DERIVATIONS OF TENSOR PRODUCTS OF NONASSOCIATIVE ALGEBRAS

MATEJ BREŠAR

Abstract

Let R and S be nonassociative unital algebras. Assuming that either one of them is finite dimensional or both are finitely generated, we show that every derivation of $R \otimes S$ is the sum of derivations of the following three types: (a) ad u where u belongs to the nucleus of $R \otimes S$, (b) $L_{z} \otimes f$ where f is a derivation of S and z lies in the center of R, and (c) $g \otimes L_{w}$ where g is a derivation of R and w lies in the center of S.

1. Introduction

Let R and S be nonassociative algebras. What are natural examples of derivations of the tensor product algebra $R \otimes S$? First of all, just as in any algebra, every element u from the nucleus gives rise to the derivation $x \mapsto u x-x u$. Next, given a derivation f of S and an element z from the center of R, the map given by $x \otimes y \mapsto z x \otimes f(y)$ is a derivation of $R \otimes S$. Similarly, $x \otimes y \mapsto g(x) \otimes w y$ defines a derivation of $R \otimes S$ for every derivation g of R and every central element $w \in S$. The goal of this short paper is to prove that under rather mild assumptions - namely, both R and S are unital and either one of them is finite dimensional or both are finitely generated - every derivation of $R \otimes S$ is the sum of derivations of the three types just described. From the nature of this result, and the relative simplicity of its proof, one would expect that it is known; however, we have not been able to find it in the literature. Among related results, we first mention the one by Block [3, Theorem 7.1] which considers a similar situation, just that the assumption that R is unital is weakened and, on the other hand, S is assumed to be associative and commutative. See also [1] for some extensions of Block's theorem. Benkart and Osborn dealt with the special case where R is the (associative) matrix algebra $M_{n}(F)$ [2, Corollary 4.9]. Finally, in the case where both R and S are associative, the description of derivations of $R \otimes S$ can be (under some finiteness assumptions) obtained as a byproduct of results on Hochschild cohomology; see, for example, [7, Corollary 3.4].

In the next section we provide all definitions and prove a basic lemma. The third section is devoted to the main result, and in the last, fourth, section we record some corollaries.

[^0]
2. Preliminaries

Let A be a nonassociative (i.e., not necessarily associative) algebra over a field F. For $x, y, z \in A$ we write

$$
[x, y, z]=(x y) z-x(y z) .
$$

The set

$$
N(A)=\{n \in A \mid[n, A, A]=[A, n, A]=[A, A, n]=0\}
$$

is called the nucleus of A, and the set

$$
Z(A)=\{z \in N(A) \mid z x=x z \text { for all } x \in A\}
$$

is called the center of A. Of course, A is associative if and only if $N(A)=A$, and in this case the center is simply the set of elements that commute with all elements in A. We will consider the case where $A=R \otimes S$, the tensor product of unital algebras R and S. It is therefore important to note that

$$
N(R \otimes S)=N(R) \otimes N(S)
$$

as one can readily check.
Recall that a linear map $d: A \rightarrow A$ is called a derivation if it satisfies

$$
d(x y)=d(x) y+x d(y) \text { for all } x, y \in A
$$

$\operatorname{By} \operatorname{Der}(A)$ we denote the set of all derivations of A. Further, for every $u \in A$ we define L_{u}, R_{u}, ad $u: A \rightarrow A$ by

$$
L_{u}(x)=u x, \quad R_{u}(x)=x u, \quad \text { ad } u=L_{u}-R_{u} .
$$

Note that ad $u \in \operatorname{Der}(A)$ if $u \in N(A)$. (If A is associative, such a derivation is said to be inner; in nonassociative algebras one defines inner derivations somewhat differently, cf. [8, p. 21]).

The following simple lemma will be needed in the proof of the main result.
Lemma 2.1. Let R and S be nonassociative algebras, let d be a derivation of $R \otimes S$, and let $\left\{s_{i} \mid i \in I\right\}$ be a basis of S. Suppose that S is unital. Then for each $i \in I$ there exists a derivation d_{i} of R such that for every $x \in R$ we have

$$
\begin{equation*}
d(x \otimes 1)=\sum_{i \in I} d_{i}(x) \otimes s_{i} \tag{2.1}
\end{equation*}
$$

and $d_{i}(x)=0$ for all but finitely many $i \in I$. Furthermore, if R is finitely generated, then $d_{i}=0$ for all but finitely many i.

Proof. Of course, for every $x \in R$ there exist uniquely determined elements $d_{i}(x) \in R$ such that (2.1) holds and $d_{i}(x)=0$ for all but finitely many $i \in I$. The linearity of d clearly implies the linearity of $d_{i}: R \rightarrow R$. Further,

$$
d(x u \otimes 1)=d((x \otimes 1) \cdot(u \otimes 1))=d(x \otimes 1)(u \otimes 1)+(x \otimes 1) d(u \otimes 1)
$$

yields

$$
\sum_{i \in I}\left(d_{i}(x u)-d_{i}(x) u-x d_{i}(u)\right) \otimes s_{i}=0
$$

which implies that $d_{i} \in \operatorname{Der}(R)$. Finally, assume that R is generated by the set $\left\{r_{1}, \ldots, r_{m}\right\}$. The set I_{0} of all $i \in I$ such that $d_{i}\left(r_{j}\right) \neq 0$ for some $j \in\{1, \ldots, m\}$ is finite. Clearly, $d_{i}=0$ for every $i \in I \backslash I_{0}$.

In general, there may be infinitely many nonzero derivations d_{i} of R such that for each $x \in R$ we have $d_{i}(x)=0$ for all but finitely many i. For example, this holds for the partial derivatives $\frac{\partial}{\partial X_{i}}$ on $F\left[X_{1}, X_{2}, \ldots\right]$. In such a case, given any elements $w_{i} \in Z(S)$ we have that

$$
d=\sum_{i \in I} d_{i} \otimes L_{w_{i}}
$$

is a derivation of $R \otimes S$.

3. Main result

We are now in a position to prove our main theorem.
Theorem 3.1. Let R and S be nonassociative unital algebras. Suppose that either at least one of R and S is finite dimensional or they both are finitely generated. Then every derivation d of $R \otimes S$ can be written as

$$
d=\operatorname{ad} u+\sum_{j=1}^{p} L_{z_{j}} \otimes f_{j}+\sum_{i=1}^{q} g_{i} \otimes L_{w_{i}}
$$

where $u \in N(R) \otimes N(S), z_{j} \in Z(R)$, $w_{i} \in Z(S), f_{j} \in \operatorname{Der}(S)$, and $g_{i} \in$ $\operatorname{Der}(R)$.

Proof. Pick a basis $\left\{w_{i} \mid i \in I\right\}$ of $Z(S)$ and extend it to a basis of $\left\{w_{i} \mid i \in\right.$ $I\} \cup\left\{s_{i^{\prime}} \mid i^{\prime} \in I^{\prime}\right\}$ of S. According to our assumption, either R is finitely generated or S is finite dimensional. Using Lemma 2.1 we see that in each of the two cases we may conclude that there exist finitely many $g_{i}, h_{i} \in \operatorname{Der}(R)$ such that, by a slight abuse of notation,

$$
\begin{equation*}
d(x \otimes 1)=\sum_{i=1}^{q} g_{i}(x) \otimes w_{i}+\sum_{i=1}^{l} h_{i}(x) \otimes s_{i} \tag{3.1}
\end{equation*}
$$

for every $x \in R$. Analogously, we have

$$
\begin{equation*}
d(1 \otimes y)=\sum_{j=1}^{p} z_{j} \otimes f_{j}(y)+\sum_{j=1}^{m} r_{j} \otimes k_{j}(y) \tag{3.2}
\end{equation*}
$$

for every $y \in S$ and some $f_{j}, k_{j} \in \operatorname{Der}(S)$ and some $z_{j} \in Z(R)$ and $r_{j} \in R$ which play a similar role as $w_{i} \in Z(S)$ and $s_{i} \in S$. Combining (3.1) and
(3.2) we obtain

$$
\begin{aligned}
d(x \otimes y)= & d((x \otimes 1) \cdot(1 \otimes y)) \\
= & d(x \otimes 1)(1 \otimes y)+(x \otimes 1) d(1 \otimes y) \\
= & \sum_{i=1}^{q} g_{i}(x) \otimes w_{i} y+\sum_{i=1}^{l} h_{i}(x) \otimes s_{i} y \\
& +\sum_{j=1}^{p} x z_{j} \otimes f_{j}(y)+\sum_{j=1}^{m} x r_{j} \otimes k_{j}(y) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
d=\sum_{i=1}^{q} g_{i} \otimes L_{w_{i}}+\sum_{i=1}^{l} h_{i} \otimes L_{s_{i}}+\sum_{j=1}^{p} L_{z_{j}} \otimes f_{j}+\sum_{j=1}^{m} R_{r_{j}} \otimes k_{j} \tag{3.3}
\end{equation*}
$$

(here we have used that $L_{z_{j}}=R_{z_{j}}$ for $z_{j} \in Z(R)$). Since $g_{i} \otimes L_{w_{i}}$ and $L_{z_{j}} \otimes f_{j}$ are derivations of $R \otimes S$, so is

$$
\delta:=d-\sum_{j=1}^{p} L_{z_{j}} \otimes f_{j}-\sum_{i=1}^{q} g_{i} \otimes L_{w_{i}}
$$

By (3.3), we can write δ as

$$
\delta=\sum_{i=1}^{l} h_{i} \otimes L_{s_{i}}+\sum_{j=1}^{m} R_{r_{j}} \otimes k_{j}
$$

The theorem will be proved by showing that $\delta=\operatorname{ad} u$ for some $u \in N(R) \otimes$ $N(S)$.

Suppose that at least one h_{i} is nonzero. Without loss of generality we may assume that $\left\{h_{1}, \ldots, h_{s}\right\}$ is a maximal linearly independent subset of $\left\{h_{1}, \ldots, h_{l}\right\}$. Writing each h_{i} with $i>s$ as a linear combination of h_{1}, \ldots, h_{s} we see that $\sum_{i=1}^{l} h_{i} \otimes L_{s_{i}}$ can be rewritten as $\sum_{i=1}^{s} h_{i} \otimes L_{n_{i}}$ where n_{i} are linearly independent elements in $\operatorname{span}\left\{s_{1}, \ldots, s_{l}\right\}$. Similarly, by assuming that $\left\{k_{1}, \ldots, k_{t}\right\}$ is a maximal linearly independent subset of $\left\{k_{1}, \ldots, k_{m}\right\}$ we can rewrite $\sum_{j=1}^{m} R_{r_{j}} \otimes k_{j}$ as $\sum_{j=1}^{t} R_{m_{j}} \otimes k_{j}$ where m_{j} are linearly independent elements in $\operatorname{span}\left\{r_{1}, \ldots, r_{m}\right\}$. To summarize, we have

$$
\begin{equation*}
\delta=\sum_{i=1}^{s} h_{i} \otimes L_{n_{i}}+\sum_{j=1}^{t} R_{m_{j}} \otimes k_{j} \tag{3.4}
\end{equation*}
$$

where $h_{1}, \ldots, h_{s} \in \operatorname{Der}(R)$ are linearly independent (or all zero), $k_{1}, \ldots, k_{t} \in$ $\operatorname{Der}(S)$ are linearly independent (or all zero), the elements $n_{1}, \ldots, n_{s} \in S$ are linearly independent and such that

$$
\begin{equation*}
\operatorname{span}\left\{n_{1}, \ldots, n_{s}\right\} \cap Z(S)=0 \tag{3.5}
\end{equation*}
$$

and $m_{1}, \ldots, m_{t} \in R$ are linearly independent and such that

$$
\begin{equation*}
\operatorname{span}\left\{m_{1}, \ldots, m_{t}\right\} \cap Z(R)=0 \tag{3.6}
\end{equation*}
$$

Let us express δ in a different way. Since h_{i} and k_{j}, as derivations, vanish on unity, we have

$$
\begin{aligned}
\delta(x \otimes y) & =\delta((1 \otimes y) \cdot(x \otimes 1)) \\
& =(1 \otimes y) \delta(x \otimes 1)+\delta(1 \otimes y)(x \otimes 1) \\
& =\sum_{i=1}^{s} h_{i}(x) \otimes y n_{i}+\sum_{j=1}^{t} m_{j} x \otimes k_{j}(y) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\delta=\sum_{i=1}^{s} h_{i} \otimes R_{n_{i}}+\sum_{j=1}^{t} L_{m_{j}} \otimes k_{j} . \tag{3.7}
\end{equation*}
$$

Combining both expressions of δ, (3.4) and (3.7), we will now show that $n_{i} \in N(S)$ for every i. This will be achieved by computing $\delta(x \otimes y v)$, where $x \in R$ and $y, v \in S$, in several ways. First, using (3.4) we obtain

$$
\begin{aligned}
\delta(x \otimes y v) & =\delta((1 \otimes y) \cdot(x \otimes v)) \\
& =(1 \otimes y) \delta(x \otimes v)+\delta(1 \otimes y)(x \otimes v) \\
& =\sum_{i=1}^{s} h_{i}(x) \otimes y\left(n_{i} v\right)+\sum_{j=1}^{t} x m_{j} \otimes y k_{j}(v)+\sum_{j=1}^{t} m_{j} x \otimes k_{j}(y) v .
\end{aligned}
$$

On the other hand, using (3.7) we obtain

$$
\begin{aligned}
\delta(x \otimes y v) & =\delta((x \otimes y) \cdot(1 \otimes v)) \\
& =\delta(x \otimes y)(1 \otimes v)+(x \otimes y) \delta(1 \otimes v) \\
& =\sum_{i=1}^{s} h_{i}(x) \otimes\left(y n_{i}\right) v+\sum_{j=1}^{t} m_{j} x \otimes k_{j}(y) v+\sum_{j=1}^{t} x m_{j} \otimes y k_{j}(v) .
\end{aligned}
$$

Comparing these two expressions we get

$$
\sum_{i=1}^{s} h_{i}(x) \otimes\left(y\left(n_{i} v\right)-\left(y n_{i}\right) v\right)=0
$$

for all $x \in R, y, v \in S$. This can be written as

$$
\sum_{i=1}^{s} h_{i} \otimes\left(L_{y} L_{n_{i}}-L_{y n_{i}}\right)=0
$$

for every $y \in S$. Since h_{1}, \ldots, h_{m} are linearly independent it follows, by a basic property of tensor products, that $L_{y} L_{n_{i}}-L_{y n_{i}}=0$ for every $y \in S$ and every i. That is,

$$
\left[S, n_{i}, S\right]=0
$$

for every i.

In the second step we use only (3.4). On the one hand, we have

$$
\begin{aligned}
\delta(x \otimes y v) & =\delta((x \otimes y) \cdot(1 \otimes v)) \\
& =\delta(x \otimes y)(1 \otimes v)+(x \otimes y) \delta(1 \otimes v) \\
& =\sum_{i=1}^{s} h_{i}(x) \otimes\left(n_{i} y\right) v+\sum_{j=1}^{t} x m_{j} \otimes k_{j}(y) v+\sum_{j=1}^{t} x m_{j} \otimes y k_{j}(v) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\delta(x \otimes y v) & =\sum_{i=1}^{s} h_{i}(x) \otimes n_{i}(y v)+\sum_{j=1}^{t} x m_{j} \otimes k_{j}(y v) \\
& =\sum_{i=1}^{s} h_{i}(x) \otimes n_{i}(y v)+\sum_{j=1}^{t} x m_{j} \otimes k_{j}(y) v+\sum_{j=1}^{t} x m_{j} \otimes y k_{j}(v) .
\end{aligned}
$$

Comparing we obtain

$$
\sum_{i=1}^{s} h_{i}(x) \otimes\left(\left(n_{i} y\right) v-n_{i}(y v)\right)=0
$$

Similarly as above we see that this implies

$$
\left[n_{i}, S, S\right]=0
$$

for every i. Analogously we derive from (3.7) that

$$
\left[S, S, n_{i}\right]=0
$$

Thus, $n_{i} \in N(S), i=1, \ldots, s$.
In a similar fashion one proves that $m_{j} \in N(R), j=1, \ldots, t$.
From (3.4) and (3.7) it follows that

$$
\sum_{i=1}^{s} h_{i} \otimes \operatorname{ad} n_{i}=\sum_{j=1}^{t} \operatorname{ad} m_{j} \otimes k_{j} .
$$

In view of (3.6), $\left\{\operatorname{ad} m_{1}, \ldots, \mathrm{ad} m_{t}\right\}$ is a linearly independent set. Therefore each k_{j} is a linear combination of the ad n_{i} 's (see, e.g., [4, Lemma 4.9]). Thus, there exist $\lambda_{i j} \in F$ such that

$$
k_{j}=\sum_{i=1}^{s} \lambda_{i j} \operatorname{ad} n_{i} .
$$

Consequently,

$$
\sum_{i=1}^{s}\left(h_{i}-\sum_{j=1}^{t} \lambda_{i j} \operatorname{ad} m_{j}\right) \otimes \operatorname{ad} n_{i}=0 .
$$

Since, by (3.5), the set $\left\{\operatorname{ad} n_{1}, \ldots, \operatorname{ad} n_{m}\right\}$ is linearly independent, it follows that

$$
h_{i}=\sum_{j=1}^{t} \lambda_{i j} \operatorname{ad} m_{j} .
$$

Accordingly, using (3.7) we have

$$
\begin{aligned}
\delta & =\sum_{i=1}^{s} \sum_{j=1}^{t} \lambda_{i j}\left(\operatorname{ad} m_{j} \otimes R_{n_{i}}+L_{m_{j}} \otimes \operatorname{ad} n_{i}\right) \\
& =\sum_{i=1}^{s} \sum_{j=1}^{t} \lambda_{i j}\left(L_{m_{j}} \otimes L_{n_{i}}-R_{m_{j}} \otimes R_{n_{i}}\right) \\
& =\sum_{i=1}^{s} \sum_{j=1}^{t} \lambda_{i j} \operatorname{ad}\left(m_{j} \otimes n_{i}\right), \\
& =\operatorname{ad}\left(\sum_{i=1}^{s} \sum_{j=1}^{t} \lambda_{i j} m_{j} \otimes n_{i}\right),
\end{aligned}
$$

which is the desired conclusion.

4. Corollaries

We close this paper by three rather straightforward corollaries to Theorem 3.1. The first one considers the situation where there are no other derivations than those of the form ad u with u from the nucleus.

Corollary 4.1. Let R and S be as in Theorem 3.1. If every derivation of R is of the form ad m for some $m \in N(R)$ and every derivation of S is of the form ad n for some $n \in N(S)$, then every derivation of $R \otimes S$ is of the form ad u for some $u \in N(R) \otimes N(S)$.

Proof. If $g=\operatorname{ad} m, m \in N(R)$, and $w \in Z(S)$, then $g \otimes L_{w}=\operatorname{ad}(m \otimes w)$. Similarly, if $z \in Z(R)$ and $f=\operatorname{ad} n, n \in N(S)$, then $L_{z} \otimes f=\operatorname{ad}(z \otimes n)$.

If R and S are associative, this corollary gets a simpler form: if both R and S have the property that all their derivations are inner, then so does $R \otimes S$. It would be interesting to find out whether or not this also holds without the finiteness assumptions.

Since the center of the matrix algebra $M_{n}(F)$ consists of scalar multiples of the identity matrix, and since every derivation of $M_{n}(F)$ is, as is well-known, inner, the following result by Benkart and Osborn follows immediately.

Corollary 4.2. [2, Corollary 4.9] Let S be an arbitrary nonassociative unital algebra. Then every derivation d of $M_{n}(S)$ can be written as $d=\operatorname{ad} u+f^{\sharp}$ where $u \in M_{n}(N(S))$ and f^{\sharp} is a derivation obtained by applying a derivation f of S to each matrix entry.

The upper triangular matrix algebra $T_{n}(F)$ has the same properties, i.e., its center is trivial and all of its derivations are inner. Hence we have the following corollary.

Corollary 4.3. Let S be an arbitrary nonassociative unital algebra. Then every derivation d of $T_{n}(S)$ can be written as $d=\operatorname{ad} u+f^{\sharp}$ where $u \in$
$T_{n}(N(S))$ and f^{\sharp} is a derivation obtained by applying a derivation f of S to each matrix entry.

Apparently, this corollary is known only in the case where S is associative $[5,6]$.

Acknowledgment. The author would like to thank B. Magajna for most helpful discussions, and to G. Zhou for pointing out [7, Corollary 3.4] to him.

References

[1] S. Azam, Derivations of tensor product algebras, Comm. Algebra 36 (2008), 905-927.
[2] G. M. Benkart, J. M. Osborn, Derivations and automorphisms of nonassociative matrix algebras, Trans. Amer. Math. Soc. 263 (1981), 411-430.
[3] R. E. Block, Determination of the differentiably simple rings with a minimal ideal, Ann. Math. 90 (1969), 433-459.
[4] M. Brešar, Introduction to Noncommutative Algebra, Universitext, Springer, 2014.
[5] S. P. Coelho, C. Polcino Milies, Derivations of upper triangular matrix rings, Linear Algebra Appl. 187 (1993), 263-267.
[6] S. Jøndrup, Automorphisms and derivations of upper triangular matrix rings, Linear Algebra Appl. 221 (1995), 205-218.
[7] J. Le, G. Zhou, On the Hochschild cohomology ring of tensor products of algebras, J. Pure Appl. Algebra 218 (2014), 1463-1477.
[8] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, 1966.
Faculty of Mathematics and Physics, University of Ljubljana, and Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

E-mail address: matej.bresar@fmf.uni-lj.si

[^0]: Key words and phrases. Derivation, nonassociative algebra, tensor product of algebras. 2010 Math. Subj. Class. 17A36, 15A69.
 Supported by ARRS Grant P1-0288.

