
FUNCTIONAL IDENTITIES AND RINGS OF QUOTIENTS

MATEJ BREŠAR

Abstract. The fundamental theorem on functional identities states that a
prime ring R with deg(R) ≥ d is a d-free subset of its maximal left ring of quo-
tients Qml(R). We consider the question whether the same conclusion holds for
symmetric rings of quotients. This indeed turns out to be the case for the maxi-
mal symmetric ring of quotients Qms(R), but not for the symmetric Martindale
ring of quotients Qs(R). We show, however, that if the maps from the basic
functional identities have their ranges in R, then the maps from their standard
solutions have their ranges in Qs(R). We actually prove a more general theo-
rem which implies both aforementioned results. Its proof is somewhat shorter
and more compact than the standard proof used for establishing d-freeness in
various situations.

1. Introduction

The theory of functional identities [4] deals with identical relations on rings
which, besides arbitrary elements from rings (or from their subsets), involve arbi-
trary maps that are considered as unknowns. The basic concept of the theory is
that of a d-free set where d is a positive integer. The exact definition will be given
in Section 3; speaking roughly, a subset of a ring is d-free if certain functional
identities in an appropriate number of variables connected to d have only stan-
dard solutions, i.e., solutions that are “obvious” and independent of the structure
of the ring in question. From the definition it is not at all clear that d-free sets
actually exist in any ring. However, Beidar [2] proved that every prime ring R is
a d-free subset of its maximal left ring of quotients Qml(R), as long as the (by all
means necessary) condition that deg(R), the degree of algebraicity of R over the
extended centroid, is greater or equal to d is fulfilled (see also [4, Theorem 5.11]).
This fundamental theorem has been used to find further examples of d-free sets,
and moreover, has turned out to be applicable to problems in various areas; see
[4]. In spite of its indisputable importance, the theorem still has some room for
improvement. One of its downsides is that Qml(R) may be much larger than R.
Although some larger rings are unavoidable at this level of generality, one might
wish to replace Qml(R) by a ring that is more tightly connected to R. Further, as
the notion of a functional identity is left-right symmetric, it would be more natural
to deal with the symmetric rings of quotients instead of the left ones. Finally, the
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theorem does not say much about the situation which is, especially from the point
of view of applications, most desirable, i.e., when R is a d-free subset of itself (in
such a case we simply call R a d-free ring). To the best of our knowledge, so far
it has not even been known if the free algebra in at most two variables, which
one can view as a model of a prime ring R with deg(R) = ∞, has this property.
The work on this paper actually begun with an attempt to solve this question.
As we will see, the answer is positive. In fact, every symmetrically closed prime
ring R with deg(R) ≥ d is d-free. More generally, we will show for an arbitrary
prime ring R with deg(R) ≥ d that the maps from standard solutions of the basic
functional identities on R have their ranges in the symmetric Martindale ring of
quotients Qs(R), provided that the maps from these identities have their ranges
in R. We remark that this is analogous to the results on identities involving au-
tomorphisms and derivations [3]. Further, we will show that a prime ring R with
deg(R) ≥ d is a d-free subset of Qms(R), the maximal symmetric ring of quotients
of R. All the results just stated will be derived as corollaries to our main theorem
establishing d-freeness in connection with what we call the symmetric fractional
degree, a variation of the notion of the fractional degree (see [4]). On the other
hand, we will also establish some negative results: not every prime ring R with
deg(R) ≥ d is a d-free subset of Qs(R), and a centrally closed prime ring R with
deg(R) ≥ d may not be d-free.

Besides “shrinking” the rings of quotients, the main contribution of the article is
a significant modification of the method used to establish d-freeness. The standard
method, used everywhere in [4], depends on the auxiliary notion of (t; d)-freeness
which is technically and notationally heavy. We will be able to avoid it completely.
To be more precise, we will still have to deal with an element t satisfying the same
requirements as one must impose when treating (t; d)-freeness, but our treatment
will be more direct and transparent.

The paper is organized as follows. In the second section we consider the con-
nection between symmetric rings of quotients and pairs of maps ϕ,ψ satisfying
the identity

ϕ(x)ya = bxψ(y),

where a and b are fixed elements. The reason for this is that general functional
identities from the definition of d-freeness can be reduced to this very special one
(with a = b). This will be shown in the third section, which contains the main
theorem and its corollaries. The final, fourth section provides examples showing
that the corollaries are, in some sense, optimal.

2. Symmetric rings of quotients

Throughout this section we assume that R is a prime ring. Recall that a ring
Q = Qs(R) is called a symmetric Martindale ring of quotients of R if it satisfies
the following conditions:

(a) R is a subring of Q.
(b) For every q ∈ Q there exists a nonzero ideal I of R such that Iq ⊆ R and

qI ⊆ R.
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(c) For every q ∈ Q and every nonzero ideal J of R, each of the conditions
Jq = 0 and qJ = 0 implies q = 0.

(d) If I, J are nonzero ideals of R and f : I → R, g : J → R are maps
satisfying

(2.1) f(u)v = ug(v) for all u ∈ I, v ∈ J ,

then there exists q ∈ Q such that f(u) = uq and g(v) = qv for all u ∈ I,
v ∈ J .

It is well-known that Qs(R) exists for every prime ring R and is unique up to
isomorphism (see [7, Propositions 1.4 and 1.6] or [3, Proposition 2.2.3]).

Remark 2.1. One usually assumes that the map f (resp. g) from (d) is a left (resp.
right) R-module homomorphism. But this actually follows from (2.1). Namely,
taking xu for u with x ∈ R we have f(xu)v = xug(v) = xf(u)v, so that(

f(xu)− xf(u)
)
J = 0

which yields f(xu) = xf(u) by (c). Similarly, substituting u+ u′ for u we obtain(
f(u+ u′)− f(u)− f(u′)

)
J = 0

and hence f(u+u′) = f(u)+f(u′). Analogously we show that g is a right R-module
homomorphism.

The next theorem gives an alternative description of the symmetric Martindale
ring of quotients.

Theorem 2.2. Let R be a prime ring. A ring Q is a symmetric Martindale ring
of quotients of R if and only if it satisfies the following conditions:

(a’) R is a subring of Q.
(b’) For every q ∈ Q there exists a 6= 0 in R such that aRq ⊆ R and qRa ⊆ R.
(c’) For every q ∈ Q and every b 6= 0 in R, each of the conditions bRq = 0 and

qRb = 0 implies q = 0.
(d’) If a, b are nonzero elements in R and ϕ,ψ : R→ R are maps satisfying

(2.2) ϕ(x)ya = bxψ(y) for all x, y ∈ R,

then there exists q ∈ Q such that ϕ(x) = bxq and ψ(y) = qya for all
x, y ∈ R.

Proof. It is clear that (b’) is equivalent to (b), and (c’) is equivalent to (c). Since
(a) and (a’) are identical, it suffices to show that the conditions (a’)–(d’) imply
(d) are that (a)–(d) imply (d’).

(a’)–(d’) =⇒ (d). Let f : I → R, g : J → R satisfy (2.1). Given u ∈ I \ {0}
and v ∈ J \ {0} we then have f(ux)yv = uxg(yv) for all x, y ∈ R. Using (d’)
it follows that there exists qu,v ∈ Q such that f(ux) = uxqu,v for all x ∈ R and
g(yv) = qu,vyv for all y ∈ R. Taking another v′ ∈ J \ {0} we have, by the same
reason, f(ux) = uxqu,v′ for all x ∈ R. Accordingly, uR(qu,v − qu,v′) = 0 and so
qu,v = qu,v′ by (c’). Similarly we see that qu,v = qu′,v for all u, u′ ∈ I \ {0} and
v ∈ J \ {0}. Consequently, qu,v = qu,v′ = qu′,v′ holds for arbitrary u, u′ ∈ I \ {0}
and v, v′ ∈ J \ {0}. Setting q = qu,v we thus have f(ux) = uxq and g(yv) = qyv
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for all x ∈ R and all u ∈ I, v ∈ J (trivially also for u = 0 and v = 0). Hence we
have

(f(u)− uq)yv = ug(yv)− uqyv = 0

for all y ∈ R, u ∈ I, v ∈ J , yielding f(u) = uq by (c’). Similarly we see that
g(v) = qv for all v ∈ J .

(a)–(d) =⇒ (d’). Let ϕ,ψ : R → R satisfy (2.2). Setting x + x′ for x one
immediately derives (

ϕ(x+ x′)− ϕ(x)− ϕ(x′)
)
Ra = 0.

Since R is prime it follows that ϕ(x+x′) = ϕ(x)+ϕ(x′) for all x, x′ ∈ R. Similarly
we see that ψ is additive. Take x, y, z ∈ R and consider the element bxbyψ(z).
On the one hand, it is equal to bx

(
byψ(z)

)
= bxϕ(y)za, and on the other hand is

equal to b(xby)ψ(z) = ϕ(xby)za. Comparing both expressions we obtain(
ϕ(xby)− bxϕ(y)

)
Ra = 0,

and so

(2.3) ϕ(xby) = bxϕ(y) for all x, y ∈ R
by the primeness of R. Similarly, bxψ(y)za = ϕ(x)yaza = bxψ(yaz), which yields

(2.4) ψ(yaz) = ψ(y)za for all y, z ∈ R.

Set I = RbR, J = RaR, and define f : I → R, g : J → R by

f
(∑

i

xibyi

)
=
∑
i

xiϕ(yi), g
(∑

j

zjawj

)
=
∑
j

ψ(zj)wj .

We must show that f and g are well-defined. Suppose that
∑

i xibyi = 0. Using
(2.3) and the additivity of ϕ we obtain

by
(∑

i

xiϕ(yi)
)

=
∑
i

ϕ(yxibyi) = ϕ
(
y ·
∑
i

xibyi

)
= 0

for every y ∈ R. In view of (c) this gives
∑

i xiϕ(yi) = 0. This means that f is
well-defined. Similarly we see that so is g. For all xi, yi, zj , wj ∈ R we have

f
(∑

i

xibyi

)(∑
j

zjawj

)
=
∑
i,j

xiϕ(yi)zjawj

=
∑
i,j

xibyiψ(zj)wj =
(∑

i

xibyi

)
g
(∑

j

zjawj

)
,

that is, f(u)v = ug(v) for all u ∈ I, v ∈ J . According to (d) there exists
q ∈ Q such that f(u) = uq and g(v) = qv for all u ∈ I, v ∈ J . Consequently,
xϕ(y) = f(xby) = xbyq for all x, y ∈ R. This clearly yields ϕ(y) = byq. Similarly
we see that ψ(z) = qza. �

We remark that the standard treatment of functional identities involves maps ϕ
satisfying (2.3) [4]. As we will see, the approach we take in the next section leads
to pairs of maps satisfying (2.2). This is new. As a matter of fact, we will arrive
at (2.2) with a and b equal. We could in fact assume in (d’) that a = b – this
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is because in (d) we could assume without loss of generality that I = J (by first
replacing both I and J by I ∩J). We have decided to work with possibly different
a and b simply because the traditional statement of condition (d) involves two
ideals.

We now proceed to the maximal symmetric ring of quotients. First recall that
a left ideal U of R is said to be dense if given r1, r2 ∈ R with r1 6= 0, there exists
r ∈ R such that rr1 6= 0 and rr2 ∈ U . A dense right ideal is defined analogously.
Every nonzero two-sided ideal is clearly dense as a left (or right) ideal. A ring
Q = Qms(R) is called a maximal symmetric ring of quotients of R if it satisfies
the following conditions:

(a”) R is a subring of Q.
(b”) For every q ∈ Q there exist a dense left ideal U of R and a dense right

ideal V of R such that Uq ⊆ R and qV ⊆ R.
(c”) For every q ∈ Q, every dense left ideal U of R and every dense right ideal

V of R, each of the conditions Uq = 0 and qV = 0 implies q = 0.
(d”) If U is a dense left ideal of R, V is dense right ideal of R, and f : U → R,

g : V → R are maps satisfying

f(u)v = ug(v) for all u ∈ U , v ∈ V ,

then there exists q ∈ Q such that f(u) = uq and g(v) = qv for all u ∈ I,
v ∈ J .

Remark 2.3. Repeating the argument from Remark 2.1 we see that f (resp. g) is
a left (resp. right) R-module homomorphism.

For the existence and uniqueness (up to isomorphism) of Qms(R) we refer
the reader to [6]. We also remark that Qs(R) ⊆ Qms(R) ⊆ Qml(R) and that
Qms(Qms(R)) = Qms(R). The latter will be important for us.

The next lemma considers a pair of maps ϕ,ψ satisfying the same identity as
in the previous theorem, but having their ranges in Qms(R) rather than in R. Its
proof will be a modification of that of the theorem.

Lemma 2.4. Let R be a prime ring. If a, b are nonzero elements in R and
ϕ,ψ : R→ Qms(R) are maps satisfying

ϕ(x)ya = bxψ(y) for all x, y ∈ R,

then there exists q ∈ Qms(R) such that ϕ(x) = bxq and ψ(y) = qya for all x, y ∈ R.

Proof. Since nonzero two-sided ideals are dense as left or right ideals, the same
proof as above, just that instead of to the primeness we refer to (c”), shows that ϕ
and ψ are additive and that ϕ(xby) = bxϕ(y), ψ(yaz) = ψ(y)za for all x, y, z ∈ R.
Set U = QbR, where Q = Qms(R). Let us show that U is a dense left ideal of Q.
Take q1, q2 ∈ Q with q1 6= 0. By (b”) there exists a dense left ideal W of R such
that Wq2 ⊆ R. In view of (c”), there exists w ∈ W such that wq1 6= 0. Since U
contains a nonzero two-sided ideal of R, there is u ∈ U such that u(wq1) 6= 0. The
element q = uw therefore satisfies qq1 6= 0 and qq2 ∈ U . Thus U is indeed dense.
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Similarly we see that V = RaQ is a dense right ideal of Q. Now define f : U → Q,
g : V → Q by

f
(∑

i

qibyi

)
=
∑
i

qiϕ(yi), g
(∑

j

zjasj

)
=
∑
j

ψ(zj)sj .

To show that f is well-defined, suppose that
∑

i qibyi = 0. By (b”), for every i
there exists a dense left ideal Wi of R such that Wiqi ⊆ R. It is easy to see that
the intersection of dense left ideals is dense. Therefore W = ∩iWi is a dense left
ideal satisfying Wqi ⊆ R for every i. Note that for every y ∈W we have

by
(∑

i

qiϕ(yi)
)

=
∑
i

ϕ(yqibyi) = ϕ
(
y ·
∑
i

qibyi

)
= 0.

Thus, bW
(∑

i qiϕ(yi)
)

= 0, and hence (RbR)W
(∑

i qiϕ(yi)
)

= 0. Since both

RbR and W are dense left ideals of R, using (c”) twice we obtain
∑

i qiϕ(yi) = 0.
Thus f is well-defined. Of course, similarly we see that so is g. Since

f
(∑

i

qibyi

)(∑
j

zjasj

)
=
∑
i,j

qiϕ(yi)zjasj

=
∑
i,j

qibyiψ(zj)sj =
(∑

i

qibyi

)
g
(∑

j

zjasj

)
,

we may use (d”) to obtain the existence of q ∈ Qms(Q) = Q such that f(u) = uq
and g(v) = qv for all u ∈ U , v ∈ V . Consequently, ϕ(y) = f(by) = byq for all
y ∈ R, and ψ(z) = g(za) = qza for all z ∈ R. �

3. Functional identities

Let Q be a unital ring with center C, and let R be a nonempty subset of Q. We
are actually interested in the case where R is a (not necessarily unital) subring of
Q, but definitions that follow make sense for any subset. Assume further that S
is a subring of Q such that

R ⊆ S ⊆ Q.
The involvement of this additional subring is a novelty. In the usual definitions
the role of S is played by Q. The main reason for involving S is that we would
also like to cover the case where S = R.

Let m be a positive integer. For elements xi ∈ R, i = 1, 2, . . . ,m, we set

xm = (x1, . . . , xm) ∈ Rm,

xim = (x1, . . . , xi−1, xi+1, . . . , xm) ∈ Rm−1,

xijm = xjim = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1 . . . , xm) ∈ Rm−2.

Let I, J be subsets of {1, 2, . . . ,m}, and for each i ∈ I and j ∈ J let

Ei : Rm−1 → S and Fj : Rm−1 → S
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be arbitrary maps. If m = 1, then we can regard Ei’s and Fj ’s as elements in S.
The basic functional identities, on which the general theory is based, are∑

i∈I
Ei(x

i
m)xi +

∑
j∈J

xjFj(x
j
m) = 0 for all xm ∈ Rm,(3.1)

∑
i∈I

Ei(x
i
m)xi +

∑
j∈J

xjFj(x
j
m) ∈ C for all xm ∈ Rm.(3.2)

Note that (3.1) trivially implies (3.2), so one should not understand that (3.1) and
(3.2) are satisfied simultaneously by the same maps Ei and Fj . Each of the two
identities should be treated separately.

The standard solution of functional identities (3.1) and (3.2) is defined as

Ei(x
i
m) =

∑
j∈J,
j 6=i

xjpij(x
ij
m) + λi(x

i
m), i ∈ I,

Fj(x
j
m) = −

∑
i∈I,
i6=j

pij(x
ij
m)xi − λj(xjm), j ∈ J,(3.3)

λk = 0 if k 6∈ I ∩ J,
where

pij : Rm−2 → Q, i ∈ I, j ∈ J, i 6= j,

λk : Rm−1 → C, k ∈ I ∪ J,
are arbitrary maps (for m = 1 one should understand this as that pij = 0 and λk
is an element in C). Note that (3.3) indeed implies (3.1), and hence also (3.2).
Let us emphasize that we have assumed that the ranges of the maps Ei, Fj lie in
S, while the ranges of the pij ’s may be contained in Q. This can easily happen,
as we will see in Section 4. We also remark that the cases when one of the sets
I and J is empty are not excluded. We will follow the convention that the sum
over ∅ is 0. Thus, if J = ∅, (3.1) reads as∑

i∈I
Ei(x

i
m)xi = 0 for all xm ∈ Rm,

and the standard solution of this functional identity is Ei = 0 for all i ∈ I.
Similarly, the standard solution of∑

j∈J
xjFj(x

j
m) = 0 for all xm ∈ Rm

is Fj = 0 for each j.
We are now in a position to introduce the basic definition.

Definition 3.1. Let d be a positive integer. We will say that R is d-free relative
to the pair (S,Q) if the following two conditions hold for all m ≥ 1 and all I, J ⊆
{1, 2, . . . ,m}:

(a) If max{|I|, |J |} ≤ d, then (3.1) implies (3.3).
(b) If max{|I|, |J |} ≤ d− 1, then (3.2) implies (3.3).
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Roughly speaking, (a) and (b) state that the functional identities (3.1) and (3.2)
have only standard solutions (for arbitrary maps Ei and Fj !), provided that the
index sets |I| and |J | are small enough. Note that the definition implies that these
standard solutions are unique.

In the classical case we have S = Q. If R is d-free relative to (Q,Q), then we
say that R is a d-free subset of Q. This is the central notion of the book [4]. The
most important case is when R = S = Q; if the ring R is a d-free subset of itself,
then we simply say that R is d-free.

Assume now that R is a prime ring. If Q is either Qs(R) or Qms(R) (or the
left or right Martindale or maximal ring of quotients), then its center C is a field,
called the extended centroid of R. Given t ∈ R, we denote by deg(t) the degree of
algebraicity of t over C (if t is algebraic over C) or∞ (if it is not algebraic). We set
deg(R) = deg{deg(t) | t ∈ R}. It is well-known that deg(R) ≤ n <∞ if and only if
R satisfies the standard polynomial identity of degree 2n, or equivalently, R can be
embedded into the ring of n×n matrices over a field. As we have already written
in the introduction, the fundamental theorem on functional identities states R is
a d-free subset of Qml(R), the maximal left ring of quotients of R, if (and only if)
deg(R) ≥ d [4, Theorem 5.11]. Our goal is to refine this result. To this end, we
give another definition.

Definition 3.2. Let R, S and Q be as at the beginning of the section, and as-
sume additionally that R is a ring. Let t ∈ R. We will say that the symmetric
fractionable degree of t relative to (S,Q) is greater than n, and write this as

sf-deg(S,Q)(t) > n,

if there exist ak, bk ∈ R such that∑
k

akt
ibk = 0, 0 ≤ i ≤ n− 1, and a =

∑
k

akt
nbk

satisfies the following conditions:

(∗) If q ∈ Q is such that aRq = 0 or qRa = 0, then q = 0.
(∗∗) If ϕ,ψ : R→ S are maps satisfying

ϕ(x)ya = axψ(y) for all x, y ∈ R,

then there exists q ∈ Q such that

ϕ(x) = axq, ψ(y) = qya for all x, y ∈ R.

Further, we define sf-deg(S,Q)(t) = n if sf-deg(S,Q)(t) > n−1 but sf-deg(S,Q)(t) 6> n,

and sf-deg(S,Q)(t) =∞ if sf-deg(S,Q)(t) > n for every positive integer n.

Remark 3.3. We have assumed at the beginning that Q must be unital. This,
however, follows from (∗∗), as one can easily check by considering the maps ϕ(x) =
ax and ψ(y) = ya.

Example 3.4. Let R be a prime ring. For every t ∈ R we have

deg(t) = sf- deg(R,Qs(R))(t) = sf- deg(Qms(R),Qms(R))(t).
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Namely, the elements 1, t, . . . , tn are linearly independent over the extended cen-
troid C of R if and only there exist ak, bk ∈ R such that

∑
k akt

ibk = 0 if
0 ≤ i ≤ n − 1 and

∑
k akt

nbk 6= 0 [3, Theorem 2.3.3]. The desired equalities
therefore follow from Theorem 2.2 and Lemma 2.4.

This example shows that the definition of sf-deg(S,Q)( · ) makes sense, yet it may

still strike the reader as lengthy and maybe even artificial. However, sf-deg(S,Q)( · )
is a symmetric, refined (and also slightly simplified) version of the concept of the
fractional degree, which has turned out to be useful, sometimes unexpectedly, in
various situations (see, e.g., [1]). We have therefore decided to work in the abstract
setting, although we are primarily interested in the two cases specified in Example
3.4.

We continue with some auxiliary definitions. We will say that H : Rp → S is a
left i-map if there is a map E : Rp−1 → S such that

H(xp) = E(xip)xi for all xm ∈ Rp.

A sum of left i-maps will be called a left map. Thus, H is a left map if it can be
written as

H(xp) =

p∑
i=1

Ei(x
i
p)xi

for some Ei : Rp−1 → S. Similarly we define right j-maps and right maps. The
functional identity (3.1) (resp. (3.2)) can thus be described as that the sum of a
left map and a right map is zero (resp. central). Our approach to these identities
is based on certain transformations of maps of several variables, which we now
describe.

Let t ∈ R and let H : Rp → S be an arbitrary map. We will write

H(xit) for H(x1, . . . , xi−1, xit, xi+1, . . . , xp),

H(xit, xjt) for H(x1, . . . , xi−1, xit, xi+1, . . . , xj−1, xjt, xj+1, . . . , xp), etc.

For any 1 ≤ ` ≤ p we define R`,t(H) : Rp → S by

R`,t(H)(xp) = H(xp)t
p−1 −

∑
1≤i≤p,

i 6=`

H(xit)t
p−2

+
∑

1≤i<j≤p,
i,j 6=`

H(xit, xjt)t
p−3 −

∑
1≤i<j<k≤p,

i,j,k 6=`

H(xit, xjt, xkt)t
p−4

+ · · ·+ (−1)p−1H(x1t, . . . , x`−1t, x`+1t, . . . , xpt).
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For example, if ` = 1 and p = 4,

R1,t(H)(x1, x2, x3, x4)

=H(x1, x2, x3, x4)t3

−H(x1, x2t, x3, x4)t2 −H(x1, x2, x3t, x4)t2 −H(x1, x2, x3, x4t)t
2

+H(x1, x2t, x3t, x4)t+H(x1, x2t, x3, x4t)t+H(x1, x2, x3t, x4t)t

−H(x1, x2t, x3t, x4t).

It is obvious that

(3.4) R`,t

(∑
i

Hi

)
=
∑
i

R`,t(Hi).

Lemma 3.5. If H is a right j-map, then R`,t(H) is also a right j-map. Accord-
ingly, if H is a right map, then so is R`,t(H).

Proof. The first assertion is clear, and the second one follows from (3.4). �

Lemma 3.6. If H is a left map, i.e., H(xp) =
∑p

i=1Ei(x
i
p)xi, then there exist

maps Gi : Rp−1 → S, i = 0, 1, . . . , p− 2, such that

R`,t(H)(xp) =

p−2∑
i=0

Gi(x
`
p)x`t

i + E`(x
`
p)x`t

p−1

for all xp ∈ Rp.

Proof. The lemma is obvious if H is a left `-map, i.e., if H(xp) = E`(x
`
p)x`. In

view of (3.4) it is therefore enough to show that R`,t(H) = 0 for every left i-map
H with i 6= `. Let us prove this. For notational simplicity, assume that ` = 1 and
i = 2; thus, H(xp) = E(x2

p)x2. Note that the first two terms from the definition

of R1,t(H)(xp) cancel out. The next terms, −H(xit)t
p−2 with i ≥ 3, cancel out

with the terms H(x2t, xit)t
p−3 from the next summation. Further, the terms

H(xit, xjt)t
p−3 with 3 ≤ i < j ≤ p cancel out with the terms −H(x2t, xit, xjt)t

p−4.
Etc. Finally, the terms (−1)p−2H(x3t, . . . , xpt)t and (−1)p−1H(x2t, x3t, . . . , xpt)
cancel out. �

We also need the “left” version of R`,t(H), which we denote by Lr,t(H). It is
defined in the same way as R`,t(H), just that t and its powers are moved from the
right-hand to the left-hand side, i.e.,

Lr,t(H)(xp) = tp−1H(xp)−
∑

1≤i≤p,
i6=r

tp−2H(txi) + . . .

Similar lemmas of course hold for Lr,t(H).

Lemma 3.7. If H is a left i-map, then Lr,t(H) is also a left i-map. Accordingly,
if H is a left map, then so is Lr,t(H).
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Lemma 3.8. If H is a right map, i.e., H(xp) =
∑p

j=1 xjFj(x
j
p), then there exist

maps Kj : Rp−1 → S, j = 0, 1, . . . , p− 2, such that

Lr,t(H)(xp) =

p−2∑
j=0

tjxrKj(x
r
p) + tp−1xrFr(x

r
p)

for all xp ∈ Rp.

We are now in a position to establish our main theorem.

Theorem 3.9. Let R ⊆ S ⊆ Q be rings. Suppose that the centralizer of R in Q is
equal to the center C of Q. Let d be a positive integer. If there exists t ∈ R such
that sf-deg(S,Q)(t) ≥ d, then R is d-free relative to (S,Q).

Proof. Our assumption is that there exist ak, bk ∈ R such that
∑

k akt
ibk = 0,

0 ≤ i ≤ d− 2, and a =
∑

k akt
d−1bk satisfies (∗) and (∗∗) from Definition 3.2. We

have to prove that this implies the validity of conditions (a) and (b) from Definition
3.1. A general remark before we start: we will consider the transformation R`,t( · )
with respect to the variables xi with i ∈ I (so that |I| plays the role of p). Of
course, the maps Ei and Fj may also depend on other variables, but we treat
them as fixed when dealing with R`,t( · ). Analogously we will consider Lr,t( · )
with respect to the variables xj with j ∈ J .

(a) Assume that (3.1) holds with max{|I|, |J |} ≤ d. Our goal is to show Ei and
Fj are of the form (3.3). Assume that I 6= ∅, and pick ` ∈ I. Apply R`,t( · ) to
(3.1); by making use of Lemmas 3.5 and 3.6 we obtain

|I|−2∑
i=0

Gi(x
`
m)x`t

i + E`(x
`
m)x`t

|I|−1 +
∑
j∈J

xjHj(x
j
m) = 0

for some Gi, Hj : Rm−1 → S (and all xm ∈ Rm). Replace x` by x`ak and multiply

the identity so obtained from the right by td−|I|bk (here we use that |I| ≤ d).
Summing up over all k we obtain

(3.5) E`(x
`
m)x`a+

∑
j∈j

xjLj(x
j
m) = 0

for some maps Lj : Rm−1 → S (that arise from Hj).
If J = ∅, then, in view of (∗), (3.5) implies that E` = 0. Thus, (3.3) holds is

J = ∅, and, analogously, if I = ∅. We may therefore assume that I 6= ∅ and J 6= ∅.
Moreover, we now see that it is enough to show that the Ei’s are of the desired
form (3.3). Namely, if this holds, then (3.1) can be written as∑

j∈J
xj

(
Fj(x

j
m) +

∑
i∈I,
i6=j

pij(x
ij
m)xi + λj(x

j
m)
)

= 0;

this is an identity of the type (3.1) with I = ∅, so the corresponding maps are all
zero, meaning that the Fj ’s are of the desired form.
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Pick r ∈ J . Applying Lr,t( · ) to (3.5) we obtain, in light of Lemmas 3.7 and
3.8,

U(x`m)x`a+

|J |−2∑
j=0

tjxrKj(x
r
m) + t|J |−1xrLr(x

r
m) = 0

for some U,Kj : Rm−1 → S. Replacing xr by bkxr, multiplying from the left by

akt
d−|J | (recall that |J | ≤ d), and summing up over all k we get

(3.6) V (x`m)x`a = −axrLr(x
r
m)

for some V : Rm−1 → S. If r 6= `, then, by fixing all variables except x` and
xr, we can use (∗∗). Hence there exists p`r(x

`r
m) ∈ Q such that −Lr(x

r
m) =

p`r(x
`r
m)x`a. Suppose that ` ∈ J and take r = `. Replacing x` by y`x` in (3.6) we

get
(
V (x`m)y`

)
x`a = ay`

(
−x`L`(x

`
m)
)
, which makes it possible for us to apply (∗∗)

in this case, too. Hence there is λ`(x
`
m) ∈ Q such that −x`L`(x

`
m) = λ`(x

`
m)x`a

for all xi ∈ R. Consequently,

y`λ`(x
`
m)x`a = −y`x`L`(x

`
m) = λ`(x

`
m)(y`x`)a,

so that [R, λ`(x
`
m)]Ra = 0. From (∗) it follows that λ`(x

`
m) lies in the centralizer

of R in Q, which is equal to C by assumption. Set λ`(x
`
m) = 0 if ` /∈ J . Note that

(3.5) can be now rewritten as(
E`(x

`
m)−

∑
j∈J,
j 6=`

xjp`j(x
`j
m)− λ`(x`m)

)
Ra = 0.

Applying (∗) we get that E` is of the form (3.3), as desired.
(b) Assume now that

(3.7) µ(xm) =
∑
i∈I

Ei(x
i
m)xi +

∑
j∈J

xjFj(x
j
m) ∈ C

and max{|I|, |J |} ≤ d− 1. Since we now know that (a) holds, it suffices to prove
that µ(xm) = 0. Take ` ∈ I and apply R`,t( · ) to (3.7). Using Lemmas 3.5 and
3.6 we get

(3.8) µ(xm)t|I|−1 +

|I|−2∑
i=0

µi(xm)ti =

|I|−1∑
i=0

Gi(x
`
m)x`t

i +
∑
j∈J

xjHj(x
j
m)

for some Gi, Hj : Rm−1 → S and µi : Rm → C. Substituting x`t for x` gives

|I|−1∑
i=0

µ′i(x`t)t
i =

(|I|−1∑
i=0

Gi(x
`
m)x`t

i
)
t+
∑
j∈J

xjH
′
j(x

j
m),

where H ′j : Rm−1 → S and µ′i : Rm → C. Rewriting the first summation on the

right-hand side in terms of (3.8) we arrive at

(3.9) µ(xm)t|I| +

|I|−1∑
i=0

νi(xm)ti =
∑
j∈J

xjLj(x
j
m)
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where Lj : Rm−1 → S and νi : Rm → C. Take r ∈ J and apply Lr,t( · ) to (3.9).
On the left-hand side we obtain an expression lying in

∑
i≥0Ct

i, and on the right
hand-side we obtain

|J |−2∑
j=0

tjxrKj(x
r
m) + t|J |−1xrLr(x

r
m)

for some Kj : Rm−1 → S. The latter expression therefore commutes with t. Note
that this can be written as

t|J |xrLr(x
r
m) +

|J |−1∑
j=0

tjxrMj(x
r
m) = 0

for some Mj : Rm−1 → S. Replacing xr by bkxr, multiplying from the left by

akt
d−|J |−1 (note that d− |J | − 1 is nonnegative by our assumption), and summing

up over all k we obtain aRLr(x
r
m) = 0. Consequently, Lr(x

r
m) = 0 for every r ∈ J .

This means that the right-hand side, and therefore also the left-hand side of (3.9)

is zero. Multiplying this identity from the left by akt
d−|I|−1, from the right by bk,

and summing up over all k thus results in µ(xm)a = 0. From (∗) we infer that
µ(xm) = 0. �

Combining Theorem 3.9 with Theorem 2.2 (cf. Example 3.4) we get the follow-
ing corollary.

Corollary 3.10. Let R be a prime ring and let d ≥ 1. If deg(R) ≥ d, then R is
d-free relative to (R,Qs(R)).

Recall that R is said to be symmetrically closed if R = Qs(R). As an immediate
consequence of Corollary 3.10 we have

Corollary 3.11. Let R be a symmetrically closed prime ring and let d ≥ 1. If
deg(R) ≥ d, then R is a d-free ring.

Let F be a field and X a set with |X| ≥ 2. It is well-known that the free algebra
F 〈X〉 is symmetrically closed [5] and it is trivial that deg(F 〈X〉) =∞. Hence we
have

Corollary 3.12. The free algebra F 〈X〉, where |X| ≥ 2, is a d-free ring for every
d ≥ 1.

Another corollary to Theorem 3.9 follows from Lemma 2.4 (cf. Example 3.4).

Corollary 3.13. Let R be a prime ring and let d ≥ 1. If deg(R) ≥ d, then R is
a d-free subset of Qms(R).

4. Examples

The goal of this section is to show that in Corollary 3.11 we cannot replace
“symmetrically closed” by “centrally closed”, and that in Corollary 3.13 we can-
not replace Qms(R) by Qs(R). Both counterexamples will be derived from the
following proposition.
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Proposition 4.1. Let R ⊆ S ⊂ Q be rings with the same unity. Assume that
for every p ∈ Q, [R,R]p = 0 implies p = 0. If there exists q ∈ Q \ S such that
q[R,R], [R,R]q ⊆ S, then R is not a 2-free subset of S.

Proof. Define maps E1, E2, F3, F4 on R3 by

E1(x2, x3, x4) = [x4, x3]qx2,

E2(x1, x3, x4) = −[x4, x3]qx1,

F3(x1, x2, x4) = x4q[x2, x1],

F4(x1, x2, x3) = −x3q[x2, x1]

According to our assumption, their ranges lie in S. As one can immediately check,
these maps satisfy the functional identity

E1(x2, x3, x4)x1 + E2(x1, x3, x4)x2 + x3F3(x1, x2, x4) + x4F4(x1, x2, x3) = 0.

If R was a 2-free subset of S, there would exist maps pij : R2 → S such that, in
particular,

(4.1) E1(x2, x3, x4) = x3p13(x2, x4) + x4p14(x2, x3)

for all xi ∈ R. It is actually clear from the definition that we can write E1 in such
a form, namely,

(4.2) E1(x2, x3, x4) = x3(−x4qx2) + x4(x3qx2).

However, the maps (x2, x4) 7→ −x4qx2 and (x2, x3) 7→ x3qx2 have their ranges in
Q but not in S, as we see by taking x2 = x3 = x4 = 1. Comparing (4.1) and (4.2)
we get

(4.3) x3f(x2, x4) + x4g(x2, x3) = 0,

where

f(x2, x4) = p13(x2, x4) + x4qx2, g(x2, x3) = p14(x2, x3)− x3qx2.

for all xi ∈ R. Setting x3 = 1 in (4.3) we get f(x2, x4) = −x4g(x2, 1), setting
x4 = 1 in (4.3) we get g(x2, x3) = −x3f(x2, 1) and setting x3 = x4 = 1 in (4.3)
we get f(x2, 1) = −g(x2, 1). We can therefore rewrite (4.3) as [x3, x4]f(x2, 1) = 0.
According to our assumption this implies that f(x2, 1) = 0 for every x2 ∈ R. But
then f(x2, x4) = g(x2, x3) = 0 for all xi ∈ R. That is, p13(x2, x4) = −x4qx2 and
p14(x2, x3) = x3qx2, which is a contradiction. �

If a prime ring R is non-PI (i.e., it does not satisfy a nonzero polynomial iden-
tity), then deg(R) =∞ and so R is a d-free subset of Qms(R) for every d ≥ 1 by
Corollary 3.13. The next corollaries in particular show that such a ring may not
be 2-free, and may even not be a 2-free subset of Qs(R).

Recall that a prime ring R is said to be centrally closed if it coincides with its
central closure; for a unital ring this is the same as saying that R contains its
extended centroid.

Corollary 4.2. There exists a non-PI centrally closed prime ring R, even a prim-
itive ring with nonzero socle, which is not 2-free.
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Proof. Take an infinite dimensional vector space V over a field F . Let R be the
ring of linear operators from V into V of the form λ1 + f , where λ ∈ F , 1 is the
identity operator, and f is an operator of finite rank. It is well-known that R is a
primitive (and hence prime) non-PI ring with nonzero socle. Its extended centroid
consists of scalar multiples of 1 (cf. [3, Theorem 4.3.7]), so R is centrally closed.
Since [R,R] consists of finite rank operators, which form an ideal of Q = EndF (V ),
we have q[R,R], [R,R]q ⊆ R for all q ∈ Q, including those that are not contained
in R. It is also clear that [R,R]p = 0 implies p = 0 for every p ∈ Q. Proposition
4.1 thus implies that R is not a 2-free subset of itself. �

Corollary 4.3. There exists a non-PI prime ring R, even an Ore domain, which
is not a 2-free subset of Qs(R).

Proof. We take the ring

R = F [t][u, v |uv = tvu]

used by Passman [7, Section 4] for showing that Qs( · ) is not the closure operation.
More specifically, he showed that

Qs(R) = F (t)[u, v |uv = tvu]

and

Qs(Qs(R)) = F (t)[u, u−1, v, v−1 |uv = tvu].

We also mention that R is an Ore domain with center Z = F [t], and that

R =
⊕

n,m≥0

F [t]vnum.

Note that ukv` = tklv`uk. Hence

[vnum, vsur] = (tms − tnr)vn+sum+r

for all n,m, s, r ≥ 0. This readily implies that

[R,R] ⊂
⊕

n,m≥1

F [t]vnum.

We claim that this yields

v−1[R,R] ⊂ R ⊂ Qs(R) and [R,R]v−1 ⊂ Qs(R).

The first inclusion is clear, and the second follows from umv−1 = t−mv−1um. Since
v−1 ∈ Qs(Qs(R)) \Qs(R), Proposition 4.1 tells us that R is not a 2-free subset of
Qs(R). �
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