CONTINUOUS COMMUTING FUNCTIONS ON MATRIX ALGEBRAS

MATEJ BREŠAR, PETER ŠEMRL

Abstract

If a continuous function $f: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ satisfies $f(x) x=$ $x f(x)$ for all $x \in M_{n}(\mathbb{C})$, then there exist functions $a_{0}, a_{1}, \ldots, a_{n-1}: M_{n}(\mathbb{C}) \rightarrow$ \mathbb{C} such that $f(x)=\sum_{j=0}^{n-1} a_{j}(x) x^{j}$ for all $x \in M_{n}(\mathbb{C})$. Moreover, a_{j} are continuous on the set of all non-derogatory matrices.

Dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday

1. Introduction

A function f from an algebra A to itself is said to be commuting if

$$
f(x) x=x f(x)
$$

for all $x \in A$. The problem of describing such functions has been studied by many authors over the last six decades, and has in particular played a key role in the development of the theory of functional identities and, especially, of its applications. We refer the reader to the survey paper [1] and Chapters $5-8$ of the book [2] for history and motivation.

In the framework of functional identities, f is usually assumed to be the trace of an m-linear function $F: A^{m} \rightarrow A$ (meaning that $f(x)=F(x, \ldots, x)$ for all $x \in$ $A)$. The desired conclusion, then, is that f is of the form $f(x)=\sum_{j=0}^{m} a_{j}(x) x^{j}$, $x \in A$, where a_{j} is the trace of an $(m-j)$-linear function and maps A into its center $Z(A)$. In a series of papers by different authors, started in the early 1990's, it was shown that this holds for quite general algebras A (see $[1,2]$ for details). However, the techniques of functional identities do not work well in low dimensional algebras, and so, paradoxically, the case where A is the matrix algebra $M_{n}(F)$ (with F a field of characteristic 0) was covered only rather recently [3]. The proof was based on the methods of commutative algebra.

In this short paper, we address the question of describing a commuting function $f: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ under the sole assumption that f is continuous. This is, of course, much weaker than requiring that f is the trace of an m-linear function. However, assuming continuity makes it possible to approach the problem from a fresh perspective, using methods that are essentially different from those employed in $[1,2]$ as well as in [3]. What to expect under this assumption? It is tempting to conjecture that f has to be of the form

$$
\begin{equation*}
f(x)=a_{0}(x) 1+a_{1}(x) x+\cdots+a_{n-1}(x) x^{n-1} \tag{1.1}
\end{equation*}
$$

for all $x \in M_{n}(\mathbb{C})$, where $a_{0}, a_{1}, \ldots, a_{n-1}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ are continuous functions. Unfortunately, this is not exactly true. Actually, it does turn out that f takes

[^0]the form (1.1), but we cannot claim that the a_{j} 's are continuous on the whole set $M_{n}(\mathbb{C})$. We will prove, however, that they are continuous on the subset of all non-derogatory matrices, and, moreover, provide an example showing that for every derogatory matrix $d \in M_{n}(\mathbb{C})$ there exists a continuous commuting function $f: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ such that if $a_{j}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ are any functions that satisfy (1.1) for all $x \in M_{n}(\mathbb{C})$, then at least one of them is discontinuous at d.

2. Example

A matrix $x \in M_{n}(\mathbb{C})$ is called non-derogatory [4] if and only if one (and hence all) of the following equivalent conditions holds:

- the characteristic and minimal polynomial of x coincide (i.e., $1, x, \ldots, x^{n-1}$ are linearly independent),
- for each eigenvalue λ of x, there is exactly one Jordan block with the eigenvalue λ in the Jordan normal form of x,
- each matrix $y \in M_{n}(\mathbb{C})$ that commutes with x is of the form $y=p(x)$ for some polynomial $p \in \mathbb{C}[X]$.
We denote by $N_{n}(\mathbb{C}) \subset M_{n}(\mathbb{C})$ the set of all non-derogatory matrices. The set $N_{n}(\mathbb{C})$ is dense in $M_{n}(\mathbb{C})$ since $N_{n}(\mathbb{C})$ contains all $n \times n$ matrices having n distinct eigenvalues, and the set of all such matrices is dense in $M_{n}(\mathbb{C})$. The set $N_{n}(\mathbb{C})$ is also open in $M_{n}(\mathbb{C})$. Indeed, $x_{0} \in N_{n}(\mathbb{C})$ if and only if the matrices $1, x_{0}, \ldots, x_{0}^{n-1}$ are linearly independent. Since a small enough perturbation of a linearly independent n-tuple of vectors is again linearly independent, there is an open neighbourhood of x_{0} such that every member of this neighbourhood belongs to $N_{n}(\mathbb{C})$.

Let $f: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a commuting map. Then, for every $x \in N_{n}(\mathbb{C})$ there exists a polynomial $p_{x} \in \mathbb{C}[X]$ (depending on x) such that $f(x)=p_{x}(x)$. Of course, we may assume that $\operatorname{deg} p_{x} \leq n-1$, and since $1, x, \ldots, x^{n-1}$ are linearly independent, there exist uniquely determined functions $a_{0}, a_{1}, \ldots, a_{n-1}$: $N_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ such that (1.1) holds for all $x \in N_{n}(\mathbb{C})$. Assume additionally that f is continuous. Since $N_{n}(\mathbb{C})$ is dense in $M_{n}(\mathbb{C})$, it seems plausible at first glance that the functions a_{j} are continuous and can be continuously extended to $M_{n}(\mathbb{C})$ so that (1.1) holds for all $x \in M_{n}(\mathbb{C})$. However, it turns out that this is not entirely true. To show this, the natural idea is to find functions $a_{0}, a_{1}, \ldots, a_{n-1}$: $M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ that are continuous on $N_{n}(\mathbb{C})$ and behave badly when x tends to some derogatory matrix d, while the function $f: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ given by (1.1) is continuous at d.

Example 2.1. Let $n \geq 2$ and let $d \in M_{n}(\mathbb{C})$ be a derogatory matrix with minimal polynomial $m(X)=\sum_{j=0}^{r} \lambda_{j} X^{j} \in \mathbb{C}[X]$, where $1 \leq r<n$ and $\lambda_{r}=1$. Define $f: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by

$$
f(x)=\left\{\begin{array}{ccc}
\frac{1}{\sqrt{\|x-d\|}} m(x) & \text { if } & x \neq d \\
0 & \text { if } & x=d
\end{array},\right.
$$

where $\|\cdot\|$ is a submultiplicative norm on $M_{n}(\mathbb{C})$. Then f is commuting and continuous on $M_{n}(\mathbb{C}) \backslash\{d\}$. Let us show that it is also continuous at d. To this end, note that for every $h \in M_{n}(\mathbb{C})$,

$$
m(d+h)=\sum_{j=0}^{r} \lambda_{j}(d+h)^{j}
$$

can be written as a sum of matrices of the form

$$
\lambda_{j} d^{k_{1}} h^{\ell_{1}} d^{k_{2}} h^{\ell_{2}} \cdots d^{k_{s}} h^{\ell_{s}}
$$

where $k_{i}, \ell_{i} \geq 0, \sum_{i=1}^{s} k_{i}+\ell_{i}=j \leq r$, and, since $m(d)=0$, at least one ℓ_{i} is positive. This implies that there exist nonnegative constants $c_{1}, c_{2}, \ldots, c_{r}=1$ such that

$$
\|m(d+h)\| \leq c_{1}\|h\|+c_{2}\|h\|^{2}+\cdots+c_{r}\|h\|^{r}
$$

Consequently,

$$
\begin{gathered}
\lim _{h \rightarrow 0}\|f(d+h)\|=\lim _{h \rightarrow 0}\left\|\frac{1}{\sqrt{\|h\|}} m(d+h)\right\| \\
\leq \lim _{h \rightarrow 0} \frac{1}{\sqrt{\|h\|}}\left(c_{1}\|h\|+c_{2}\|h\|^{2}+\cdots+c_{r}\|h\|^{r}\right)=0
\end{gathered}
$$

proving that f is continuous on $M_{n}(\mathbb{C})$.
Now let $a_{j}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}, j=0,1, \ldots, n-1$, be any functions satisfying (1.1) for every $x \in M_{n}(\mathbb{C})$. Since $1, x, \ldots, x^{n-1}$ are linearly independent if $x \in N_{n}(\mathbb{C})$, we have

$$
a_{r}(x)=\frac{1}{\sqrt{\|x-d\|}}
$$

for every $x \in N_{n}(\mathbb{C})$. As $N_{n}(\mathbb{C})$ is dense in $M_{n}(\mathbb{C})$, it follows that a_{r} is discontinuous at d.

3. Main Theorem

We start with a technical lemma.
Lemma 3.1. Let \mathcal{U} be a unitary space (a finite-dimensional complex inner product space), $\mathcal{W} \subset \mathcal{U}$ an open subset, and $x_{0} \in \mathcal{W}$. Let m be a positive integer, $u_{0}, u_{1}, \ldots, u_{m}: \mathcal{W} \rightarrow \mathcal{U}$ continuous functions, and $b_{0}, b_{1}, \ldots, b_{m}: \mathcal{W} \rightarrow \mathbb{C}$ scalarvalued functions. Assume that

$$
h(x)=b_{0}(x) u_{0}(x)+b_{1}(x) u_{1}(x)+\ldots+b_{m}(x) u_{m}(x), \quad x \in \mathcal{W}
$$

is a continuous function from \mathcal{W} to \mathcal{U} such that $h\left(x_{0}\right)=0$. Finally suppose that the vectors $u_{0}\left(x_{0}\right), u_{1}\left(x_{1}\right), \ldots, u_{m}\left(x_{0}\right)$ are linearly independent. Then we have

$$
\lim _{x \rightarrow x_{0}} b_{j}(x)=0
$$

for every $j=0,1, \ldots, m$.
Proof. Since $u_{0}\left(x_{0}\right), u_{1}\left(x_{1}\right), \ldots, u_{m}\left(x_{0}\right)$ are linearly independent, we can find an orthonormal system of vectors $e_{0}, e_{1}, \ldots, e_{m}$ and a bijective linear map $T: \mathcal{U} \rightarrow \mathcal{U}$ such that

$$
T u_{j}\left(x_{0}\right)=e_{j}
$$

for all $j=0,1, \ldots, m$. Replacing the functions $h, u_{0}, \ldots, u_{m}: \mathcal{W} \rightarrow \mathcal{U}$ by the functions $T h, T u_{0}, \ldots, T u_{m}$, respectively, we see that there is no loss of generality in assuming that $u_{j}\left(x_{0}\right)=e_{j}$ for all $j=0,1, \ldots, m$. It follows that

$$
\lim _{x \rightarrow x_{0}} u_{j}(x)=e_{j}, \quad j=0,1, \ldots, m
$$

For each $x \in \mathcal{W}$ and each $j \in\{0,1, \ldots, m\}$ there exists a unique scalar $\lambda_{j}(x) \in \mathbb{C}$ and a unique vector $z_{j}(x)$ orthogonal to e_{j} such that

$$
u_{j}(x)=\lambda_{j}(x) e_{j}+z_{j}(x)
$$

Then

$$
\lambda_{j}(x)=\left\langle u_{j}(x), e_{j}\right\rangle,
$$

and therefore

$$
\lim _{x \rightarrow x_{0}} \lambda_{j}(x)=1 \text { and } \lim _{x \rightarrow x_{0}} z_{j}(x)=0, \quad j=0,1, \ldots, m
$$

Since all norms on a finite-dimensional vector space are equivalent, there exists a positive real number c such that for every $(m+1)$-tuple of complex numbers $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m}$ we have

$$
\sum_{j=0}^{m}\left|\gamma_{j}\right| \leq c \sqrt{\sum_{j=0}^{m}\left|\gamma_{j}\right|^{2}}
$$

Let ε be any positive real number less than $\frac{1}{1+c}$. By the above we can find a neighbourhood \mathcal{V} of x_{0} in \mathcal{W} such that for every $x \in \mathcal{V}$ and every $j \in\{0,1, \ldots, m\}$ we have

- $\|h(x)\|<\varepsilon$, and
- $1-\varepsilon<\lambda_{j}(x)$, and
- $\left\|z_{j}(x)\right\|<\varepsilon$.

Hence, for every $x \in \mathcal{V}$ we have

$$
\begin{aligned}
\varepsilon>\|h(x)\|= & \left\|\sum_{j=0}^{m} b_{j}(x) u_{j}(x)\right\|=\left\|\sum_{j=0}^{m} b_{j}(x) \lambda_{j}(x) e_{j}+\sum_{j=0}^{m} b_{j}(x) z_{j}(x)\right\| \\
& \geq\left\|\sum_{j=0}^{m} b_{j}(x) \lambda_{j}(x) e_{j}\right\|-\left\|\sum_{j=0}^{m} b_{j}(x) z_{j}(x)\right\| \\
\geq & \sqrt{\sum_{j=0}^{m}\left|b_{j}(x)\right|^{2}\left|\lambda_{j}(x)\right|^{2}}-\sum_{j=0}^{m}\left|b_{j}(x)\right|\left\|z_{j}(x)\right\| \\
& \geq(1-\varepsilon) \sqrt{\sum_{j=0}^{m}\left|b_{j}(x)\right|^{2}}-\varepsilon \sum_{j=0}^{m}\left|b_{j}(x)\right| \\
\geq & \geq(1-\varepsilon) \sqrt{\sum_{j=0}^{m}\left|b_{j}(x)\right|^{2}}-c \varepsilon \sqrt{\sum_{j=0}^{m}\left|b_{j}(x)\right|^{2}} .
\end{aligned}
$$

It follows that for every $x \in \mathcal{V}$ we have

$$
\sqrt{\sum_{j=0}^{m}\left|b_{j}(x)\right|^{2}}<\frac{\varepsilon}{1-\varepsilon(1+c)},
$$

and consequently,

$$
\lim _{x \rightarrow x_{0}} b_{j}(x)=0, \quad j=0, \ldots, m,
$$

as desired.
We are now in a position to prove our main result.

Theorem 3.2. Let $f: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a continuous commuting function. Then there exist functions $a_{0}, a_{1}, \ldots, a_{n-1}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ that are continuous on the set $N_{n}(\mathbb{C})$ of all non-derogatory matrices and satisfy

$$
f(x)=a_{0}(x) 1+a_{1}(x) x+\cdots+a_{n-1}(x) x^{n-1}
$$

for all $x \in M_{n}(\mathbb{C})$.
Proof. The bulk of the proof is showing that

$$
\begin{equation*}
f(x) \in \operatorname{span}\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}, \quad x \in M_{n}(\mathbb{C}) \tag{3.1}
\end{equation*}
$$

From this the desired conclusion follows. Indeed, with the help of the axiom of choice we see that (3.1) implies that there exist functions $a_{j}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ satisfying $f(x)=\sum_{j=0}^{n-1} a_{j}(x) x^{j}$ for all $x \in M_{n}(\mathbb{C})$. All we need to prove is that they are continuous on $N_{n}(\mathbb{C})$. Since all norms on $M_{n}(\mathbb{C})$ are equivalent, it is enough to show this for the case where $M_{n}(\mathbb{C})$ is a unitary space with the inner product given by

$$
\langle x, y\rangle=\operatorname{tr}\left(x y^{*}\right), \quad x, y \in M_{n}(\mathbb{C})
$$

Choose $x_{0} \in N_{n}(\mathbb{C})$. Define a continuous function $h: N_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by

$$
h(x)=b_{0}(x) u_{0}(x)+b_{1}(x) u_{1}(x)+\ldots+b_{n-1}(x) u_{n-1}(x), \quad x \in N_{n}(\mathbb{C})
$$

where

$$
b_{j}(x)=a_{j}(x)-a_{j}\left(x_{0}\right) \text { and } u_{j}(x)=x^{j}, \quad j=0,1, \ldots, n-1
$$

Since $N_{n}(\mathbb{C})$ is open in $M_{n}(\mathbb{C})$, an application of Lemma 3.1 gives $\lim _{x \rightarrow x_{0}} b_{j}(x)=$ 0 , so a_{j} is continuous at x_{0}.

Thus, from now on we focus on proving (3.1).
We will need the following observation. Let k be a positive integer, $z \in M_{k}(\mathbb{C})$, and $\Lambda \subset \mathbb{C}$ a finite subset. Then for every positive real number ε we can find a matrix $w \in M_{k}(\mathbb{C})$ such that w has k distinct eigenvalues, each eigenvalue of w belongs to $\mathbb{C} \backslash \Lambda$, and $\|z-w\|<\varepsilon$. To verify this we only need to apply Schur's theorem stating that every complex square matrix is unitarily similar to an upper triangular matrix. As unitary similarity does not affect the norm we may assume with no loss of generality that z is already upper triangular. But then the eigenvalues of z are exactly its diagonal entries and by a sufficiently small perturbation of the diagonal entries of z we can get w with the desired properties.

In the proof we will identify $n \times n$ matrices with linear operators acting on \mathbb{C}^{n}. Our first claim is that for every $x \in M_{n}(\mathbb{C})$ and every subspace $U \in \mathbb{C}^{n}$ that is invariant under x, the subspace U is invariant under the operator $f(x)$ as well.

Indeed, with respect to the direct sum decomposition $\mathbb{C}^{n}=U \oplus U^{\perp}$, the operator x has the matrix representation

$$
x=\left[\begin{array}{cc}
x_{1} & x_{2} \\
0 & x_{3}
\end{array}\right]
$$

and using the above observation it is possible to find a sequence $\left(x_{m}\right)$ of matrices

$$
x_{m}=\left[\begin{array}{cc}
x_{m, 1} & x_{2} \\
0 & x_{m, 3}
\end{array}\right]
$$

converging to x such that both $x_{m, 1}$ and $x_{m, 3}$ are matrices with all eigenvalues of algebraic multiplicity one, and moreover, the intersection of the spectra of $x_{m, 1}$
and $x_{m, 3}$ is empty for every positive integer m. It follows that each x_{m} is nonderogatory and consequently, each $f\left(x_{m}\right)$ is a polynomial in x_{m}. In particular, for every positive integer m the matrix $f\left(x_{m}\right)$ is of the form

$$
f\left(x_{m}\right)=\left[\begin{array}{ll}
* & * \\
0 & *
\end{array}\right]
$$

and by continuity of f, the same must be true for $f(x)$. Equivalently, U is invariant under $f(x)$, as desired.

It follows that if $x \in M_{n}(\mathbb{C})$ is similar to a block diagonal matrix, that is, if there exists an invertible $s \in M_{n}(\mathbb{C})$ such that

$$
x=s\left[\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & x_{p}
\end{array}\right] s^{-1}
$$

where x_{1} is a $k_{1} \times k_{1}$ matrix, x_{2} is a $k_{2} \times k_{2}$ matrix, \ldots, and x_{p} is a $k_{p} \times k_{p}$ matrix, $k_{1}+\cdots+k_{p}=n$, then

$$
f(x)=s\left[\begin{array}{cccc}
* & 0 & \ldots & 0 \\
0 & * & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & *
\end{array}\right] s^{-1}
$$

where the $*$'s stand for some $k_{1} \times k_{1}$ matrix, some $k_{2} \times k_{2}$ matrix, \ldots, and some $k_{p} \times k_{p}$ matrix.

For a positive integer k and a complex number λ we denote by $j(\lambda, k)$ the $k \times k$ Jordan block with eigenvalue λ, that is,

$$
j(\lambda, k)=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
0 & 0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda
\end{array}\right]
$$

A $k \times k$ matrix w commutes with $j(0, k)$ if and only if it commutes with $j(\lambda, k)$ for every complex number λ, and this is equivalent to the condition that w is an upper triangular Toeplitz matrix

$$
w=\left[\begin{array}{ccccc}
\mu_{1} & \mu_{2} & \mu_{3} & \ldots & \mu_{k} \\
0 & \mu_{1} & \mu_{2} & \ldots & \mu_{k-1} \\
0 & 0 & \mu_{1} & \ldots & \mu_{k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \mu_{1}
\end{array}\right]
$$

for some $\mu_{1}, \ldots, \mu_{k} \in \mathbb{C}$.
Thus, if $x \in M_{n}(\mathbb{C})$ has the Jordan canonical form

$$
x=s\left[\begin{array}{cccc}
j\left(\lambda_{1}, k_{1}\right) & 0 & \cdots & 0 \\
0 & j\left(\lambda_{2}, k_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & j\left(\lambda_{p}, k_{p}\right)
\end{array}\right] s^{-1}
$$

$k_{1}+\cdots+k_{p}=n$, then

$$
f(x)=s\left[\begin{array}{cccc}
* & 0 & \ldots & 0 \\
0 & * & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & *
\end{array}\right] s^{-1}
$$

where the $*$'s stand for some $k_{1} \times k_{1}$ upper triangular Toeplitz matrix, some $k_{2} \times k_{2}$ upper triangular Toeplitz matrix, \ldots, and some $k_{p} \times k_{p}$ upper triangular Toeplitz matrix.

Note that in general $\lambda_{1}, \ldots, \lambda_{p}$ are not distinct.
Our next claim is that if $a, b \in M_{p+q}(\mathbb{C})$ are operators

$$
a=\left[\begin{array}{cc}
j(\lambda, p) & 0 \\
0 & j(\lambda, q)
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right]
$$

where b_{1} and b_{2} are upper triangular Toeplitz matrices, such that every subspace $U \subset \mathbb{C}^{n}$ that is invariant under a is also invariant under b, then there exists a polynomial $p \in \mathbb{C}[X]$ such that $b=p(a)$. Indeed, we may assume with no loss of generality that $p \geq q$ and then we have

$$
b=\left[\begin{array}{ccccc}
{\left[\begin{array}{ccccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \ldots & \alpha_{p} \\
0 & \alpha_{1} & \alpha_{2} & \ldots & \alpha_{p-1} \\
0 & 0 & \alpha_{1} & \ldots & \alpha_{p-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \alpha_{1}
\end{array}\right]} & \begin{array}{cccc}
\\
& & &
\end{array} & \left.\begin{array}{ccccc}
\beta_{1} & \beta_{2} & \beta_{3} & \ldots & \beta_{q} \\
0 & \beta_{1} & \beta_{2} & \ldots & \beta_{q-1} \\
0 & 0 & \beta_{1} & \ldots & \beta_{q-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \beta_{1}
\end{array}\right]
\end{array}\right]
$$

and we need to prove that $\alpha_{j}=\beta_{j}, j=1, \ldots, q$. Let $\xi_{1}, \ldots, \xi_{p}, \xi_{p+1}, \ldots, \xi_{p+q}$ denote the standard basis of \mathbb{C}^{p+q}. Since span $\left\{\xi_{1}+\xi_{p+1}\right\}$ is an invariant subspace under a, it has to be invariant also under b yielding that $\alpha_{1}=\beta_{1}$. We observe next that span $\left\{\xi_{1}+\xi_{p+1}, \xi_{2}+\xi_{p+2}\right\}$ is also invariant under a, and hence under b. It follows that $\alpha_{2}=\beta_{2}$. After q steps we get all the desired equalities.

A straightforward argument extends the above statement from the direct sum of two Jordan blocks with the same eigenvalue to the direct sum of any number of Jordan blocks with the same eigenvalue. Hence, if $x \in M_{n}(\mathbb{C})$ whose eigenvalues are $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ can be written as

$$
x=s\left[\begin{array}{cccc}
x_{\lambda_{1}} & 0 & \ldots & 0 \\
0 & x_{\lambda_{2}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & x_{\lambda_{k}}
\end{array}\right] s^{-1}
$$

where $x_{\lambda_{j}}, j=1, \ldots, k$, is the direct sum of all Jordan blocks belonging to the eigenvalue λ_{j}, then there exist polynomials $p_{1}, \ldots, p_{k} \in \mathbb{C}[X]$ such that

$$
f(x)=s\left[\begin{array}{cccc}
p_{1}\left(x_{\lambda_{1}}\right) & 0 & \ldots & 0 \\
0 & p_{2}\left(x_{\lambda_{2}}\right) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & p_{k}\left(x_{\lambda_{k}}\right)
\end{array}\right] s^{-1}
$$

We need to show that we actually have $f(x)=p(x)$ for some polynomial p. The problem that the polynomials p_{1}, \ldots, p_{k} are not necessarily equal can be resolved by a dimension argument. To see this we observe that the linear space \mathcal{M} of all matrices of the form $q(x)$, where q is any polynomial, is a subspace of the linear space \mathcal{N} of all matrices of the form

$$
s\left[\begin{array}{cccc}
q_{1}\left(x_{\lambda_{1}}\right) & 0 & \ldots & 0 \\
0 & q_{2}\left(x_{\lambda_{2}}\right) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & q_{k}\left(x_{\lambda_{k}}\right)
\end{array}\right] s^{-1}
$$

where $q_{1}, \ldots, q_{k} \in \mathbb{C}[X]$ are any polynomials. To conclude our proof we need to show that $\mathcal{M}=\mathcal{N}$ and to verify this it is enough to check that

$$
\begin{equation*}
\operatorname{dim} \mathcal{M}=\operatorname{dim} \mathcal{N} \tag{3.2}
\end{equation*}
$$

The dimension of \mathcal{M} equals the degree of the minimal polynomial of x, which is equal to $r_{1}+\cdots+r_{k}$, where $r_{j}, j=1, \ldots, k$, is the size of the largest Jordan block corresponding to the eigenvalue λ_{j}.

On the other hand, we have

$$
r_{j}=\operatorname{dim} \mathcal{N}_{j}=\operatorname{dim}\left\{q\left(x_{\lambda_{j}}\right): q \in \mathbb{C}[X]\right\}
$$

and since \mathcal{N} is isomorphic to the direct sum of linear spaces $\mathcal{N}_{j}, j=1, \ldots, k$, we conclude that (3.2) is true. With this, (3.1) is proved.

Acknowledgment. We would like to thank the referee for suggestions that helped us to improve the presentation of the paper.

References

[1] M. Brešar, Commuting maps: A survey, Taiwanese J. Math. 8 (2004), 361-397.
[2] M. Brešar, M. A. Chebotar, W. S. Martindale 3rd, Functional Identities, Birkhäuser Verlag, 2007.
[3] M. Brešar, Š. Špenko, Functional identities in one variable, J. Algebra 401 (2014), 234-244.
[4] R. A. Horn, C. R. Johnson, Matrix Analysis (2nd ed.), Cambridge University Press, 2013.

Matej Brešar, Faculty of Mathematics and Physics, University of Luubljana, and Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

E-mail address: matej.bresar@fmf.uni-lj.si
Peter Šemrl, Faculty of Mathematics and Physics, University of Ljubljana, Slovenia.

E-mail address: peter.semrl@fmf.uni-lj.si

[^0]: Key words and phrases. Continuous commuting function, functional identities, matrix algebra, non-derogatory matrix.

 Mathematics Subject Classification. 16R60, 15A27, 15A30.
 Supported by ARRS Grants P1-0288, N1-0061, and J1-8133.

