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Abstract. Let R and S be nonassociative unital algebras. Assuming
that either one of them is finite dimensional or both are finitely gener-
ated, we show that every derivation of R ⊗ S is the sum of derivations
of the following three types: (a) adu where u belongs to the nucleus of
R⊗S, (b) Lz ⊗ f where f is a derivation of S and z lies in the center of
R, and (c) g ⊗ Lw where g is a derivation of R and w lies in the center
of S.

1. Introduction

Let R and S be nonassociative algebras. What are natural examples of
derivations of the tensor product algebra R ⊗ S? First of all, just as in
any algebra, every element u from the nucleus gives rise to the derivation
x 7→ ux − xu. Next, given a derivation f of S and an element z from the
center of R, the map given by x ⊗ y 7→ zx ⊗ f(y) is a derivation of R ⊗ S.
Similarly, x⊗y 7→ g(x)⊗wy defines a derivation of R⊗S for every derivation
g of R and every central element w ∈ S. The goal of this short paper is to
prove that under rather mild assumptions – namely, both R and S are unital
and either one of them is finite dimensional or both are finitely generated
– every derivation of R ⊗ S is the sum of derivations of the three types
just described. From the nature of this result, and the relative simplicity
of its proof, one would expect that it is known; however, we have not been
able to find it in the literature. Among related results, we first mention the
one by Block [3, Theorem 7.1] which considers a similar situation, just that
the assumption that R is unital is weakened and, on the other hand, S is
assumed to be associative and commutative. See also [1] for some extensions
of Block’s theorem. Benkart and Osborn dealt with the special case where R
is the (associative) matrix algebra Mn(F ) [2, Corollary 4.9]. Finally, in the
case where both R and S are associative, the description of derivations of
R⊗ S can be (under some finiteness assumptions) obtained as a byproduct
of results on Hochschild cohomology; see, for example, [7, Corollary 3.4].

In the next section we provide all definitions and prove a basic lemma.
The third section is devoted to the main result, and in the last, fourth,
section we record some corollaries.
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2. Preliminaries

Let A be a nonassociative (i.e., not necessarily associative) algebra over
a field F . For x, y, z ∈ A we write

[x, y, z] = (xy)z − x(yz).

The set

N(A) = {n ∈ A | [n,A,A] = [A,n,A] = [A,A, n] = 0}
is called the nucleus of A, and the set

Z(A) = {z ∈ N(A) | zx = xz for all x ∈ A}
is called the center of A. Of course, A is associative if and only if N(A) = A,
and in this case the center is simply the set of elements that commute with
all elements in A. We will consider the case where A = R ⊗ S, the tensor
product of unital algebras R and S. It is therefore important to note that

N(R⊗ S) = N(R)⊗N(S),

as one can readily check.
Recall that a linear map d : A→ A is called a derivation if it satisfies

d(xy) = d(x)y + xd(y) for all x, y ∈ A.

By Der(A) we denote the set of all derivations of A. Further, for every u ∈ A
we define Lu, Ru, adu : A→ A by

Lu(x) = ux, Ru(x) = xu, adu = Lu −Ru.

Note that adu ∈ Der(A) if u ∈ N(A). (If A is associative, such a derivation
is said to be inner; in nonassociative algebras one defines inner derivations
somewhat differently, cf. [8, p. 21]).

The following simple lemma will be needed in the proof of the main result.

Lemma 2.1. Let R and S be nonassociative algebras, let d be a derivation
of R⊗S, and let {si | i ∈ I} be a basis of S. Suppose that S is unital. Then
for each i ∈ I there exists a derivation di of R such that for every x ∈ R we
have

(2.1) d(x⊗ 1) =
∑
i∈I

di(x)⊗ si

and di(x) = 0 for all but finitely many i ∈ I. Furthermore, if R is finitely
generated, then di = 0 for all but finitely many i.

Proof. Of course, for every x ∈ R there exist uniquely determined elements
di(x) ∈ R such that (2.1) holds and di(x) = 0 for all but finitely many i ∈ I.
The linearity of d clearly implies the linearity of di : R→ R. Further,

d(xu⊗ 1) = d
(
(x⊗ 1) · (u⊗ 1)

)
= d(x⊗ 1)(u⊗ 1) + (x⊗ 1)d(u⊗ 1)

yields ∑
i∈I

(
di(xu)− di(x)u− xdi(u)

)
⊗ si = 0,
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which implies that di ∈ Der(R). Finally, assume that R is generated by
the set {r1, . . . , rm}. The set I0 of all i ∈ I such that di(rj) 6= 0 for some
j ∈ {1, . . . ,m} is finite. Clearly, di = 0 for every i ∈ I \ I0. �

In general, there may be infinitely many nonzero derivations di of R such
that for each x ∈ R we have di(x) = 0 for all but finitely many i. For
example, this holds for the partial derivatives ∂

∂Xi
on F [X1, X2, . . . ]. In

such a case, given any elements wi ∈ Z(S) we have that

d =
∑
i∈I

di ⊗ Lwi

is a derivation of R⊗ S.

3. Main result

We are now in a position to prove our main theorem.

Theorem 3.1. Let R and S be nonassociative unital algebras. Suppose that
either at least one of R and S is finite dimensional or they both are finitely
generated. Then every derivation d of R⊗ S can be written as

d = adu+

p∑
j=1

Lzj ⊗ fj +

q∑
i=1

gi ⊗ Lwi ,

where u ∈ N(R) ⊗ N(S), zj ∈ Z(R), wi ∈ Z(S), fj ∈ Der(S), and gi ∈
Der(R).

Proof. Pick a basis {wi | i ∈ I} of Z(S) and extend it to a basis of {wi | i ∈
I} ∪ {si′ | i′ ∈ I ′} of S. According to our assumption, either R is finitely
generated or S is finite dimensional. Using Lemma 2.1 we see that in each of
the two cases we may conclude that there exist finitely many gi, hi ∈ Der(R)
such that, by a slight abuse of notation,

(3.1) d(x⊗ 1) =

q∑
i=1

gi(x)⊗ wi +

l∑
i=1

hi(x)⊗ si

for every x ∈ R. Analogously, we have

(3.2) d(1⊗ y) =

p∑
j=1

zj ⊗ fj(y) +
m∑
j=1

rj ⊗ kj(y)

for every y ∈ S and some fj , kj ∈ Der(S) and some zj ∈ Z(R) and rj ∈ R
which play a similar role as wi ∈ Z(S) and si ∈ S. Combining (3.1) and
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(3.2) we obtain

d(x⊗ y) =d
(
(x⊗ 1) · (1⊗ y)

)
=d(x⊗ 1)(1⊗ y) + (x⊗ 1)d(1⊗ y)

=

q∑
i=1

gi(x)⊗ wiy +

l∑
i=1

hi(x)⊗ siy

+

p∑
j=1

xzj ⊗ fj(y) +

m∑
j=1

xrj ⊗ kj(y).

Thus,

(3.3) d =

q∑
i=1

gi ⊗ Lwi +

l∑
i=1

hi ⊗ Lsi +

p∑
j=1

Lzj ⊗ fj +

m∑
j=1

Rrj ⊗ kj

(here we have used that Lzj = Rzj for zj ∈ Z(R)). Since gi ⊗ Lwi and
Lzj ⊗ fj are derivations of R⊗ S, so is

δ := d−
p∑

j=1

Lzj ⊗ fj −
q∑

i=1

gi ⊗ Lwi .

By (3.3), we can write δ as

δ =
l∑

i=1

hi ⊗ Lsi +
m∑
j=1

Rrj ⊗ kj .

The theorem will be proved by showing that δ = adu for some u ∈ N(R)⊗
N(S).

Suppose that at least one hi is nonzero. Without loss of generality we
may assume that {h1, . . . , hs} is a maximal linearly independent subset of
{h1, . . . , hl}. Writing each hi with i > s as a linear combination of h1, . . . , hs
we see that

∑l
i=1 hi⊗Lsi can be rewritten as

∑s
i=1 hi⊗Lni where ni are lin-

early independent elements in span{s1, . . . , sl}. Similarly, by assuming that
{k1, . . . , kt} is a maximal linearly independent subset of {k1, . . . , km} we can

rewrite
∑m

j=1Rrj ⊗ kj as
∑t

j=1Rmj ⊗ kj where mj are linearly independent

elements in span{r1, . . . , rm}. To summarize, we have

(3.4) δ =
s∑

i=1

hi ⊗ Lni +
t∑

j=1

Rmj ⊗ kj ,

where h1, . . . , hs ∈ Der(R) are linearly independent (or all zero), k1, . . . , kt ∈
Der(S) are linearly independent (or all zero), the elements n1, . . . , ns ∈ S
are linearly independent and such that

(3.5) span{n1, . . . , ns} ∩ Z(S) = 0,

and m1, . . . ,mt ∈ R are linearly independent and such that

(3.6) span{m1, . . . ,mt} ∩ Z(R) = 0.
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Let us express δ in a different way. Since hi and kj , as derivations, vanish
on unity, we have

δ(x⊗ y) = δ
(
(1⊗ y) · (x⊗ 1)

)
= (1⊗ y)δ(x⊗ 1) + δ(1⊗ y)(x⊗ 1)

=

s∑
i=1

hi(x)⊗ yni +

t∑
j=1

mjx⊗ kj(y).

Thus,

(3.7) δ =

s∑
i=1

hi ⊗Rni +

t∑
j=1

Lmj ⊗ kj .

Combining both expressions of δ, (3.4) and (3.7), we will now show that
ni ∈ N(S) for every i. This will be achieved by computing δ(x⊗ yv), where
x ∈ R and y, v ∈ S, in several ways. First, using (3.4) we obtain

δ(x⊗ yv) = δ
(
(1⊗ y) · (x⊗ v)

)
= (1⊗ y)δ(x⊗ v) + δ(1⊗ y)(x⊗ v)

=
s∑

i=1

hi(x)⊗ y(niv) +
t∑

j=1

xmj ⊗ ykj(v) +
t∑

j=1

mjx⊗ kj(y)v.

On the other hand, using (3.7) we obtain

δ(x⊗ yv) = δ
(
(x⊗ y) · (1⊗ v)

)
= δ(x⊗ y)(1⊗ v) + (x⊗ y)δ(1⊗ v)

=
s∑

i=1

hi(x)⊗ (yni)v +
t∑

j=1

mjx⊗ kj(y)v +
t∑

j=1

xmj ⊗ ykj(v).

Comparing these two expressions we get

s∑
i=1

hi(x)⊗
(
y(niv)− (yni)v

)
= 0

for all x ∈ R, y, v ∈ S. This can be written as

s∑
i=1

hi ⊗ (LyLni − Lyni) = 0

for every y ∈ S. Since h1, . . . , hm are linearly independent it follows, by a
basic property of tensor products, that LyLni − Lyni = 0 for every y ∈ S
and every i. That is,

[S, ni, S] = 0

for every i.
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In the second step we use only (3.4). On the one hand, we have

δ(x⊗ yv) = δ
(
(x⊗ y) · (1⊗ v)

)
= δ(x⊗ y)(1⊗ v) + (x⊗ y)δ(1⊗ v)

=

s∑
i=1

hi(x)⊗ (niy)v +

t∑
j=1

xmj ⊗ kj(y)v +

t∑
j=1

xmj ⊗ ykj(v).

On the other hand,

δ(x⊗ yv) =
s∑

i=1

hi(x)⊗ ni(yv) +
t∑

j=1

xmj ⊗ kj(yv)

=

s∑
i=1

hi(x)⊗ ni(yv) +

t∑
j=1

xmj ⊗ kj(y)v +

t∑
j=1

xmj ⊗ ykj(v).

Comparing we obtain
s∑

i=1

hi(x)⊗
(
(niy)v − ni(yv)

)
= 0.

Similarly as above we see that this implies

[ni, S, S] = 0

for every i. Analogously we derive from (3.7) that

[S, S, ni] = 0.

Thus, ni ∈ N(S), i = 1, . . . , s.
In a similar fashion one proves that mj ∈ N(R), j = 1, . . . , t.
From (3.4) and (3.7) it follows that

s∑
i=1

hi ⊗ adni =
t∑

j=1

admj ⊗ kj .

In view of (3.6), {adm1, . . . , admt} is a linearly independent set. Therefore
each kj is a linear combination of the adni’s (see, e.g., [4, Lemma 4.9]).
Thus, there exist λij ∈ F such that

kj =
s∑

i=1

λijadni.

Consequently,
s∑

i=1

(
hi −

t∑
j=1

λijadmj

)
⊗ adni = 0.

Since, by (3.5), the set {adn1, . . . , adnm} is linearly independent, it follows
that

hi =
t∑

j=1

λijadmj .
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Accordingly, using (3.7) we have

δ =

s∑
i=1

t∑
j=1

λij

(
admj ⊗Rni + Lmj ⊗ adni

)

=
s∑

i=1

t∑
j=1

λij

(
Lmj ⊗ Lni −Rmj ⊗Rni

)

=

s∑
i=1

t∑
j=1

λijad (mj ⊗ ni),

=ad
( s∑

i=1

t∑
j=1

λijmj ⊗ ni
)
,

which is the desired conclusion. �

4. Corollaries

We close this paper by three rather straightforward corollaries to Theorem
3.1. The first one considers the situation where there are no other derivations
than those of the form adu with u from the nucleus.

Corollary 4.1. Let R and S be as in Theorem 3.1. If every derivation of
R is of the form adm for some m ∈ N(R) and every derivation of S is of
the form adn for some n ∈ N(S), then every derivation of R ⊗ S is of the
form adu for some u ∈ N(R)⊗N(S).

Proof. If g = adm, m ∈ N(R), and w ∈ Z(S), then g ⊗ Lw = ad (m ⊗ w).
Similarly, if z ∈ Z(R) and f = adn, n ∈ N(S), then Lz⊗f = ad (z⊗n). �

If R and S are associative, this corollary gets a simpler form: if both R
and S have the property that all their derivations are inner, then so does
R ⊗ S. It would be interesting to find out whether or not this also holds
without the finiteness assumptions.

Since the center of the matrix algebraMn(F ) consists of scalar multiples of
the identity matrix, and since every derivation of Mn(F ) is, as is well-known,
inner, the following result by Benkart and Osborn follows immediately.

Corollary 4.2. [2, Corollary 4.9] Let S be an arbitrary nonassociative unital
algebra. Then every derivation d of Mn(S) can be written as d = adu+ f ]

where u ∈ Mn(N(S)) and f ] is a derivation obtained by applying a deriva-
tion f of S to each matrix entry.

The upper triangular matrix algebra Tn(F ) has the same properties, i.e.,
its center is trivial and all of its derivations are inner. Hence we have the
following corollary.

Corollary 4.3. Let S be an arbitrary nonassociative unital algebra. Then
every derivation d of Tn(S) can be written as d = adu + f ] where u ∈
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Tn(N(S)) and f ] is a derivation obtained by applying a derivation f of S to
each matrix entry.

Apparently, this corollary is known only in the case where S is associative
[5, 6].
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