in group theory where it has a much richer history (cf. [3, 4]).

2. Introductory remarks

For S ⊆ A we write C(S) for the centralizer of S in A. Thus,

C(S) = {x ∈ A |xs = sx for all s ∈ S}.

Instead of C({a}) we write C(a). Note that C(a) = C(F [a]) and that F [a] ⊆ C(a).

3. Algebras in which nonscalar elements have trivial centralizers

Borrowing the terminology from group theory, we will say that a subalgebra S of A is self-
centralizing if C(S) ⊆ S. We will be interested in unital algebras in which every subalgebra
properly containing F is self-centralizing. Obviously, it is enough to consider only algebras
generated by a single element, and so our condition is equivalent to the condition

(1) C(a) = F [a] for every a ∈ A \ F .

An immediate example of an algebra satisfying (1) is M2(F ), the algebra of 2× 2 matrices
over F ; indeed, one easily checks that C(a) = F +Fa for every a ∈M2(F ) \F . A slightly less
obvious example is a finite dimensional division algebra D in which every subfield different
from F is maximal. Indeed, if a ∈ D \ F , then F [a] is a subfield of D (for a is algebraic) and
hence every d ∈ C(a) lies in F [a] for otherwise the subalgebra generated by a and d would be a
subfield properly containing F [a]. If D is commutative, then this condition can be read as that
D is a finite field extension of F such that there are no intermediate fields between F and D. If
D is not commutative, then it is necessarily central (i.e., its center is F ). Every central division
algebra D of prime degree p (i.e., of dimension p2) has this property. Indeed, this is because
the dimension of every subfield K of D divides the dimension of D, therefore all subfields
different from F are of the same dimension p and hence they are automatically maximal. A
simple concrete example with p = 2 and F = R is the division algebra of quaternions H. As
far as we know, however, central division algebras whose nontrivial subfields are all maximal
are not yet fully understood. At any rate, they do exist and they do satisfy (1). Finally, let
us point out that if A satisfies (1), then so do its (unital) subalgebras.

The following theorem shows that there are no other algebras satisfying (1) apart from
those mentioned in the previous paragraph.

Theorem 3.1. Let A be a unital algebra over a field F . Then C(a) = F [a] for every a ∈ A\F
if and only if one of the following statements holds:

(i) A can be embedded into M2(F ).
(ii) A is a finite dimensional division algebra in which every subfield different from F is

maximal.

Proof. The proof of the “if” part is straightforward and has already been outlined above.
Therefore we only prove the “only if” part. Thus, assume that A satisfies C(a) = F [a] for
every a ∈ A \ F .
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Let us first consider the case where A contains an idempotent e different from 0 and 1. Since
eAe ⊆ C(e) = F +Fe it clearly follows that eAe = Fe. Similarly, (1− e)A(1− e) = F (1− e).
Further, since the elements in eA(1 − e) commute among themselves, it is easy to see that
eA(1− e) is either 0 or is 1-dimensional. The same is true for (1− e)Ae. If both eA(1− e) and
eA(1− e) are 0, then A = Fe⊕F (1− e) is isomorphic to F ×F , and hence to the subalgebra
of M2(F ) consisting of all diagonal matrices. Suppose that eA(1− e) 6= 0 and (1− e)Ae = 0.
Taking 0 6= n ∈ eA(1 − e) we then have A = Fe ⊕ F (1 − e) ⊕ Fn with n2 = 0, en = n, and
ne = 0. It is obvious that A is isomorphic to the subalgebra of M2(F ) consisting of all upper
triangular matrices. The same is true if eA(1 − e) = 0 and (1 − e)Ae 6= 0. Assume, finally,
that eA(1− e) 6= 0 and (1− e)Ae 6= 0. Pick 0 6= n ∈ eA(1− e) and 0 6= m ∈ (1− e)Ae. Thus,
A = Fe ⊕ F (1 − e) ⊕ Fn ⊕ Fm, nm = αe and mn = β(1 − e) for some α, β ∈ F . Hence
βm = (mn)m = m(nm) = αm, implying that α = β. If α = β = 0, then m ∈ C(n) = F +Fn
which is easily seen to be impossible for n ∈ eA(1− e) and m ∈ (1− e)Ae. Thus, α = β 6= 0,
and by replacing n by α−1n we may in fact assume that α = β = 1. It is now clear that
A ∼= M2(F ). We have thereby shown that A satisfies (i) in case it contains a nontrivial
idempotent. From now on we assume that 0 and 1 are the only idempotents in A.

Since a ∈ C(a2) = F [a2] whenever a2 /∈ F , every element in A is algebraic over F . That
is to say, the algebra F [a] is finite dimensional for every a ∈ A. Note that our assumption
on A implies that every commutative subalgebra of A is of the form F [a] for some a ∈ A.
Accordingly, every commutative subalgebra of A is finite dimensional. But then A itself is
finite dimensional by the result of Laffey [5].

Let N be the radical of A, i.e., the (unique) maximal nilpotent ideal of A. As is well-known,
idempotents in A/N can be lifted to idempotents in A. Since we have assumed that A has
no nontrivial idempotents, the same is true for A/N . As a semisimple algebra, A/N is then
necessarily a division algebra by Wedderburn’s structure theorem. This means that A is a
local ring. Every element in A \N is thus invertible (indeed, if b+N is the inverse of a+N
in A/N , then (ab− 1)s = (ba− 1)s = 0, implying that a is invertible in A).

Suppose that N 6= 0. Let s ≥ 2 be such that N s = 0 and N s−1 6= 0. Take 0 6= r ∈ N s−1

and b ∈ N . Then rb = 0 = br. In particular, b ∈ C(r) and hence b = λ0 +λ1r+ · · ·+λmr
m for

some λi ∈ F . Multiplying by r it follows that λ0r = 0, and hence λ0 = 0. Now, multiplying
b = λ1r + · · · + λmr

m by any element b′ ∈ N it follows that bb′ = 0. Thus, N2 = 0 (and so
s = 2). Moreover, each b ∈ N is a scalar multiple of r, i.e., N = Fr. Consequently, for every
a ∈ A there exists λa ∈ F such that ar = λar. Since elements in A \ N are invertible and
(a − λa)r = 0 it follows that a − λa ∈ N = Fr. Therefore A = F ⊕ Fr and A is isomorphic
to the subalgebra of M2(F ) consisting of all matrices of the form

[
λ µ
0 λ

]
, λ, µ ∈ F .

We may now assume that N = 0 and hence that A is a finite dimensional division algebra.
Suppose thatA is central, i.e., its center is F . IfK is a subfield of A which contains a noncentral
element a, and L is another subfield of A which contains K, then L ⊆ C(a) = F [a], so that
L = K. Thus, (ii) holds in this case. Finally, assume that A is not central, i.e., its center
contains a nonscalar element c. Then A is commutative since A = C(c) = F [c]. Note that (ii)
holds in this case, too. �
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4. Finite dimensional semisimple nCT algebras

An algebra A is called weakly commutative transitive (wCT) if C(a) is commutative for
every a ∈ A \ Z(D) [3]. We will consider a version of this condition, namely,

(2) C(a) is commutative for every a ∈ A \ F .

Let us call an algebra satisfying (2) nearly commutative transitive (nCT). Note that an nCT
algebra is either commutative or is a central wCT algebra. Examples of infinite dimensional
central wCT algebras are the first Weyl algebra A1 over C and every free algebra F 〈X〉 (cf. [3,
Example 2]). The class of nCT algebras is thus considerably larger than the class of algebras
satisfying (1). We will restrict ourselves to finite dimensional algebras over a field F , for which
we will assume that it is perfect (so that Wedderburn’s principal theorem can be used). Recall
that fields of characteristic 0, algebraically closed fields, and finite fields are all examples of
perfect fields.

Lemma 4.1. Let D be a finite dimensional central division algebra. Then the following
conditions are equivalent:

(a) D is nCT (or, equivalently, wCT).
(b) Every proper subalgebra of D is commutative.
(c) Every subfield of D different from F is maximal.
(d) C(a) = F [a] for every a ∈ A \ F .

Proof. (a)=⇒(b). Take a noncommutative subalgebra S of D. Of course, S itself is a division
algebra. By the double centralizer theorem we have [D : F ] = [S : F ][C(S) : F ] and C(C(S)) =
S. If S is a proper subalgebra of D, then C(S) contains a nonscalar element a and hence
S ⊆ C(a). Therefore C(a) is noncommutative and D is not wCT.

(b)=⇒(c). Let K be a subfield of D. Then K is the center of C(K) (see, e.g., [6, Lemma
3.1.8]). Assuming (b) it follows that K = C(K), which readily implies that K is maximal.

(c)=⇒(d). Since F [a] is a subfield of D different from F if a ∈ D \ F , it must be maximal
if (c) holds. But then C(a) cannot contain an element outside F [a] for otherwise a and such
an element would generate a subfield greater than F [a].

(d)=⇒(a). Trivial. �

It is now easy to describe all finite dimensional semisimple nCT algebras.

Proposition 4.2. Let A be a finite dimensional semisimple algebra. Then A is nCT if and
only if one of the following statements holds:

(i) A is commutative.
(ii) A ∼= M2(F ).
(iii) A is a central division algebra in which every proper subalgebra different from F is a

maximal subfield.

Proof. In view of Lemma 4.1 it suffices to prove the “only if” part. Thus, let A be nCT,
and assume that it is not commutative. Then it is a central algebra, and so Wedderburn’s
structure theorem obviously implies that it is simple, and moreover, that it is isomorphic to
Mn(D) where D is a central division algebra. It is clear that n cannot be greater than 2 since
otherwise the matrix unit e11 would have a noncommutative centralizer. For the same reason
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D must be commutative if n = 2, and hence (ii) holds. If n = 1, then A = D satisfies the
conditions of Lemma 4.1, i.e., (iii) holds. �

Corollary 4.3. A noncommutative finite dimensional semisimple algebra A is nCT if and
only if C(a) = F [a] for every a ∈ A \ F .

5. Trivial extensions with admissible bimodules

Let M be a unital bimodule over an algebra A. Recall that the vector space A⊕M becomes
a (unital) algebra, called the trivial extension of A by M , if we define multiplication by

(a,m) · (a′,m′) = (aa′, am′ +ma′).

Identifying A with A ⊕ 0 and M with 0 ⊕M we see that A is a subalgebra of A ⊕M , M is
an ideal of A⊕M , and M2 = 0.

For reasons that will become clear soon, we will be interested in a (unital) bimodule M 6= 0
satisfying the following condition: For all a ∈ A and m ∈ M , am = ma implies a ∈ F or
m = 0. Let us call such a bimodule M an admissible bimodule.

Example 5.1. Let A be a field extension of F and take an automorphism ϕ of A such that
ϕ(a) 6= a whenever a ∈ A\F . Endow the space M = A with the bimodule structure a·m = am,
m · a = mϕ(a). Then M is admissible.

Example 5.2. Let M be a field extension of F , and let K,L be intermediate fields such that
K ∩ L = F . Set A = K × L. Note that by defining (x, y) ·m = xm and m · (x, y) = my, M
becomes an admissible A-bimodule.

Example 5.3. The direct sum of admissible bimodules is admissible.

Lemma 5.4. If A is an nCT algebra and M is a admissible A-bimodule, then the trivial
extension of A by M is a central nCT algebra.

Proof. One can easily check that A⊕M is central. Pick a nonscalar element (b, u) ∈ A⊕M . We
must show that its centralizer in A⊕M is commutative. Thus, assume that [(x,m), (b, u)] =
[(y, n), (b, u)] = 0. Our goal is to prove that [(x,m), (y, n)] = 0. That is, we want to establish
the following:

(3) [x, b] = [y, b] = 0, [x, u] = [b,m], [y, u] = [b, n] =⇒ [x, y] = 0, [x, n] = [y,m]

(note that we are now using the notation [ · , · ] also for commutators of elements from A and
M).

If b ∈ F , then u 6= 0 and [x, u] = [y, u] = 0, yielding x, y ∈ F . Thus, (3) holds in this case.
Assume therefore that b /∈ F . Since A is nCT, [x, b] = [y, b] = 0 implies [x, y] = 0. Further,
using the Jacobi identity we have

[[x, n], b] = [x, [n, b]] + [n, [b, x]] = [x, [n, b]] = [x, [u, y]],

and

[[y,m], b] = [m, [b, y]] + [y, [m, b]] = [y, [u, x]] = [[y, u], x] + [[x, y], u] = [x, [u, y]].

Thus, [[x, n] − [y,m], b] = 0. Since M is admissible, the desired conclusion [x, n] = [y,m]
follows. �
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Example 5.2 shows that an algebra with an admissible module may contain a nontrivial
idempotent. However, we have

Lemma 5.5. If an algebra A has an admissible bimodule M , then A does not contain three
pairwise ortogonal nonzero idempotents whose sum is 1.

Proof. Suppose e1, e2, e3 were pairwise orthogonal idempotents in A with e1 + e2 + e3 = 1 and
ei 6= 0. Given any m ∈ M , eimej must be zero for (eimej)ek = ek(eimej) where k /∈ {i, j}.
But then m = (e1 + e2 + e3)m(e1 + e2 + e3) = 0 for every m ∈M – a contradiction. �

The next lemma in paricular shows that finite dimensional central simple algebras different
from F do not have admissible bimodules.

Lemma 5.6. Let A be a finite dimensional central simple algebra, and let M be a nonzero
unital A-bimodule. Then for every a ∈ A there exists 0 6= m ∈M such that am = ma.

Proof. We can turn M into a left A ⊗ Ao-module by setting (a ⊗ b)m = amb. Recall that
A ⊗ Ao ∼= EndF (A) via a ⊗ b 7→ LaRb where La(x) = ax and Rb(x) = xb. Of course, we can
consider M also as an EndF (A)-module. Since EndF (A) is simple, M is equal to the (direct)
sum of a family of simple submodules. Let M1 be a simple submodule. Then M1 is isomorphic
to A. Given any a ∈ A, the endomorphism La−Ra has a nonzero kernel and hence there exists
0 6= m ∈M1 such that (La−Ra)m = 0. That is, (a⊗ 1− 1⊗a)m = 0, yielding am = ma. �

6. Classifying finite dimensional nCT algebras

We now have enough information to classify finite dimensional nCT algebras over perfect
fields.

Theorem 6.1. A finite dimensional algebra over a perfect field F is nCT if and only if one
of the following statements holds:

(i) A is commutative.
(ii) A ∼= M2(F ).
(iii) A is a central division algebra in which every proper subalgebra different from F is a

maximal subfield.
(iv) A is the trivial extension of an extension field K of F by an admissible K-bimodule.
(v) A is the trivial extension of the direct product K ×L of two extension fields K,L of F

by an admissible K × L-bimodule.

Proof. The “if” part follows from Theorem 3.1 and Lemma 5.4. To prove the “only if” part,
assume that A is nCT and is not commutative (so that A is central).

If A is semisimple, then it satisfies (ii) or (iii) by Proposition 4.2. We may thus assume that
the radical N of A is not 0. Let s ≥ 2 be such that N s = 0 and N s−1 6= 0. Since N ⊆ C(r)
for every r ∈ N s−1 it follows that N is commutative. Given any x ∈ A and n,m ∈ N we thus
have m(xn) = (xn)m and, on the other hand, (mx)n = nmx. Hence nm lies in the center of
A and is thus a scalar. But then nm = 0. That is, N2 = 0.

Wedderburn’s principal theorem states that A is the vector space direct sum of N and a
subalgebra B of A such that B ∼= A/N . Since N is an B-bimodule and N2 = 0, we may regard
A as the trivial extension of B by N . Moreover, if B is commutative, then N is admissible.
Namely, if, in this case, bm = mb holds for some b ∈ B and 0 6= m ∈ M , then it follows that
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[b,N ] = 0 since N ⊆ C(m). But then b commutes with every element in A and is thus a
scalar.

By Wedderburn’s structure theorem we know that B ∼= B1 × · · · × Br for some simple
algebras Bi. Suppose first that r = 1. If B = B1 is not commutative then its center may
consist only of scalars for A is nCT. Thus, B is a central simple algebra and, as a subalgebra of
A, it is nCT. Hence B is either a division algebra or is isomorphic to M2(F ) by Proposition 4.2.
Pick b ∈ B\F . By Lemma 5.6 there exists 0 6= m ∈ N such that bm = mb. Since m commutes
with every element in N it follows that [b,N ] = 0. Thus, b(xm) = (xm)b = x(mb) = xbm
for every x ∈ B. That is, [b, x]m = 0. If B is a division algebra, then [b, x] is invertible
whenever it is not zero, leading to a contradiction m = 0. Similarly, if B ∼= M2(F ) then it has
matrix units eij , 1 ≤ i, j ≤ 2, and by setting e12, e21, and e12 + e21 for x one easily infers that
[b, x] is invertible for some x, again leading to a contradiction. Therefore B is commutative.
Since it is also simple, it is a field extension of F . As observed in the preceding paragraph,
N is an admissible B-bimodule, i.e., (iv) holds. Assume now that r ≥ 2. Then each Bi must
be commutative since it is contained in the centralizer of each element from the other Bj ’s.
Thus, each Bi is a field extension of F . Moreover, B is commutative and N is therefore an
admissible B-bimodule. Lemma 5.5 implies that r = 2. That is, (v) holds. �
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