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Abstract. If a continuous function f : Mn(C) → Mn(C) satisfies f(x)x =
xf(x) for all x ∈ Mn(C), then there exist functions a0, a1, . . . , an−1 : Mn(C) →
C such that f(x) =

∑n−1
j=0 aj(x)xj for all x ∈ Mn(C). Moreover, aj are

continuous on the set of all non-derogatory matrices.

Dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday

1. Introduction

A function f from an algebra A to itself is said to be commuting if

f(x)x = xf(x)

for all x ∈ A. The problem of describing such functions has been studied by
many authors over the last six decades, and has in particular played a key role
in the development of the theory of functional identities and, especially, of its
applications. We refer the reader to the survey paper [1] and Chapters 5-8 of the
book [2] for history and motivation.

In the framework of functional identities, f is usually assumed to be the trace
of an m-linear function F : Am → A (meaning that f(x) = F (x, . . . , x) for all x ∈
A). The desired conclusion, then, is that f is of the form f(x) =

∑m
j=0 aj(x)xj ,

x ∈ A, where aj is the trace of an (m − j)-linear function and maps A into
its center Z(A). In a series of papers by different authors, started in the early
1990’s, it was shown that this holds for quite general algebras A (see [1, 2] for
details). However, the techniques of functional identities do not work well in
low dimensional algebras, and so, paradoxically, the case where A is the matrix
algebra Mn(F ) (with F a field of characteristic 0) was covered only rather recently
[3]. The proof was based on the methods of commutative algebra.

In this short paper, we address the question of describing a commuting func-
tion f : Mn(C) → Mn(C) under the sole assumption that f is continuous. This
is, of course, much weaker than requiring that f is the trace of an m-linear func-
tion. However, assuming continuity makes it possible to approach the problem
from a fresh perspective, using methods that are essentially different from those
employed in [1, 2] as well as in [3]. What to expect under this assumption? It is
tempting to conjecture that f has to be of the form

(1.1) f(x) = a0(x)1 + a1(x)x+ · · ·+ an−1(x)xn−1

for all x ∈Mn(C), where a0, a1, . . . , an−1 : Mn(C)→ C are continuous functions.
Unfortunately, this is not exactly true. Actually, it does turn out that f takes
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the form (1.1), but we cannot claim that the aj ’s are continuous on the whole
set Mn(C). We will prove, however, that they are continuous on the subset of
all non-derogatory matrices, and, moreover, provide an example showing that for
every derogatory matrix d ∈Mn(C) there exists a continuous commuting function
f : Mn(C)→ Mn(C) such that if aj : Mn(C)→ C are any functions that satisfy
(1.1) for all x ∈Mn(C), then at least one of them is discontinuous at d.

2. Example

A matrix x ∈Mn(C) is called non-derogatory [4] if and only if one (and hence
all) of the following equivalent conditions holds:

• the characteristic and minimal polynomial of x coincide (i.e., 1, x, . . . , xn−1

are linearly independent),
• for each eigenvalue λ of x, there is exactly one Jordan block with the

eigenvalue λ in the Jordan normal form of x,
• each matrix y ∈Mn(C) that commutes with x is of the form y = p(x) for

some polynomial p ∈ C[X].

We denote by Nn(C) ⊂ Mn(C) the set of all non-derogatory matrices. The
set Nn(C) is dense in Mn(C) since Nn(C) contains all n × n matrices having n
distinct eigenvalues, and the set of all such matrices is dense in Mn(C). The set
Nn(C) is also open in Mn(C). Indeed, x0 ∈ Nn(C) if and only if the matrices
1, x0, . . . , x

n−1
0 are linearly independent. Since a small enough perturbation of a

linearly independent n-tuple of vectors is again linearly independent, there is an
open neighbourhood of x0 such that every member of this neighbourhood belongs
to Nn(C).

Let f : Mn(C) → Mn(C) be a commuting map. Then, for every x ∈ Nn(C)
there exists a polynomial px ∈ C[X] (depending on x) such that f(x) = px(x).
Of course, we may assume that deg px ≤ n − 1, and since 1, x, . . . , xn−1 are
linearly independent, there exist uniquely determined functions a0, a1, . . . , an−1 :
Nn(C)→ C such that (1.1) holds for all x ∈ Nn(C). Assume additionally that f
is continuous. Since Nn(C) is dense in Mn(C), it seems plausible at first glance
that the functions aj are continuous and can be continuously extended to Mn(C)
so that (1.1) holds for all x ∈ Mn(C). However, it turns out that this is not
entirely true. To show this, the natural idea is to find functions a0, a1, . . . , an−1 :
Mn(C) → C that are continuous on Nn(C) and behave badly when x tends to
some derogatory matrix d, while the function f : Mn(C)→Mn(C) given by (1.1)
is continuous at d.

Example 2.1. Let n ≥ 2 and let d ∈ Mn(C) be a derogatory matrix with
minimal polynomial m(X) =

∑r
j=0 λjX

j ∈ C[X], where 1 ≤ r < n and λr = 1.

Define f : Mn(C)→Mn(C) by

f(x) =

{
1√
‖x−d‖

m(x) if x 6= d

0 if x = d
,

where ‖ · ‖ is a submultiplicative norm on Mn(C). Then f is commuting and
continuous on Mn(C) \ {d}. Let us show that it is also continuous at d. To this
end, note that for every h ∈Mn(C),

m(d+ h) =

r∑
j=0

λj(d+ h)j



CONTINUOUS COMMUTING FUNCTIONS ON MATRIX ALGEBRAS 3

can be written as a sum of matrices of the form

λjd
k1h`1dk2h`2 · · · dksh`s ,

where ki, `i ≥ 0,
∑s

i=1 ki + `i = j ≤ r, and, since m(d) = 0, at least one `i is
positive. This implies that there exist nonnegative constants c1, c2, . . . , cr = 1
such that

‖m(d+ h)‖ ≤ c1‖h‖+ c2‖h‖2 + · · ·+ cr‖h‖r.
Consequently,

lim
h→0
‖f(d+ h)‖ = lim

h→0

∥∥∥∥∥ 1√
‖h‖

m(d+ h)

∥∥∥∥∥
≤ lim

h→0

1√
‖h‖

(
c1‖h‖+ c2‖h‖2 + · · ·+ cr‖h‖r

)
= 0,

proving that f is continuous on Mn(C).
Now let aj : Mn(C)→ C, j = 0, 1, . . . , n− 1, be any functions satisfying (1.1)

for every x ∈Mn(C). Since 1, x, . . . , xn−1 are linearly independent if x ∈ Nn(C),
we have

ar(x) =
1√
‖x− d‖

for every x ∈ Nn(C). As Nn(C) is dense in Mn(C), it follows that ar is discon-
tinuous at d.

3. Main Theorem

We start with a technical lemma.

Lemma 3.1. Let U be a unitary space (a finite-dimensional complex inner prod-
uct space), W ⊂ U an open subset, and x0 ∈ W. Let m be a positive integer,
u0, u1, . . . , um :W → U continuous functions, and b0, b1, . . . , bm :W → C scalar-
valued functions. Assume that

h(x) = b0(x)u0(x) + b1(x)u1(x) + . . .+ bm(x)um(x), x ∈ W,

is a continuous function from W to U such that h(x0) = 0. Finally suppose that
the vectors u0(x0), u1(x1), . . . , um(x0) are linearly independent. Then we have

lim
x→x0

bj(x) = 0

for every j = 0, 1, . . . ,m.

Proof. Since u0(x0), u1(x1), . . . , um(x0) are linearly independent, we can find an
orthonormal system of vectors e0, e1, . . . , em and a bijective linear map T : U → U
such that

Tuj(x0) = ej

for all j = 0, 1, . . . ,m. Replacing the functions h, u0, . . . , um : W → U by the
functions Th, Tu0, . . . , Tum, respectively, we see that there is no loss of generality
in assuming that uj(x0) = ej for all j = 0, 1, . . . ,m. It follows that

lim
x→x0

uj(x) = ej , j = 0, 1, . . . ,m.

For each x ∈ W and each j ∈ {0, 1, . . . ,m} there exists a unique scalar λj(x) ∈ C
and a unique vector zj(x) orthogonal to ej such that

uj(x) = λj(x)ej + zj(x).
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Then

λj(x) = 〈uj(x), ej〉,
and therefore

lim
x→x0

λj(x) = 1 and lim
x→x0

zj(x) = 0, j = 0, 1, . . . ,m.

Since all norms on a finite-dimensional vector space are equivalent, there exists
a positive real number c such that for every (m + 1)-tuple of complex numbers
γ0, γ1, . . . , γm we have

m∑
j=0

|γj | ≤ c

√√√√ m∑
j=0

|γj |2.

Let ε be any positive real number less than 1
1+c . By the above we can find a

neighbourhood V of x0 inW such that for every x ∈ V and every j ∈ {0, 1, . . . ,m}
we have

• ‖h(x)‖ < ε, and
• 1− ε < λj(x), and
• ‖zj(x)‖ < ε.

Hence, for every x ∈ V we have

ε > ‖h(x)‖ =

∥∥∥∥∥∥
m∑
j=0

bj(x)uj(x)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑
j=0

bj(x)λj(x)ej +

m∑
j=0

bj(x)zj(x)

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
m∑
j=0

bj(x)λj(x)ej

∥∥∥∥∥∥−
∥∥∥∥∥∥
m∑
j=0

bj(x)zj(x)

∥∥∥∥∥∥
≥

√√√√ m∑
j=0

|bj(x)|2|λj(x)|2 −
m∑
j=0

|bj(x)| ‖zj(x)‖

≥ (1− ε)

√√√√ m∑
j=0

|bj(x)|2 − ε
m∑
j=0

|bj(x)|

≥ (1− ε)

√√√√ m∑
j=0

|bj(x)|2 − cε

√√√√ m∑
j=0

|bj(x)|2.

It follows that for every x ∈ V we have√√√√ m∑
j=0

|bj(x)|2 < ε

1− ε(1 + c)
,

and consequently,

lim
x→x0

bj(x) = 0, j = 0, . . . ,m,

as desired. �

We are now in a position to prove our main result.



CONTINUOUS COMMUTING FUNCTIONS ON MATRIX ALGEBRAS 5

Theorem 3.2. Let f : Mn(C) → Mn(C) be a continuous commuting function.
Then there exist functions a0, a1, . . . , an−1 : Mn(C) → C that are continuous on
the set Nn(C) of all non-derogatory matrices and satisfy

f(x) = a0(x)1 + a1(x)x+ · · ·+ an−1(x)xn−1

for all x ∈Mn(C).

Proof. The bulk of the proof is showing that

(3.1) f(x) ∈ span {1, x, x2, . . . , xn−1}, x ∈Mn(C).

From this the desired conclusion follows. Indeed, with the help of the axiom
of choice we see that (3.1) implies that there exist functions aj : Mn(C) → C
satisfying f(x) =

∑n−1
j=0 aj(x)xj for all x ∈ Mn(C). All we need to prove is that

they are continuous on Nn(C). Since all norms on Mn(C) are equivalent, it is
enough to show this for the case where Mn(C) is a unitary space with the inner
product given by

〈x, y〉 = tr (xy∗), x, y ∈Mn(C).

Choose x0 ∈ Nn(C). Define a continuous function h : Nn(C)→Mn(C) by

h(x) = b0(x)u0(x) + b1(x)u1(x) + . . .+ bn−1(x)un−1(x), x ∈ Nn(C),

where

bj(x) = aj(x)− aj(x0) and uj(x) = xj , j = 0, 1, . . . , n− 1.

Since Nn(C) is open in Mn(C), an application of Lemma 3.1 gives limx→x0 bj(x) =
0, so aj is continuous at x0.

Thus, from now on we focus on proving (3.1).
We will need the following observation. Let k be a positive integer, z ∈Mk(C),

and Λ ⊂ C a finite subset. Then for every positive real number ε we can find
a matrix w ∈ Mk(C) such that w has k distinct eigenvalues, each eigenvalue of
w belongs to C \ Λ, and ‖z − w‖ < ε. To verify this we only need to apply
Schur’s theorem stating that every complex square matrix is unitarily similar to
an upper triangular matrix. As unitary similarity does not affect the norm we
may assume with no loss of generality that z is already upper triangular. But
then the eigenvalues of z are exactly its diagonal entries and by a sufficiently
small perturbation of the diagonal entries of z we can get w with the desired
properties.

In the proof we will identify n×n matrices with linear operators acting on Cn.
Our first claim is that for every x ∈ Mn(C) and every subspace U ∈ Cn that is
invariant under x, the subspace U is invariant under the operator f(x) as well.

Indeed, with respect to the direct sum decomposition Cn = U ⊕ U⊥, the
operator x has the matrix representation

x =

[
x1 x2

0 x3

]
and using the above observation it is possible to find a sequence (xm) of matrices

xm =

[
xm,1 x2

0 xm,3

]
converging to x such that both xm,1 and xm,3 are matrices with all eigenvalues of
algebraic multiplicity one, and moreover, the intersection of the spectra of xm,1
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and xm,3 is empty for every positive integer m. It follows that each xm is non-
derogatory and consequently, each f(xm) is a polynomial in xm. In particular,
for every positive integer m the matrix f(xm) is of the form

f(xm) =

[
∗ ∗
0 ∗

]
and by continuity of f , the same must be true for f(x). Equivalently, U is
invariant under f(x), as desired.

It follows that if x ∈ Mn(C) is similar to a block diagonal matrix, that is, if
there exists an invertible s ∈Mn(C) such that

x = s


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xp

 s−1,

where x1 is a k1×k1 matrix, x2 is a k2×k2 matrix, ... , and xp is a kp×kp matrix,
k1 + · · ·+ kp = n, then

f(x) = s


∗ 0 . . . 0
0 ∗ . . . 0
...

...
. . .

...
0 0 . . . ∗

 s−1,

where the ∗’s stand for some k1 × k1 matrix, some k2 × k2 matrix, ... , and some
kp × kp matrix.

For a positive integer k and a complex number λ we denote by j(λ, k) the k×k
Jordan block with eigenvalue λ, that is,

j(λ, k) =


λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ

 .
A k × k matrix w commutes with j(0, k) if and only if it commutes with j(λ, k)
for every complex number λ, and this is equivalent to the condition that w is an
upper triangular Toeplitz matrix

w =


µ1 µ2 µ3 . . . µk
0 µ1 µ2 . . . µk−1

0 0 µ1 . . . µk−2
...

...
...

. . .
...

0 0 0 . . . µ1


for some µ1, . . . , µk ∈ C.

Thus, if x ∈Mn(C) has the Jordan canonical form

x = s


j(λ1, k1) 0 . . . 0

0 j(λ2, k2) . . . 0
...

...
. . .

...
0 0 . . . j(λp, kp)

 s−1,
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k1 + · · ·+ kp = n, then

f(x) = s


∗ 0 . . . 0
0 ∗ . . . 0
...

...
. . .

...
0 0 . . . ∗

 s−1,

where the ∗’s stand for some k1 × k1 upper triangular Toeplitz matrix, some
k2 × k2 upper triangular Toeplitz matrix, ... , and some kp × kp upper triangular
Toeplitz matrix.

Note that in general λ1, . . . , λp are not distinct.
Our next claim is that if a, b ∈Mp+q(C) are operators

a =

[
j(λ, p) 0

0 j(λ, q)

]
and b =

[
b1 0
0 b2

]
,

where b1 and b2 are upper triangular Toeplitz matrices, such that every subspace
U ⊂ Cn that is invariant under a is also invariant under b, then there exists a
polynomial p ∈ C[X] such that b = p(a). Indeed, we may assume with no loss of
generality that p ≥ q and then we have

b =




α1 α2 α3 . . . αp
0 α1 α2 . . . αp−1

0 0 α1 . . . αp−2
...

...
...

. . .
...

0 0 0 . . . α1

 0

0


β1 β2 β3 . . . βq
0 β1 β2 . . . βq−1

0 0 β1 . . . βq−2
...

...
...

. . .
...

0 0 0 . . . β1




and we need to prove that αj = βj , j = 1, . . . , q. Let ξ1, . . . , ξp, ξp+1, . . . , ξp+q
denote the standard basis of Cp+q. Since span {ξ1 +ξp+1} is an invariant subspace
under a, it has to be invariant also under b yielding that α1 = β1. We observe
next that span {ξ1 + ξp+1, ξ2 + ξp+2} is also invariant under a, and hence under
b. It follows that α2 = β2. After q steps we get all the desired equalities.

A straightforward argument extends the above statement from the direct sum
of two Jordan blocks with the same eigenvalue to the direct sum of any number of
Jordan blocks with the same eigenvalue. Hence, if x ∈Mn(C) whose eigenvalues
are {λ1, . . . , λk} can be written as

x = s


xλ1 0 . . . 0
0 xλ2 . . . 0
...

...
. . .

...
0 0 . . . xλk

 s−1,
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where xλj , j = 1, . . . , k, is the direct sum of all Jordan blocks belonging to the
eigenvalue λj , then there exist polynomials p1, . . . , pk ∈ C[X] such that

f(x) = s


p1(xλ1) 0 . . . 0

0 p2(xλ2) . . . 0
...

...
. . .

...
0 0 . . . pk(xλk)

 s−1.

We need to show that we actually have f(x) = p(x) for some polynomial p. The
problem that the polynomials p1, . . . , pk are not necessarily equal can be resolved
by a dimension argument. To see this we observe that the linear space M of all
matrices of the form q(x), where q is any polynomial, is a subspace of the linear
space N of all matrices of the form

s


q1(xλ1) 0 . . . 0

0 q2(xλ2) . . . 0
...

...
. . .

...
0 0 . . . qk(xλk)

 s−1,

where q1, . . . , qk ∈ C[X] are any polynomials. To conclude our proof we need to
show that M = N and to verify this it is enough to check that

(3.2) dimM = dimN .
The dimension of M equals the degree of the minimal polynomial of x, which is
equal to r1 + · · · + rk, where rj , j = 1, . . . , k, is the size of the largest Jordan
block corresponding to the eigenvalue λj .

On the other hand, we have

rj = dimNj = dim{q(xλj ) : q ∈ C[X]}
and since N is isomorphic to the direct sum of linear spaces Nj , j = 1, . . . , k, we
conclude that (3.2) is true. With this, (3.1) is proved. �
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Verlag, 2007.
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