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Abstract. Let R and S be unital algebras. We show that if X is a d-free subset
of R and S is finite dimensional, then the set X = {x⊗ s |x ∈ X, s ∈ S} is a d-free
subset of the algebra R ⊗ S. The assumption that S is finite dimensional turns
out to be necessary in general. However, we show that some important functional
identities have only standard solutions on X even when S is infinite dimensional.

1. Introduction

A functional identity is, roughly speaking, an identical relation involving arbitrary
elements from a subset of a ring along with with arbitrary functions that are con-
sidered as unknowns. Basic definitions and sample results will be given below, but
for details and a more clear picture we refer the reader to the book [8].

The theory of functional identities is based on the concept of a d-free set, which is
briefly described in Section 2. On a d-free set one can handle quite general functional
identities [8, Chapter 4], and, more importantly, one can solve a variety of problems
arising in different mathematical areas [8, Chapters 6–8]. The major problem is to
show that d-free sets actually exist. The fundamental theorem in this context states
that under a mild (and necessary) assumption every prime ring A is a d-free subset
of its maximal left ring of quotients Qml(A) [8, Theorem 5.11]. Using this one can
then find various d-free subsets of prime rings, such as ideals, Lie and Jordan ideals,
symmetric and skew-symmetric elements if the ring is equipped with involution, etc.
[8, Section 5.2]. Most of known examples of d-free sets are actually subsets of prime
rings. Among other examples, we list the following:

(a) If S is an arbitrary ring, then the matrix ring Mn(S) is a d-free subset of
itself, as long as n ≥ d [8, Corollary 2.22].

(b) If a unital ring A is a d-free subset of a unital ring R, then Tn(A), the ring
of all upper triangular matrices over A, is a d-free subset of Tn(R). This was
recently established by Eremita [9].

(c) The tensor product A ⊗ S of a prime algebra A (satisfying the usual re-
strictions) and an arbitrary finite dimensional algebra S is a d-free subset of
Qml(A)⊗S; moreover, if A is a simple unital algebra, then S can be infinite
dimensional. See [1].
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In this paper we will deal, partially for simplicity, only with algebras over a field,
which we denote by F. Within this framework, all statements (a), (b), and (c) get
the same form: If an algebra A is a d-free subset of an algebra R, then A ⊗ S is a
d-free subset of R ⊗ S. In (a), A = Mn(F) and S is an arbitrary unital algebra. In
(b), A is an arbitrary d-free algebra and S = Tn(F). In (c), A is a prime algebra and
S is an arbitrary finite dimensional unital algebra, or an arbitrary unital algebra in
case A is simple and unital (A = Mn(F) is of course just a special case). All this
indicates that a more general phenomenon might be hidden behind these results.
The purpose of this paper is to explore it.

In Section 3 we restrict ourselves to the case where S is a finite dimensional
(but otherwise arbitrary) unital algebra. In this context, the result that we obtain
(Theorem 3.2) is definitive of its kind: If X is a d-free subset of an algebra R, then
{x⊗ s |x ∈ X, s ∈ S} is a d-free subset of the algebra R⊗ S. In this way we obtain
a new, large family of d-free sets for which the general theory from [8] is directly
applicable.

The restriction to finite dimensions is necessary in general. This is shown in
Section 4. We actually give an example of a simple non-unital algebra A which is
a d-free subset of a larger algebra R for every d ≥ 1, yet A ⊗ F[ξ] is not a 2-free
subset of R ⊗ F[ξ]. The second result from (c) therefore does not hold without the
assumption that A is unital.

The example just mentioned shows that, unfortunately, we have no control of
general functional identities if S is infinite dimensional. However, in Section 5 we
will see that in this case we can still handle some indeed quite special, but par-
ticularly important identities. First of all, this turns out to be the case for the
“one-sided” identities (Theorem 5.1). The main theme of Section 5 is the identity
[F (y, z), w] + [F (w, y), z] + [F (z, w), y] = 0, which is a prototype of a functional
identity appearing in different problems (cf. [8, Section 1.4]). The main result of the
section (Theorem 5.2) tells us that this identity has only standard solutions under an
additional technical assumption, which is fulfilled in the case where the first algebra
is prime (Corollary 5.4). Among possible applications, we discuss only the one con-
cerning Lie isomorphisms (Corollary 5.6). The reason for this is that, as shown in [1]
and [2], Lie automorphisms of the tensor product between a “nice” algebra A and an
arbitrary unital algebra S naturally appear in the study of gradings of Lie algebras
(see [10] for the recent survey of this theory). In [1] only the case where S is finite
dimensional was treated, while in [2] the need for treating an infinite dimensional
algebra S appeared. In that paper, the problem was solved by relying on special
properties of the algebra A that was considered. Now it seems plausible that one
could obtain similar results for considerably more general algebras A.

2. Preliminaries on d-free sets

The purpose of this preliminary section is to recall the definition of a d-free set,
which is due to Beidar and Chebotar [4]. Simultaneously we will introduce some
necessary notation.
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Let R be a unital ring with center Z = ZR, let X be a nonempty subset of R, and
let m be a positive integer. For elements xi ∈ X, i = 1, 2, . . . ,m, we set

xm = (x1, . . . , xm) ∈ Xm,

xim = (x1, . . . , xi−1, xi+1, . . . , xm) ∈ Xm−1,

xijm = xjim = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1 . . . , xm) ∈ Xm−2.

Let I, J be subsets of {1, 2, . . . ,m}. For each i ∈ I and j ∈ J let

Ei : Xm−1 → R and Fj : Xm−1 → R

be arbitrary functions. For m = 1 we regard Ei and Fj as elements in R. The basic
functional identities are∑

i∈I
Ei(x

i
m)xi +

∑
j∈J

xjFj(x
j
m) = 0 for all xm ∈ Xm,(2.1)

∑
i∈I

Ei(x
i
m)xi +

∑
j∈J

xjFj(x
j
m) ∈ Z for all xm ∈ Xm.(2.2)

Note that (2.1) trivially implies (2.2), so one should not understand that (2.1) and
(2.2) are satisfied simultaneously by the same functions Ei and Fj . Each of the two
identities should be treated separately.

The standard solution of both functional identities (2.1) and (2.2) is defined as

Ei(x
i
m) =

∑
j∈J,
j 6=i

xjpij(x
ij
m) + λi(x

i
m), i ∈ I,

Fj(x
j
m) = −

∑
i∈I,
i6=j

pij(x
ij
m)xi − λj(xjm), j ∈ J,(2.3)

λk = 0 if k 6∈ I ∩ J,
where

pij : Xm−2 → R, i ∈ I, j ∈ J, i 6= j,

λk : Xm−1 → Z, k ∈ I ∪ J,
are arbitrary functions (for m = 1 one should understand this as that pij = 0 and λk
is an element in Z). Note that (2.3) indeed implies (2.1), and hence also (2.2). The
standard solutions can be viewed as the “obvious”, or, more precisely, as unavoidable
solutions that always exist, independently of the structure of the ring in question.

We remark that the cases where one of the sets I and J is empty are not excluded.
We will follow the convention that the sum over ∅ is 0. Thus, if J = ∅, (2.1) reads
as ∑

i∈I
Ei(x

i
m)xi = 0 for all xm ∈ Xm,

and the standard solution of this functional identity is Ei = 0 for all i ∈ I. Similarly,
the standard solution of∑

j∈J
xjFj(x

j
m) = 0 for all xm ∈ Xm
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is Fj = 0 for each j.

Definition 2.1. Let d be a positive integer. We say that X is d-free subset of R if
the following two conditions hold for all m ≥ 1 and all I, J ⊆ {1, 2, . . . ,m}:

(a) If max{|I|, |J |} ≤ d, then (2.1) implies (2.3).
(b) If max{|I|, |J |} ≤ d− 1, then (2.2) implies (2.3).

Note that (b) can be replaced by

(b’) If max{|I|, |J |} ≤ d− 1, then (2.2) implies (2.1).

Namely, (2.3) trivially implies (2.1), and, according to (a), (2.1) implies (2.3) if
max{|I|, |J |} ≤ d− 1.

We remark that conditions (a) and (b) are usually handled in a similar manner,
but are independent in general. In applications of functional identities one usually
uses both, so each of them is necessary.

Remark 2.2. Suppose that X is a d-free subset of R and (2.1) with |I| ≤ d and
|J | ≤ d − 1 holds for some functions Ei, Fj . Assume further that i ∈ I is such that
i /∈ J and Ei maps into Z. Then Ei = 0. Namely, by definition of d-freeness we
know that Ei is of the form

Ei(x
i
m) =

∑
j∈J

xjpij(x
ij
m) + λi(x

i
m).

Now, since i /∈ I ∩ J we have λi = 0, and since∑
j∈J,
j 6=i

xjpij(x
ij
m) ∈ Z

it follows from (b) that each pij = 0.

3. The finite dimensional case

We now assume that R is an algebra over a field F, X is a nonempty subset of R,
and S is a finite dimensional unital algebra over F. Fix a basis

{b1, . . . , bN}

of S over F. Set

R = R⊗ S

and

X = {x⊗ s |x ∈ X, s ∈ S}.

We will show that X is a d-free subset of R if X is a d-free subset of R. We identify
X by X ⊗ 1 ⊆ X. Accordingly, we will often write x ⊗ 1 simply as x. By ZS we
denote the center of S. As is well-known, the center of R⊗ S is equal to

Z = Z ⊗ ZS (= ZR ⊗ ZS).
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Throughout, we assume that X is a d-free subset of R. Our goal is to show that
then X is a d-free subset of R. Thus, we have to show that functions Ei, Fj : Xm−1 →
R, i ∈ I, j ∈ J satisfying either

(3.1)
∑
i∈I

Ei(y
i
m)yi +

∑
j∈J

yjFj(y
j
m) = 0 for all ym ∈ Xm

or

(3.2)
∑
i∈I

Ei(y
i
m)yi +

∑
j∈J

yjFj(y
j
m) ∈ Z for all ym ∈ Xm

are of standard form if max{|I|, |J |} ≤ d (in case of (3.1)) and max{|I|, |J |} ≤ d− 1
(in case of (3.2)). We remark that in (3.2) we could replace Z by Z ⊗ S, but we will
not bother with this generalization.

In the first lemma we consider (3.1) and (3.2) restricted to Xm−1 (here, X stands
for X ⊗ 1). As we will see, it is rather straightforward to derive that the functions
are of the desired form (2.3), however, with λk mapping into Z ⊗S rather than into
Z = Z ⊗ ZS . Note that one cannot say more in this setting.

Lemma 3.1. Let Ei, Fj : Xm−1 → R, i ∈ I, j ∈ J , and set

Φ(xm) =
∑
i∈I

Ei(x
i
m)xi +

∑
j∈J

xjFj(x
j
m).

Suppose that either

(a) Φ(xm) = 0 for all xm ∈ Xm and max{|I|, |J |} ≤ d, or
(b) Φ(xm) ∈ Z for all xm ∈ Xm and max{|I|, |J |} ≤ d− 1.

Then there exist pij : Xm−2 → R, i ∈ I, j ∈ J , i 6= j, and λk : Xm−1 → Z ⊗ S,
k ∈ I ∪ J , such that (2.3) holds.

Proof. Let us write

Ei(x
i
m) =

N∑
t=1

eit(x
i
m)⊗ bt,

Fj(x
j
m) =

N∑
t=1

fjt(x
j
m)⊗ bt,

where eit, fjt : Xm−1 → R. We have

Φ(xm) =
∑
i∈I

( N∑
t=1

eit(x
i
m)⊗ bt

)
· (xi ⊗ 1) +

∑
j∈J

(xj ⊗ 1) ·
( N∑
t=1

fjt(x
j
m)⊗ bt

)

=
N∑
t=1

(∑
i∈I

eit(x
i
m)xi +

∑
j∈J

xjfjt(x
j
m)
)
⊗ bt.

Consequently, for all xm ∈ Xm and all 1 ≤ t ≤ N we have∑
i∈I

eit(x
i
m)xi +

∑
j∈J

xjfjt(x
j
m) = 0
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if (a) holds, and ∑
i∈I

eit(x
i
m)xi +

∑
j∈J

xjfjt(x
j
m) ∈ Z

if (b) holds. Since X is a d-free subset of R, in each of the two cases we get the same
conlusion, namely that for each t there exist

pijt : Xm−2 → R, i ∈ I, j ∈ J, i 6= j,

λkt : Xm−1 → Z, k ∈ I ∪ J,

such that

eit(x
i
m) =

∑
j∈J,
j 6=i

xjpijt(x
ij
m) + λit(x

i
m), i ∈ I,

fjt(x
j
m) = −

∑
i∈I,
i 6=j

pijt(x
ij
m)xi − λjt(xjm), j ∈ J,

λkt = 0 if k 6∈ I ∩ J.

Now define pij : Xm−2 → R, i ∈ I, j ∈ J , i 6= j, and λk : Xm−1 → Z ⊗S, k ∈ I ∪ J ,
by

pij(x
ij
m) =

N∑
t=1

pijt(x
ij
m)⊗ bt,

λk(x
k
m) =

N∑
t=1

λkt(x
k
m)⊗ bt.

Note that

Ei(x
i
m) =

N∑
t=1

(∑
j∈J,
j 6=i

xjpijt(x
ij
m) + λit(x

i
m)
)
⊗ bt

=
∑
j∈J,
j 6=i

xjpij(x
ij
m) + λi(x

i
m)

for every i ∈ I, and similarly,

Fj(x
j
m) = −

∑
i∈I,
i 6=j

pij(x
ij
m)xi − λj(xjm)

for every j ∈ J . We also have λk = 0 if k 6∈ I ∩ J . �

Let us introduce some auxiliary terminology and notation that will be used in the
proof of the main theorem. For any 1 ≤ s ≤ m we write

Is = I ∩ {1, . . . , s}, Js = J ∩ {1, . . . , s},

I ′s = I \ Is, J ′s = J \ Js,
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and

xs,m = (xs, . . . , xm),

xis,m = (xs, . . . , xi−1, xi+1, . . . , xm),

xijs,m = xjis,m = (xs, . . . , xi−1, xi+1, . . . , xj−1, xj+1 . . . , xm).

We also set xs,m = ∅ for s > m.
We now assume that Ei, Fj , i ∈ I, j ∈ J , are defined on Xm−1. Let 0 ≤ r ≤ m−1.

We will say that Ei, Fj are standard on Xr ×Xm−r−1 if for every i ∈ Ir+1 we have

(3.3)

Ei(y
i
r+1, xr+2,m) =

∑
j∈Jr+1,

j 6=i

yjpij(y
ij
r+1, xr+2,m)

+
∑

j∈J ′
r+1

xjpij(y
i
r+1, x

j
r+2,m) + λi(y

i
r+1, xr+2,m),

for every i ∈ I ′r+1 we have

(3.4)

Ei(yr, x
i
r+1,m) =

∑
j∈Jr

yjpij(y
j
r, x

i
r+1,m)

+
∑
j∈J′

r,
j 6=i

xjpij(yr, x
ij
r+1,m) + λi(yr, x

i
r+1,m),

and, similarly, for every j ∈ Jr+1 we have

(3.5)

Fj(y
j
r+1, xr+2,m) =−

∑
i∈Ir+1,

i6=j

pij(y
ij
r+1, xr+2,m)yi

−
∑
i∈I′r+1

pij(y
j
r+1, x

i
r+2,m)xi − λj(yjr+1, xr+2,m),

and for every j ∈ J ′r+1 we have

(3.6)

Fj(yr, x
j
r+1,m) =−

∑
i∈Ir

pij(y
i
r, x

j
r+1,m)yi

−
∑
i∈I′r,
i6=j

pij(yr, x
ij
r+1,m)xi − λj(yr, x

j
r+1,m)

for all xi ∈ X and all yi ∈ X, where pij map into R and λk map into Z; moreover,
λk = 0 if k /∈ I ∩ J . In an analogous fashion we define when Ei, Fj are standard on

Xu1 × Xv1 × · · · × Xul × Xvl for any choice of ui, vi ≥ 0 such that
∑l

i=1 ui + vi =
m − 1. Further, we will say that Ei, Fj are r-standard if they are standard on

Xu1 ×Xv1 ×· · ·×Xul ×Xvl whenever
∑l

i=1 ui = r (and hence
∑l

i=1 vi = m− r− 1).
If all conditions in this definition are fulfilled except that λk map into Z ⊗ S rather
than into Z, then we will say that Ei, Fj are r-standard modulo Z (Lemma 3.1 thus
states that Ei, Fj are 0-standard modulo Z). Note that saying that Ei and Fj are
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standard solutions of (3.1) and (3.2) is the same as saying that they are (m − 1)-
standard.

We can now prove our main result in this section.

Theorem 3.2. Let R and S be unital algebras with S finite dimensional. If X is a
d-free subset of R, then X = {x⊗ s |x ∈ X, s ∈ S} is a d-free subset of R = R⊗ S.

Proof. We have to show that conditions (a) and (b) from Definition 2.1 are fulfilled.
We will deal with (a) and at the end mention what modifications are necessary to
establish (b). Assume, therefore, that (3.1) holds with max{|I|, |J |} ≤ d.

The proof of the validity of (a) consists of two parts. We begin by introducing the
setting needed for both. Let 0 ≤ r ≤ m− 1. A special case of (3.1), where yi ∈ X if
i ≤ r + 1 and yi = xi ∈ X if i > r + 1, reads as follows:

(3.7)

∑
i∈Ir+1

Ei(y
i
r+1, xr+2,m)yi +

∑
i∈I′r+1

Ei(yr+1, x
i
r+2,m)xi

+
∑

j∈Jr+1

yjFj(y
j
r+1, xr+2,m) +

∑
j∈J ′

r+1

xjFj(yr+1, x
j
r+2,m) = 0.

Assume that Ei, Fj are standard on Xr × Xm−r−1 modulo Z. Applying (3.3) and
(3.5) to (3.7) we obtain

(3.8)
∑

k∈Ir+1∩Jr+1

[
λk, yk

]
+
∑
i∈I′r+1

Gixi +
∑

j∈J ′
r+1

xjHj = 0,

where

λk = λk(y
k
r+1, xr+2,m),

(3.9) Gi = Gi(yr+1, x
i
r+2,m) = Ei(yr+1, x

i
r+2,m)−

∑
j∈Jr+1

yjpij(y
j
r+1, x

i
r+2,m),

and

(3.10) Hj = Hj(yr+1, x
j
r+2,m) = Fj(yr+1, x

j
r+2,m) +

∑
i∈Ir+1

pij(y
i
r+1, x

j
r+2,m)yi.

Let us add a little comment before we start. In the first part we will deal with
functions with indices from Ir+1 ∩ Jr+1, and in the second part with functions with
indices from I ′r+1 ∩ J ′r+1. The only reason is that this is notationally easier.

We now proceed to the first part of the proof.

Claim 1. Let 0 ≤ r ≤ m − 1. If Ei, Fj are r-standard modulo Z, then they are
r-standard.

Proof of Claim 1. We will only consider the set Xr ×Xm−r−1 and show that λk
from (3.3) and (3.5), i.e., λk for k ∈ Ir+1 ∩ Jr+1, maps into Z. Other cases can be
handled analogously, just the notation is (even) heavier (even the proof that λk from
(3.4) and (3.6) maps into Z is notationally slightly more involved for one also has to
deal with the set Xr ×Xk−r−1 × X×Xm−k−1).
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By our assumption, (3.3) and (3.5) are fulfilled, and so (3.8) holds. We can write

λk =

N∑
t=1

λkt ⊗ bt,

where
λkt = λkt(y

k
r+1, xr+2,m) ∈ Z.

Similarly we write

Gi =
N∑
w=1

Giw ⊗ bw and Hw =
N∑
w=1

Hjw ⊗ bw,

where
Giw = Giw(yr+1, x

i
r+2,m) ∈ R

and
Hjw = Hjw(yr+1, x

j
r+2,m) ∈ R.

There is nothing to prove if Ir+1 ∩Jr+1 = ∅. We may therefore assume, without loss
of generality, that

Ir+1 ∩ Jr+1 = {1, . . . , q}
for some q ≤ r + 1. Let us set

yk = xk ⊗ sk, k = 1, . . . , q.

We can now write (3.8) as

(3.11)

q∑
k=1

N∑
t=1

λktxk ⊗ [bt, sk] +
∑
i∈I′r+1

N∑
w=1

Giwxi ⊗ bw +
∑

j∈J ′
r+1

N∑
w=1

xjHjw ⊗ bw = 0.

For each t and k take αktw ∈ F, w = 1, . . . , N , such that

[bt, sk] =

N∑
w=1

αktwbw.

Hence (3.11) becomes

(3.12)
N∑
w=1

(
q∑

k=1

( N∑
t=1

αktwλkt

)
xk +

∑
i∈I′r+1

Giwxi +
∑

j∈J ′
r+1

xjHjw

)
⊗ bw = 0.

This, of course, implies

(3.13)

q∑
k=1

( N∑
t=1

αktwλkt

)
xk +

∑
i∈I′r+1

Giwxi +
∑

j∈J ′
r+1

xjHjw = 0.

for every w = 1, . . . , N . Note that we are now in a position to apply Remark 2.2
(with (Ir+1 ∩ Jr+1) ∪ I ′r+1 ⊆ I playing the role of I and J ′r+1 ⊆ J \ {1} playing the
role of J). Accordingly,

N∑
t=1

αktwλkt = 0
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for every k = 1, . . . , q and every w = 1, . . . , N . This yields

[λk, xk ⊗ sk] =

N∑
t=1

λktxk ⊗ [bt, sk] =

N∑
w=1

( N∑
t=1

αktwλkt

)
xk ⊗ bw = 0

for every k = 1, . . . , q, every xk ∈ X and every sk ∈ S. This means that

λk = λk(y
k
r+1, xr+2,m)

commutes with every element of the form xk ⊗ sk, and hence with every element in
R. Therefore λk ∈ Z for all k ∈ Ir+1 ∩ Jr+1, which is the desired conclusion.

We proceed to the second part of the proof.

Claim 2. Let 0 ≤ r ≤ m − 2. If Ei, Fj are r-standard, then they are also
(r + 1)-standard.

Proof of Claim 2. Again (3.3) and (3.5) hold by our assumption, and so (3.8)
holds, too. However, since now we are assuming that λk map into Z, this identity
reduces to

(3.14)
∑
i∈I′r+1

Gixi +
∑

j∈J ′
r+1

xjHj = 0,

where Gi and Hj are given by (3.9) and (3.10), respectively. We can now use Lemma
3.1 (for any fixed yi and xk with k /∈ I ′r+1 ∪ J ′r+1). Accordingly, for every i ∈ I ′r+1

we have
Gi =

∑
j∈J′

r+1,

j 6=i

xjpij(yr+1, x
ij
r+2,m) + λi(yr+1, x

i
r+2,m),

and for every j ∈ J ′r+1 we have

Hj = −
∑

i∈I′r+1,

i6=j

pij(yr+1, x
ij
r+2,m)xi − λj(yr+1, x

j
r+2,m),

where pij map into R (if r = m− 1 then they are all zero) and λk map into Z ⊗ S.
Moreover, λk = 0 if k /∈ I ∩ J . From (3.9) and (3.10) we now see that Ei and
Fj are of the desired form on Xr+1 × Xm−r−2 for i ∈ I ′r+1 and j ∈ J ′r+1, except
that λk have their ranges in Z ⊗ S. The same (just notationally more annoying)
proof shows that this is also true for i ∈ Ir+1 and j ∈ Jr+1, and for all other sets
Xu1 ×Xv1 × · · · ×Xul ×Xvl with u1 + · · ·+ ul = r+ 1 and v1 + · · ·+ vl = m− r− 2.
Accordingly, we can make use of Claim 1 telling us that λk map into Z. This
completes the proof of Claim 2.

Both claims together with Lemma 3.1 imply the validity of condition (a). Namely,
the lemma and Claim 1 show that the assumption of Claim 2 is fulfilled for r = 0.
Claim 2 then yields (a) by induction on r.

It remains to verify the validity of condition (b). Assume that (3.2) holds with
max{|I|, |J |} ≤ d − 1, and just follow step by step the proof of the validity of (a).
The first change that occurs is that in (3.7) and (3.8) one has to replace “= 0” by
“∈ Z”. The same replacement must therefore be made in the identities (3.11) and
(3.12) from the proof of Claim 1. This implies that the expression in (3.13) lies in Z
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rather then being equal to zero. However, since max{|I|, |J |} ≤ d−1, this expression
must be zero anyway (see the comment on condition (b’) following Definition 2.1).
The rest of the proof of Claim 1 is thus the same as above. At the beginning of the
proof of Claim 2 one has to substitute “∈ Z” for “= 0” in (3.14). However, since
Lemma 3.1 also covers the central case, this change does not affect the proof. Thus,
the condition (b) is fulfilled, too. �

Those d-free sets that appear in applications usually have some algebraic structure;
the least one usually requires is that they are additive subgroups. Let us therefore
record the following immediate corollary to Theorem 3.2.

Corollary 3.3. Let R and S be unital algebras with S finite dimensional, and let X
be a linear subspace of R. If X is a d-free subset of R, then X ⊗S is a d-free subset
of R⊗ S.

Proof. The space X⊗S is the linear span of X = {x⊗ s |x ∈ X, s ∈ S}. The desired
conclusion therefore follows from the fact that if a set is d-free, then a larger set is
d-free, too [8, Corollary 3.5]. �

4. A counterexample in infinite dimensions

In this short section we give an example showing that the result of the previous
section in general does not hold if S is infinite dimensional, not even if the set X is
a simple algebra which is a d-free subset of some larger algebra R for any d ≥ 1.

Example 4.1. Let R be an F-algebra and let X be its linear subspace. Suppose there
exists a sequence (en)∞n=1 of elements in R which satisfies the following conditions:

(a) For each n there exists x ∈ X such that xen 6= 0.
(b) For each x ∈ X we have xen = enx = 0 for all but finitely many n.

Let us show that then X ⊗ F[ξ] is a not a 2-free subset of R ⊗ F[ξ]. We identify
R⊗ F[ξ] with R[ξ] (and hence X ⊗ F[ξ] with X[ξ]). Define E,F : X[ξ]→ R[ξ] by

E
( k∑
i=0

xiξ
i
)

=
k∑
i=0

∞∑
n=1

xienξ
n+i,

F
( l∑
j=0

ujξ
j
)

=

l∑
j=0

∞∑
n=1

enujξ
n+j .

In view of (b), each of this summations contains only finitely many nonzero terms.
The definitions therefore make sense. As one immediately checks,

E(y)z = yF (z)

holds for all y, z ∈ X[ξ]. If X[ξ] was a 2-free subset of R[ξ], there would exist
p =

∑m
t=1 rkξ

k such that E(y) = yp and F (z) = pz for all y, z ∈ R[ξ]. Therefore
E(x0) had degree at most m for every x0 ∈ X. However, by (a) we can choose x0 so
that x0em+1 6= 0, and so E(x0) has degree at least m+ 1 in light of definition of E.
Therefore X[ξ] is not 2-free in R[ξ].
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The point we wish to make is that, under the above conditions, X can still be
a 2-free subset of R. Consider the following concrete example. Let X = A be the
algebra all (countably) infinite matrices with finitely many nonzero entries. It is
well-known that A is a (non-unital) simple algebra. Moreover, A does not satisfy a
nontrivial polynomial identity. The general theory therefore tells us that there exist
algebras R containing A such that A is their d-free subsets for every d ≥ 1; say,
the maximal left algebra of quotients of A is an example of such an algebra R [8,
Corollary 5.12]. Let en ∈ A be the diagonal matrix whose only nonzero term is 1
on the (n, n) position. It is immediate that the sequence (en)∞n=1 satisfies conditions
(a) and (b). Therefore A⊗ F[ξ] is a not a 2-free subset of R⊗ F[ξ].

5. The infinite dimensional case

In Section 3 we were assuming that S is finite dimensional. This assumption was
actually used only at one place, namely in the definition of pij and λk in the proof of
Lemma 3.1, where summations make sense only if they are finite. If J = ∅ and S is
infinite dimensional, then by following the proof of this lemma (the only difference
is that a basis of S is now infinite) we see that all pijt and λkt are 0, so one simply
defines pij = 0 and λk = 0. With reference to the notation introduced in the previous
sections, we can thus state the following theorem.

Theorem 5.1. Let R and S be unital algebras, and let X be a d-free subset of R.
Set X = {x ⊗ s |x ∈ X, s ∈ S} and let Ei : Xm−1 → R ⊗ S, i ∈ I, be arbitrary
functions. Suppose that either

(a)
∑

i∈I Ei(y
i
m)yi = 0 for all ym ∈ Xm and |I| ≤ d, or

(b)
∑

i∈I Ei(y
i
m)yi ∈ Z for all ym ∈ Xm and |I| ≤ d− 1.

Then each Ei = 0.

A similar theorem of course holds for functional identities∑
j∈J

yjFy(y
i
m) = 0 and

∑
j∈J

yjFy(y
i
m) ∈ Z.

As we saw, Theorem 3.2 does not hold for infinite dimensional algebras S. In
the next theorem we will see that a special but important functional identity can be
handled in infinite dimensions under the following mild technical assumptions:

(∗) There exist x1, x2 ∈ X such that for all α1, α2 in the center Z of R,

α1x1x2 + α2x2x1 ∈ Zx1 + Zx2 + Z

implies α1 = α2 = 0.
(∗∗) For each x ∈ X there exists u ∈ X such that for all α ∈ Z,

αu ∈ Zx+ Z

implies α = 0.

Later we will see that these conditions are satisfied in the situation in which we are
primarily interested.

In the course of the proof we will make use of the results on the so-called quasi-
polynomials. We refer the reader to [8, Chapter 4] (or to the original source [4]) for
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a complete account on this topic. Let us give here only a brief informal introduction.
Let R be a ring with center Z. A quasi-polynomial of degree 2 on X ⊆ R is a function
F : X2 → R of the form

F (x1, x2) = λ1x1x2 + λ2x2x1 + µ1(x1)x2 + µ2(x2)x1 + ν(x1, x2),

where λ1, λ2 ∈ Z, µ1, µ2 : X → Z and ν : X2 → Z. We call λi, µi and ν the coeffi-
cients of F . The coefficient ν plays a special role; we call it the central coefficient.
A quasi-polynomial of degree m is defined analogously, i.e., as a sum of functions of
the form

(x1, . . . , xm) 7→ λ(xi1 , . . . , xik)xik+1
. . . xim

where λ : Xk → Z. If a quasi-polynomial of degree at most m is zero on Xm and
X is (m+ 1)-free, then all its coefficients are zero; moreover, under the assumption
that its central coefficient is 0 it is enough to assume that X is m-free. This is the
content of [8, Lemma 4.4]. This result is very useful, although fairly easy. The next
one is deeper. It states that if the function

Q(xm) =
∑
i∈I

[
Ei(x

i
m), xi

]
is a quasi-polynomial (of degree at most m) on X, then all Ei are quasi-polynomials,
provided that X is (m+ 1)-free, or, if the central coefficient of Q is 0, m-free. This
is a special case of [8, Theorem 4.13].

We now have enough information to prove the next theorem which, roughly speak-
ing, states that under appropriate assumptions the functional identity (5.1) below
has only standard solutions.

Theorem 5.2. Let R and S be unital algebras, and let X be a 3-free subset of R
which satisfies conditions (∗) and (∗∗). Set X = {x⊗s |x ∈ X, s ∈ S} and R = R⊗S.
If F : X2 → R satisfies

(5.1) F (y, z)w + F (w, y)z + F (z, w)y = wF (y, z) + zF (w, y) + yF (z, w)

for all y, z, w ∈ X, then F is of the form

F (y, z) = εyz + ε′zy + µ(y)z + µ(z)y + ν(y, z)

for all y, z ∈ X, where ε, ε′ lie in the center Z of R, and µ : X→ Z, ν : X2 → Z.

Proof. Pick a basis {bt | t ∈ T} of S. We can write

F (y, z) =
∑
t∈T

ft(y, z)⊗ bt,

where ft : X2 → R and for each pair y, z ∈ X we have ft(y, z) = 0 for all but finitely
many t ∈ T .

We first consider (5.1) in the case where all elements lie in X ⊗ 1. As above, we
identify X with X ⊗ 1 and sometimes write x for x⊗ 1. We have∑
t∈T

(
ft(x, u)v+ft(v, x)u+ft(u, v)x

)
⊗bt =

∑
t∈T

(
vft(x, u)+uft(v, x)+xft(u, v)

)
⊗bt
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for all x, u, v ∈ X. Consequently,

(5.2) ft(x, u)v + ft(v, x)u+ ft(u, v)x = vft(x, u) + uft(v, x) + xft(u, v)

for each t ∈ T . Since R is 3-free, we may use [8, Theorem 4.13] to conclude that
each ft is a quasi-polynomial. This means that there exist εt, ε

′
t ∈ Z and functions

µt, µ
′
t : X → Z, νt : X2 → Z such that

(5.3) ft(x, u) = εtxu+ ε′tux+ µt(x)u+ µ′t(u)x+ νt(x, u)

for all x, u ∈ X. A little more can be said, namely,

(5.4) µt = µ′t.

Indeed, using (5.3) in (5.2) we obtain

(µt − µ′t)(x)[u, v] + (µt − µ′t)(u)[v, x] + (µt − µ′t)(v)[x, u] = 0,

which yields (5.4) by [8, Lemma 4.4].
Let x1, x2 be elements satisfying (∗). Since ft(x1, x2) = 0 for all but finitely many

t ∈ T , it follows from (5.3) that εt and ε′t are 0 for all but finitely many t ∈ T . This
makes it possible for us to define

ε =
∑
t∈T

εt ⊗ bt and ε′ =
∑
t∈T

ε′t ⊗ bt.

Let us point out that ε, ε′ are elements in Z ⊗ S – only later we will see that they
actually lie in Z. Now take x ∈ X and let u be an element satisfying (∗∗). Since the
identities ft(x, u) = 0 and εt = ε′t = 0 hold for all but finitely many t ∈ T , it follows
from (5.3) that µt(x) = 0 for all but finitely many t ∈ T . Finally, since, for each
pair x, u ∈ X, the elements εt, ε

′
t, µt(x), µt(u), ft(x, u) are 0 for all but finitely many

t, the same is true for νt(x, u).
Now take x, u, v ∈ X and s ∈ S. Consider the following special case of (5.1):

F (x, u)(v ⊗ s) + F (v ⊗ s, x)u+ F (u, v ⊗ s)x
= (v ⊗ s)F (x, u) + uF (v ⊗ s, x) + xF (u, v ⊗ s).

That is,∑
t∈T

ft(x, u)v ⊗ bts+
∑
w∈T

fw(v ⊗ s, x)u⊗ bw +
∑
w∈T

fw(u, v ⊗ s)x⊗ bw

=
∑
t∈T

vft(x, u)⊗ sbt +
∑
w∈T

ufw(v ⊗ s, x)⊗ bw +
∑
w∈T

xfw(u, v ⊗ s)⊗ bw.

Let βtw, γtw ∈ F be such that

(5.5) bts =
∑
w∈T

βtwbw and sbt =
∑
w∈T

γtwbw.
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Of course, for each t ∈ T there can be only finitely many nonzero βtw and γtw. Using
(5.5) in the last identity it readily follows that

(5.6)

∑
t∈T

βtwft(x, u)v + fw(v ⊗ s, x)u+ fw(u, v ⊗ s)x

=
∑
t∈T

γtwvft(x, u) + ufw(v ⊗ s, x) + xfw(u, v ⊗ s)

for every w ∈ T . Fix s ∈ S; since, by (5.3), the functions
∑

t∈T βtwft(x, u)v and∑
t∈T γtwvft(x, u) are quasi-polynomials, it follows from [8, Theorem 4.13] that the

functions fw(v⊗s, x) and fw(u, v⊗s) are quasi-polynomials, too. Therefore we have

(5.7) fw(v ⊗ s, x) = λwvx+ λ′wxv + µw(v ⊗ s)x+ ηw(x)v + νw(v ⊗ s, x),

and

(5.8) fw(u, v ⊗ s) = δwuv + δ′wvu+ σw(u)v + µ′w(v ⊗ s)u+ νw(u, v ⊗ s),
where λw, λ

′
w, βw, β

′
w are elements in Z (they depend on s) and the functions µw, ηw

etc. map into Z (we have used the same notation µw, νw as above since these new
functions are in fact extensions of the old µw, νw). Rewriting (5.6) according to (5.7),
(5.8), and (5.3) we get

(5.9)

∑
t∈T

βtwεtxuv +
∑
t∈T

βtwε
′
tuxv +

∑
t∈T

βtwµt(x)uv

+
∑
t∈T

βtwµt(u)xv +
∑
t∈T

βtwνt(x, u)v

+ λwvxu+ λ′wxvu+ µw(v ⊗ s)xu+ ηw(x)vu+ νw(v ⊗ s, x)u

+ δwuvx+ δ′wvux+ σw(u)vx+ µ′w(v ⊗ s)ux+ νw(u, v ⊗ s)x

=
∑
t∈T

γtwεtvxu+
∑
t∈T

γtwε
′
tvux+

∑
t∈T

γtwµt(x)vu

+
∑
t∈T

γtwµt(u)vx+
∑
t∈T

γtwνt(x, u)v

+ λwuvx+ λ′wuxv + µw(v ⊗ s)ux+ ηw(x)uv + νw(v ⊗ s, x)u

+ δwxuv + δ′wxvu+ σw(u)xv + µ′w(v ⊗ s)xu+ νw(u, v ⊗ s)x.
We can interpret (5.9) as equality of two quasi-polynomials of degree 3 with zero cen-
tral coefficients. By [8, Lemma 4.4], this is possible only if these quasi-polynomials
have identical coefficients. Comparing the coefficients at vxu we obtain λw =∑

t∈T γtwεt. On the other hand, examining the coefficients at uvx and xuv we get
δw = λw and δw =

∑
t∈T βtwεt. Thus,

(5.10) λw = δw =
∑
t∈T

βtwεt =
∑
t∈T

γtwεt.

Similarly we see that

(5.11) λ′w = δ′w =
∑
t∈T

βtwε
′
t =

∑
t∈T

γtwε
′
t,
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and also that

ηw(x) =
∑
t∈T

βtwµt(x) =
∑
t∈T

γtwµt(x),

σw(u) =
∑
t∈T

βtwµt(u) =
∑
t∈T

γtwµt(u),

µw(v ⊗ s) = µ′w(v ⊗ s).

We can now rewrite (5.7) and (5.8) as

(5.12)

fw(v ⊗ s, x) =
(∑
t∈T

βtwεt

)
vx+

(∑
t∈T

βtwε
′
t

)
xv

+ µw(v ⊗ s)x+
(∑
t∈T

βtwµt(x)
)
v + νw(v ⊗ s, x)

and

(5.13)

fw(u, v ⊗ s) =
(∑
t∈T

βtwεt

)
uv +

(∑
t∈T

βtwε
′
t

)
vu

+
(∑
t∈T

βtwµt(u)
)
v + µw(v ⊗ s)u+ νw(u, v ⊗ s).

Similarly as above we see that for every s ∈ S we have
∑

t∈T βtwεt =
∑

t∈T βtwε
′
t = 0

for all but finitely many w, and consequently, for every v⊗s ∈ X we have µw(v⊗s) = 0
for all but finitely many w. This makes it possible for us to define µ : X→ Z ⊗S by

µ(v ⊗ s) =
∑
w∈T

µw(v ⊗ s)⊗ bw.

There is another important relation that we can deduce from (5.10), namely

[ε,v ⊗ s] =
∑
t∈T

[εt ⊗ bt, v ⊗ s] =
∑
t∈T

εtv ⊗ [bt, s]

=
∑
t∈T

εtv ⊗
(∑
w∈T

(βtw − γtw)bw

)
=
∑
w∈T

(∑
t∈T

(βtw − γtw)εt

)
v ⊗ bw = 0.

Similarly we infer from (5.11) that [ε′, v ⊗ s] = 0. Accordingly, ε, ε′ ∈ Z.
Now take x, u, v ∈ X and q, s ∈ S. As a special case of (5.1)we have

F (x, u⊗ q)(v ⊗ s) + F (v ⊗ s, x)(u⊗ q) + F (u⊗ q, v ⊗ s)x
= (v ⊗ s)F (x, u⊗ q) + (u⊗ q)F (v ⊗ s, x) + xF (u⊗ q, v ⊗ s).

That is,

(5.14)

∑
t∈T

ft(x, u⊗ q)v ⊗ bts+
∑
t∈T

ft(v ⊗ s, x)u⊗ btq

+
∑
w∈T

fw(u⊗ q, v ⊗ s)x⊗ bw =
∑
t∈T

vft(x, u⊗ q)⊗ sbt

+
∑
t∈T

uft(v ⊗ s, x)⊗ qbt +
∑
w∈T

xfw(u⊗ q, v ⊗ s)⊗ bw.
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Let βtw, γtw be scalars satisfying (5.5), and let ρtw, τtw be scalars satisfying

btq =
∑
w∈T

ρtwbw and qbt =
∑
w∈T

τtwbw.

Note that (5.14) implies that for every w ∈ T we have

(5.15)

∑
t∈T

βtwft(x, u⊗ q)v +
∑
t∈T

ρtwft(v ⊗ s, x)u+ fw(u⊗ q, v ⊗ s)x

=
∑
t∈T

γtwvft(x, u⊗ q) +
∑
t∈T

τtwuft(v ⊗ s, x) + xfw(u⊗ q, v ⊗ s).

Fix s and q. Since ft(x, u⊗ q) and ft(v ⊗ s, x) are quasi-polynomials by (5.12) and
(5.13), [8, Theorem 4.13] implies that fw(u ⊗ q, v ⊗ s) is a quasi-polynomial, too.
Thus,

(5.16)
fw(u⊗ q, v ⊗ s) = αwuv + α′wvu

+ ζw(u⊗ q)v + ζ ′w(v ⊗ s)u+ νw(u⊗ q, v ⊗ s)

where αw, α
′
w ∈ Z and ζw, ζ

′
w, νw map into Z (αw and α′w depend on q and s,

ζw depends on s, and ζ ′w depends on q). The usual argument in particular shows
that for each pair u ⊗ q, v ⊗ s ∈ X there can be only finitely many w such that
νw(u⊗ q, v ⊗ s) = 0. We can therefore define ν : X2 → Z ⊗ S by

ν(u⊗ q, v ⊗ s) =
∑
w∈T

νw(u⊗ q, v ⊗ s)⊗ bw.
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Setting (5.16), as well as (5.12) and (5.13) (with some notational adjustments) to
(5.15) we obtain

(5.17)

∑
t∈T

∑
z∈T

βtwρztεzxuv +
∑
t∈T

∑
z∈T

βtwρztε
′
zuxv

+
∑
t∈T

∑
z∈T

βtwρztµz(x)uv +
∑
t∈T

βtwµt(u⊗ q)xv +
∑
t∈T

βtwνt(x, u⊗ q)v

+
∑
t∈T

∑
z∈T

ρtwβztεzvxu+
∑
t∈T

∑
z∈T

ρtwβztε
′
zxvu

+
∑
t∈T

ρtwµt(v ⊗ s)xu+
∑
t∈T

∑
z∈T

ρtwβztµz(x)vu+
∑
t∈T

ρtwνt(v ⊗ s, x)u

+ αwuvx+ α′wvux+ ζw(u⊗ q)vx+ ζ ′w(v ⊗ s)ux+ νw(u⊗ q, v ⊗ s)x

=
∑
t∈T

∑
z∈T

γtwρztεzvxu+
∑
t∈T

∑
z∈T

γtwρztε
′
zvux

+
∑
t∈T

∑
z∈T

γtwρztµz(x)vu+
∑
t∈T

γtwµt(u⊗ q)vx+
∑
t∈T

γtwνt(x, u⊗ q)v

+
∑
t∈T

∑
z∈T

τtwβztεzuvx+
∑
t∈T

∑
z∈T

τtwβztε
′
zuxv

+
∑
t∈T

τtwµt(v ⊗ s)ux+
∑
t∈T

∑
z∈T

τtwβztµz(x)uv +
∑
t∈T

τtwνt(v ⊗ s, x)u

+ αwxuv + α′wxvu+ ζw(u⊗ q)xv + ζ ′w(v ⊗ s)xu+ νw(u⊗ q, v ⊗ s)x.

We are again at a position to apply [8, Lemma 4.4]. In particular we infer that

αw =
∑
t∈T

∑
z∈T

βtwρztεz.

This yields

(5.18)

ε(u⊗ q)(v ⊗ s) =
(∑
z∈T

εzu⊗ bzq
)

(v ⊗ s)

=

(∑
z∈T

εzu⊗
(∑
t∈T

ρztbt

))
(v ⊗ s) =

∑
t∈T

(∑
z∈T

ρztεz

)
uv ⊗ bts

=
∑
t∈T

(∑
z∈T

ρztεz

)
uv ⊗

(∑
w∈T

βtwbw

)
=
∑
w∈T

(∑
t∈T

∑
z∈T

βtwρztεz

)
uv ⊗ bw

=
∑
w∈T

αwuv ⊗ bw.

Similarly we see that

α′w =
∑
t∈T

∑
z∈T

ρtwβztε
′
z
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and hence

(5.19) ε′(v ⊗ s)(u⊗ q) =
∑
w∈T

α′wvu⊗ bw.

Next we infer from (5.17) that

ζw(u⊗ q) =
∑
t∈T

βtwµt(u⊗ q) =
∑
t∈T

γtwµt(u⊗ q).

On the one hand, this implies

(5.20)

µ(u⊗ q)(v ⊗ s) =
∑
t∈T

µt(u⊗ q)v ⊗ bts

=
∑
t∈T

µt(u⊗ q)v ⊗
(∑
w∈T

βtwbw

)
=
∑
w∈T

(∑
t∈T

βtwµt(u⊗ q)
)
v ⊗ bw

=
∑
w∈T

ζw(u⊗ q)v ⊗ bw,

and, on the other hand, it can be easily checked that it also implies

µ(u⊗ q)(v ⊗ s) = (v ⊗ s)µ(u⊗ q).

Therefore, µ(u⊗ q) ∈ Z.
Further, (5.17) yields

ζ ′w(v ⊗ s) =
∑
t∈T

ρtwµt(v ⊗ s),

from which

(5.21) µ(v ⊗ s)(u⊗ q) =
∑
w∈T

ζ ′w(v ⊗ s)u⊗ bw

follows.
Let us gather together all information obtained so far. From (5.18), (5.19), (5.20),

(5.21), along with (5.16) we see that

F (u⊗ q, v ⊗ s) =
∑
w∈T

fw(u⊗ q, v ⊗ s)⊗ bw

=
∑
w∈T

(
αwuv + α′wvu+ ζw(u⊗ q)v + ζ ′w(v ⊗ s)u+ νw(u⊗ q, v ⊗ s)

)
⊗ bw

=ε(u⊗ q)(v ⊗ s) + ε′(v ⊗ s)(u⊗ q) + µ(u⊗ q)(v ⊗ s)
+ µ(v ⊗ s)(u⊗ q) + ν(u⊗ q, v ⊗ s).

The only thing that remains to be shown is that ν(u ⊗ q, v ⊗ s) lies in Z. To this
end, we first observe that (5.1) now reduces to

ν(y, z)w + ν(w, y)z + ν(z, w)y = wν(y, z) + zν(w, y) + yν(z, w).
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Writing x ⊗ p for y, u ⊗ q for z, and v ⊗ s for w and using the definition of ν we
obtain

(5.22)

∑
t∈T

νt(x⊗ p, u⊗ q)v ⊗ [bt, s] +
∑
t∈T

νt(v ⊗ s, x⊗ p)u⊗ [bt, q]

+
∑
t∈T

νt(u⊗ q, v ⊗ s)x⊗ [bt, p] = 0.

Take σtw, ξtw, ωtw ∈ F such that

[bt, s] =
∑
w∈T

σtwbw, [bt, q] =
∑
w∈T

ξtwbw, [bt, p] =
∑
w∈T

ωtwbw,

and note that (5.22) implies that for each w ∈ T we have(∑
t∈T

σtwνt(x⊗ p, u⊗ q)
)
v +

(∑
t∈T

ξtwνt(v ⊗ s, x⊗ p)
)
u

+
(∑
t∈T

ωtwνt(u⊗ q, v ⊗ s)
)
x = 0.

Using [8, Lemma 4.4] (or Remark 2.2) it follows that all the coefficients of this
quasi-polynomial are 0. In particular,∑

t∈T
ωtwνt(u⊗ q, v ⊗ s) = 0,

which readily yields [ν(u⊗q, v⊗s), x⊗p] = 0. This shows that ν(u⊗q, v⊗s) ∈ Z. �

Assume now that A is a prime ring. Recall that the center C of the maximal left
ring of quotients Qml(A) of A is a field, called the extended centroid of A. Given
t ∈ A, we denote by deg(t) the degree of algebraicity of t over C if t is algebraic, or
∞ if it is not algebraic. We set deg(A) = sup{deg(t) | t ∈ A}. It is well-known that
deg(A) ≤ n <∞ if and only if A satisfies the standard polynomial identity of degree
2n. Equivalently, A can be embedded into the ring of n×n matrices over some field.
The fundamental theorem on functional identities, which is due to Beidar [3], states
that A is a d-free subset of Qml(A) if and only if deg(A) ≥ d [8, Corollary 5.12]. This
theorem combined with Theorem 5.2 will yield the next corollary. We also need the
following auxiliary result, based on basic results on polynomial identities.

Lemma 5.3. Let A be a prime ring. The following conditions are equivalent:

(i) For each pair x1, x2 ∈ A, the elements x1x2, x2x1, x1, x2 and 1 are linearly
dependent over the extended centroid C of A.

(ii) deg(A) ≤ 2.

Proof. (i)⇒ (ii). Let c5 be the 5th Capelli polynomial, i.e.,

c5 = c5(ξ1,ξ2, ξ3, ξ4, ξ5, , η1, η2, η3, η4)

=
∑
σ∈S5

sgn(σ)ξσ(1)η1ξσ(2)η2ξσ(3)η3ξσ(4)η4ξσ(5);
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here, ξi and ηj are noncommuting indeterminates. The condition (i) implies that

f = f(ξ1, ξ2, η1, η2, η3, η4) = c5(ξ1ξ2, ξ2ξ1, ξ1, ξ2, 1, η1, η2, η3, η4)

is a polynomial identity of A (see, e.g., [6, Section 6.3]). Since A satisfies a nontrivial
polynomial identity, its center Z is nonzero and C is the field of quotients of Z [6,
Corollary 7.57]. Multiplying

c5(x1x2, x2x1, x1, x2, 1, y1, y2, y3, y4) = 0

by λ−3
1 λ−3

2 µ−1
1 µ−1

2 µ−1
3 µ−1

4 where λi, µj are nonzero elements in Z, it thus follows
that f is a polynomial identity of the ring of central quotients QZ(A) of A, which
is a finite dimensional central simple algebra over C [6, Theorem 7.58], and hence,
by Wedderburn’s structure theorem [6, Corollary 2.62], isomorphic to the matrix
algebra Mn(D) for some n ≥ 1 and a finite dimensional central division algebra D
over C. If C is finite, then D is a field by Wedderburn’s theorem on finite division
rings [6, Theorem 1.38]. Assume that C is infinite. Then f is a stable identity for
QZ(A) [6, Theorem 6.29], so that f is also a polynomial identity of C ⊗C QZ(A)
where C is the algebraic closure of C. Since the algebra C ⊗C QZ(A) is isomorphic
to Mn(C) for some n ≥ 1 [6, Theorem 4.39], in both cases we have arrived at the
same conclusion: there exist n ≥ 1 and a field K such that A can be embedded into
Mn(K) and f is a polynomial identity of Mn(K). Suppose that n ≥ 3. Take the
matrix unit e12 for x1 and the matrix unit e21 for x2. Then x1x2 = e11, x2x1 = e22,
x1, x2 and 1 =

∑n
i=1 eii are linearly independent matrices. Consequently, by [6,

Theorem 7.45] there exist y1, y2, y3, y4 ∈Mn(K) such that

f(x1, x2, y1, y2, y3, y4) = c5(x1x2, x2x1, x1, x2, 1, y1, y2, y3, y4) 6= 0.

This contradiction shows that n ≥ 2, and hence that deg(A) ≤ 2.
(ii)⇒ (i). Using the Cayley-Hamilton theorem one can show that deg(A) ≤ 2

implies that there exist an additive map τ : A→ C and a biadditive map δ : A2 → C
such that x2+τ(x)x+δ(x, x) = 0 for every x ∈ A [8, Theorem C.2]. The linearization
of this identity gives

x1x2 + x2x1 + τ(x1)x2 + τ(x2)x1 + δ(x1, x2) + δ(x2, x1) = 0,

which implies (i). �

We remark that in Lemma 5.3 we did not assume that A is unital. The unity 1
from (i) may belong to QZ(A) \A.

We now have enough information to prove the following corollary.

Corollary 5.4. Let A be a prime algebra with deg(A) ≥ 3 and let S be an arbitrary
unital algebra. Set A = A⊗ S and Z = C ⊗ ZS where C is the extended centroid of
A and ZS is the center of S. If a bilinear map F : A2 → A satisfies

F (y, z)w + F (w, y)z + F (z, w)y = wF (y, z) + zF (w, y) + yF (z, w)

for all y, z, w ∈ A, then F is of the form

(5.23) F (y, z) = εyz + ε′zy + µ(y)z + µ(z)y + ν(y, z)

for all y, z ∈ A, where ε, ε′ ∈ Z, µ : A → Z is a linear and ν : A2 → Z is a bilinear
map.
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Proof. Lemma 5.3 of course shows that A satisfies the condition (∗) (with C playing
the role of Z). Since A is noncommutative (i.e., deg(A) 6= 1), it trivially satisfies (∗∗).
In view of [8, Corollary 5.12], we may now use Theorem 5.2 (with Qml(A) playing
the role of R) to conclude that F is of the desired form on X = {x⊗s |x ∈ A, s ∈ S}.
Thus, there exist ε, ε′ ∈ Z, µ : X→ Z, and ν : X2 → Z such that (5.23) holds for all
y, z ∈ X. By assumption, F (λy, z) = λF (y, z) for every λ ∈ F. Consequently

(5.24)
(
µ(λy

)
− λµ(y)

)
z = λν(y, z)− ν(λy, z) ∈ Z.

We claim that this implies that a = µ(λy
)
−λµ(y) ∈ Z is 0. Indeed, since a(x⊗1) ∈ Z,

we have [a(x⊗ 1), y ⊗ 1] = 0 for all x, y ∈ A. Writing a =
∑

t αt ⊗ bt where αt ∈ C
and bt ∈ S are linearly independent, it follows that

∑
t αt[x, y] ⊗ bt = 0. Therefore

αt[x, y] = 0 for all x, y ∈ A and all t, implying that αt = 0; consequently, a = 0. We
have thus proved that µ(λy) = λµ(y) for all λ ∈ F and all y ∈ X, and hence, by (5.24),
also ν(λy, z) = λν(y, z) for all λ ∈ F and all y, z ∈ X. Similarly, ν(y, λz) = λν(y, z).

We have to extend µ from X to A = spanX. We do this in the obvious way, i.e.,

µ
(∑

i

yi

)
=
∑
i

µ(yi),

however, we have to show that this is well-defined. Suppose that
∑

i yi = 0. Then∑
i

F (yi, z) = F
(∑

i

yi, z
)

= 0,

which in light of (5.23) yields(∑
i

µ(yi)
)
z = −

∑
i

νi(yi, z) ∈ Z.

As we saw in the previous paragraph, this implies
∑

i µ(yi) = 0. Thus, µ is well-
defined. We have also shown that

∑
i ν(yi, z) = 0 follows from

∑
i yi = 0. Similarly

we see that
∑

j zj = 0 implies
∑

j ν(y, zj) = 0. Accordingly, we can extend ν from

X2 to A2 by

ν
(∑

i

yi,
∑
j

zj

)
=
∑
i

∑
j

ν(yi, zj).

Note that µ is linear, ν is bilinear, and that (5.23) is fulfilled for all y and z in A. �

Remark 5.5. Let B : A2 → A be a bilinear map. The map q : A→ A, q(x) = B(x, x),
is called the trace of B. Recall that q is said to be commuting if [q(y), y] = 0 for all
y ∈ A. Linearizing this identity we obtain that F (y, z) = B(y, z) + B(z, y) satisfies
the functional identity of Corollary 5.4. Under the additional assumption that the
characteristic of F is not 2, the conclusion of the corollary implies that q is of standard
form, i.e., q(y) = λy2 + µ(y)y + δ(y, y) (where λ = 1

2(ε+ ε′) and δ(y, z) = 1
2ν(y, z)).

Neglecting some small differences in assumptions, Corollary 5.4 thus generalizes [5,
Theorem 1] (see also [8, Theorem 5.32]) from prime algebras to tensor products of
prime algebras with arbitrary unital algebras.
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Recall that a linear map ϕ from an algebra B onto an algebra A is called a Lie
homomorphism if

ϕ
(
[y, z]

)
= [ϕ(y), ϕ(z)] for all y, z ∈ B.

Examples include homomorphisms, the negatives of antihomomorphisms, and their
direct sums. By the latter we mean that there exists a central idempotent ε in
A such that x 7→ εϕ(x) is a homomorphism and x 7→ (1 − ε)ϕ(x) is the negative
of an antihomomorphism. Further, if ϕ is a Lie homomorphism and τ is a linear
map into the center of A that vanishes on commutators, then ϕ + τ is again a Lie
homomorphism.

Lie isomorphisms between prime rings were described in [5] (see also [8, Corollaries
6.4 and 6.5] for slightly more general results). The conclusion involves the extended
centroid, and this is unavoidable (see [8, Example 6.10]). We will now extend this
description to the tensor products of prime algebras with arbitrary unital algebras.
We remark that in the prime case there are no nontrivial central idempotents, so
direct sums do not appear. They obviously cannot be avoided when tensoring with
an arbitrary algebra, so the next result is necessarily more complicated. The concept
of the proof, however, is the same. We will actually follow closely the proof of [8,
Theorem 6.1], and make some necessary adjustments at a few points.

Corollary 5.6. Let A be a prime algebra with deg(A) ≥ 3 and let S be an arbitrary
unital algebra. Set A = A⊗ S, A′ = (A+ C)⊗ S, and Z = C ⊗ ZS, where C is the
extended centroid of A and ZS is the center of S. If ϕ is a Lie isomorphism from
an arbitrary algebra B onto A, then ϕ = θ + τ where θ : B → A′ is the direct sum
of a homomorphism and the negative of an antihomomorphism, and τ : B→ Z is a
linear map which vanishes on commutators.

Proof. Our starting point is the identity [ab, c] + [ca, b] + [bc, a] = 0 which obviously
holds for any elements in an arbitrary algebra. Applying ϕ to this we get

(5.25) [ϕ(ab), ϕ(c)] + [ϕ(ca), ϕ(b)] + [ϕ(bc), ϕ(a)] = 0

for all a, b, c ∈ B. Write y for ϕ(a), z for ϕ(b), and w for ϕ(c). Then (5.25) reads as

[ϕ
(
ϕ−1(y)ϕ−1(z)

)
, w] + [ϕ

(
ϕ−1(w)ϕ−1(y)

)
, z] + [ϕ

(
ϕ−1(z)ϕ−1(w)

)
, y] = 0

and so Corollary 5.4 is applicable. Therefore there exist ε, ε′ ∈ Z, a linear map
µ : A→ Z and a bilinear map ν : A2 → Z such that

ϕ
(
ϕ−1(y)ϕ−1(z)

)
= εyz + ε′zy + µ(y)z + µ(z)y + ν(y, z)

for all y, z ∈ A. That is,

(5.26) ϕ(ab) = εϕ(a)ϕ(b) + ε′ϕ(b)ϕ(a) + µ(a)ϕ(b) + µ(b)ϕ(a) + ν(a, b)

for all a, b ∈ B where µ(a) = µ(ϕ(a)) and ν(a, b) = ν(ϕ(a), ϕ(b)).
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We continue by computing ϕ(abc) in two ways. First we have

ϕ((ab)c) =εϕ(ab)ϕ(c) + ε′ϕ(c)ϕ(ab) + µ(ab)ϕ(c) + µ(c)ϕ(ab) + ν(ab, c)

=ε2ϕ(a)ϕ(b)ϕ(c) + εε′ϕ(b)ϕ(a)ϕ(c) + εµ(a)ϕ(b)ϕ(c) + εµ(b)ϕ(a)ϕ(c)

+ εν(a, b)ϕ(c) + εε′ϕ(c)ϕ(a)ϕ(b) + ε′2ϕ(c)ϕ(b)ϕ(a) + ε′µ(a)ϕ(c)ϕ(b)

+ ε′µ(b)ϕ(c)ϕ(a) + ε′ν(a, b)ϕ(c) + µ(ab)ϕ(c) + εµ(c)ϕ(a)ϕ(b)

+ ε′µ(c)ϕ(b)ϕ(a) + µ(a)µ(c)ϕ(b) + µ(b)µ(c)ϕ(a) + µ(c)ν(a, b) + ν(ab, c).

On the other hand,

ϕ(a(bc)) =εϕ(a)ϕ(bc) + ε′ϕ(bc)ϕ(a) + µ(a)ϕ(bc) + µ(bc)ϕ(a) + ν(a, bc)

=ε2ϕ(a)ϕ(b)ϕ(c) + εε′ϕ(a)ϕ(c)ϕ(b) + εµ(b)ϕ(a)ϕ(c) + εµ(c)ϕ(a)ϕ(b)

+ εν(b, c)ϕ(a) + εε′ϕ(b)ϕ(c)ϕ(a) + ε′2ϕ(c)ϕ(b)ϕ(a) + ε′µ(b)ϕ(c)ϕ(a)

+ ε′µ(c)ϕ(b)ϕ(a) + ε′ν(b, c)ϕ(a) + εµ(a)ϕ(b)ϕ(c) + ε′µ(a)ϕ(c)ϕ(b)

+ µ(a)µ(b)ϕ(c) + µ(a)µ(c)ϕ(b) + µ(a)ν(b, c) + µ(bc)ϕ(a) + ν(a, bc).

Comparing these two identities we obtain

(5.27) εε′[ϕ(b), [ϕ(a), ϕ(c)]] + ω(a, b)ϕ(c)− ω(b, c)ϕ(a) ∈ Z

for some ω : B2 → Z. We can rewrite this as

(5.28) εε′[z, [y, w]] + ω(y, z)w − ω(z, w)y ∈ Z

where ω : A2 → Z. Our goal now is to show that (5.28) implies εε′ = 0. Let us
write εε′ =

∑
t∈T εt ⊗ bt and ω(y, z) =

∑
t∈T ωt∈T (y, z) ⊗ bt where εt, ωt(y, z) ∈ C

and {bt | t ∈ T} is a basis of S. Taking x ⊗ 1 for y, u ⊗ 1 for z, and v ⊗ 1 for w it
follows from (5.28) that

(5.29) εt[u, [x, v]] + ωt(x, u)v − ωt(u, v)x ∈ C

for every t ∈ T (here, ωt(x,w) stands for ωt(x⊗ 1, w⊗ 1)). Suppose εt 6= 0 for some
t. Fix a noncentral u ∈ A and set u1 = εtu. Then u1 /∈ C. We can write (5.29) as

E1(x)v + E2(v)x+ vF1(x) + xF2(v) = 0,

where E1(x) = u1x+ωt(x, u), E2(v) = −u1v−ωt(u, v), F1(x) = xu1, F2(v) = −vu1.
Since A is a 3-free subset of Qml(A) [8, Corollary 5.12] it follows that there are
p ∈ Qml(A) and λ : A→ C such that E1(x) = xp+λ(x). Consequently, u1x−xp ∈ C.
However, this is impossible for u1 /∈ C and A is a 3-free. Thus, each εt = 0 and
hence εε′ = 0.

Our next goal is to show that ε′ = ε− 1. By (5.26) we have

ϕ(ab)− ϕ(ba) = (ε− ε′)[ϕ(a), ϕ(b)] + ν(a, b)− ν(b, a).

Since ϕ is a Lie homomorphism, this is also equal to [ϕ(a), ϕ(b)]. Consequently,

(1− ε+ ε′)[ϕ(a), ϕ(b)] ∈ C.

Similarly as in the previous paragraph we see that this yields 1 − ε + ε′ = 0, as
desired. Note that this together with εε′ = 0 implies that ε is an idempotent.
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Define θ : B→ A′ by

θ(a) = ϕ(a)− (1− 2ε)µ(a).

Using (5.26) one easily derives that ρ(a, b) = εθ(ab) − εθ(a)θ(b) lies in Z. Con-
sequntly, computing, similarly as above, εθ((ab)c) = εθ(a(bc)) in two ways results
in ρ(a, b)θ(c) − ρ(b, c)θ(a) ∈ Z, which clearly yields ρ(a, b)ϕ(c) − ρ(b, c)ϕ(a) ∈ Z.
This is similar to (5.27), but simpler. Using the same approach as above one easily
shows that ρ(a, b) = 0 for all a, b ∈ B. Thus, εθ(ab) = εθ(a)θ(b), i.e., a 7→ εθ(a)
is a homomorphism. Similarly we see that a 7→ (1 − ε)θ(a) is the negative of an
antihomomorphism.

Finally we define τ : B → Z by τ(a) = (1 − 2ε)µ(a), so that ϕ = θ + τ . Since
both ϕ and θ are Lie homomorphisms it follows immediately that τ([a, b]) = 0 for
all a, b ∈ B. �

Remark 5.7. A similar theorem can be obtained for Lie derivations, cf. [8, Theorem
6.6]. Also, Jordan derivations can be handled under similar assumptions, only 3-
freeness must be replaced by 4-freeness. Actually, Jordan derivations are much
easier to deal with than Lie derivations – one can show that they are ordinary
derivations as an immediate corollary to Theorem 5.1. See [8, p. 177]. Let us finally
remark that inspired by the (preliminary) results of the present paper, the author
has simultaneously written a paper on Jordan derivations and some related maps
on the tensor product between an arbitrary (not necessarily d-free) algebra and a
commutative algebra [7].
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