FUNCTIONAL IDENTITIES ON TENSOR PRODUCTS OF
ALGEBRAS

MATEJ BRESAR

ABSTRACT. Let R and S be unital algebras. We show that if X is a d-free subset
of R and S is finite dimensional, then the set X = {z®@s|z € X,s € S} is a d-free
subset of the algebra R ® S. The assumption that S is finite dimensional turns
out to be necessary in general. However, we show that some important functional
identities have only standard solutions on X even when S is infinite dimensional.

1. INTRODUCTION

A functional identity is, roughly speaking, an identical relation involving arbitrary
elements from a subset of a ring along with with arbitrary functions that are con-
sidered as unknowns. Basic definitions and sample results will be given below, but
for details and a more clear picture we refer the reader to the book [§].

The theory of functional identities is based on the concept of a d-free set, which is
briefly described in Section 2. On a d-free set one can handle quite general functional
identities [8, Chapter 4], and, more importantly, one can solve a variety of problems
arising in different mathematical areas [8, Chapters 6-8]. The major problem is to
show that d-free sets actually exist. The fundamental theorem in this context states
that under a mild (and necessary) assumption every prime ring A is a d-free subset
of its maximal left ring of quotients Q,,;(A) [8, Theorem 5.11]. Using this one can
then find various d-free subsets of prime rings, such as ideals, Lie and Jordan ideals,
symmetric and skew-symmetric elements if the ring is equipped with involution, etc.
[8, Section 5.2]. Most of known examples of d-free sets are actually subsets of prime
rings. Among other examples, we list the following:

(a) If S is an arbitrary ring, then the matrix ring M,(S) is a d-free subset of
itself, as long as n > d [8, Corollary 2.22].

(b) If a unital ring A is a d-free subset of a unital ring R, then 7},(A), the ring
of all upper triangular matrices over A, is a d-free subset of T}, (R). This was
recently established by Eremita [9].

(c) The tensor product A ® S of a prime algebra A (satisfying the usual re-
strictions) and an arbitrary finite dimensional algebra S is a d-free subset of
Qmi(A) ® S; moreover, if A is a simple unital algebra, then S can be infinite
dimensional. See [1].
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In this paper we will deal, partially for simplicity, only with algebras over a field,
which we denote by F. Within this framework, all statements (a), (b), and (c) get
the same form: If an algebra A is a d-free subset of an algebra R, then A ® S is a
d-free subset of R® S. In (a), A = M,(F) and S is an arbitrary unital algebra. In
(b), A is an arbitrary d-free algebra and S = T),(F). In (c), A is a prime algebra and
S is an arbitrary finite dimensional unital algebra, or an arbitrary unital algebra in
case A is simple and unital (A = M, (FF) is of course just a special case). All this
indicates that a more general phenomenon might be hidden behind these results.
The purpose of this paper is to explore it.

In Section 3 we restrict ourselves to the case where S is a finite dimensional
(but otherwise arbitrary) unital algebra. In this context, the result that we obtain
(Theorem 3.2) is definitive of its kind: If X is a d-free subset of an algebra R, then
{r®s|z € X,s € S}is a d-free subset of the algebra R® S. In this way we obtain
a new, large family of d-free sets for which the general theory from [8] is directly
applicable.

The restriction to finite dimensions is necessary in general. This is shown in
Section 4. We actually give an example of a simple non-unital algebra A which is
a d-free subset of a larger algebra R for every d > 1, yet A ® F[¢] is not a 2-free
subset of R ® F[¢]. The second result from (c) therefore does not hold without the
assumption that A is unital.

The example just mentioned shows that, unfortunately, we have no control of
general functional identities if S is infinite dimensional. However, in Section 5 we
will see that in this case we can still handle some indeed quite special, but par-
ticularly important identities. First of all, this turns out to be the case for the
“one-sided” identities (Theorem 5.1). The main theme of Section 5 is the identity
[F(y, z),w] + [F(w,y),z] + [F(z,w),y] = 0, which is a prototype of a functional
identity appearing in different problems (cf. [8, Section 1.4]). The main result of the
section (Theorem 5.2) tells us that this identity has only standard solutions under an
additional technical assumption, which is fulfilled in the case where the first algebra
is prime (Corollary 5.4). Among possible applications, we discuss only the one con-
cerning Lie isomorphisms (Corollary 5.6). The reason for this is that, as shown in [1]
and [2], Lie automorphisms of the tensor product between a “nice” algebra A and an
arbitrary unital algebra S naturally appear in the study of gradings of Lie algebras
(see [10] for the recent survey of this theory). In [1] only the case where S is finite
dimensional was treated, while in [2] the need for treating an infinite dimensional
algebra S appeared. In that paper, the problem was solved by relying on special
properties of the algebra A that was considered. Now it seems plausible that one
could obtain similar results for considerably more general algebras A.

2. PRELIMINARIES ON d-FREE SETS

The purpose of this preliminary section is to recall the definition of a d-free set,
which is due to Beidar and Chebotar [4]. Simultaneously we will introduce some
necessary notation.
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Let R be a unital ring with center Z = Zp, let X be a nonempty subset of R, and

let m be a positive integer. For elements z; € X, i =1,2,...,m, we set
Ty = (.%'1,...,:Em) EXm,
f:n = ($1,...,$i,1,$i+1,...,.’Em) EXm_l,
f;]n:f% = (:cl,...,xi_l,xi+1,...,xj_1,a:j+1...,xm)EXm72.

Let I,J be subsets of {1,2,...,m}. For each i € I and j € J let
E:X™' 5 R and Fj:X™ 'R

be arbitrary functions. For m = 1 we regard E; and I} as elements in R. The basic
functional identities are

(2.1) ZE a:ﬁ—ZxJ = 0 foralzm,ecX™,
i€l jeJ

(2.2) > E@,)mi+ Y xiF( € Z foralZ, XM
i€l jeJ

Note that (2.1) trivially implies (2.2), so one should not understand that (2.1) and
(2.2) are satisfied simultaneously by the same functions E; and Fj. Each of the two
identities should be treated separately.
The standard solution of both functional identities (2.1) and (2.2) is defined as
E(@,) = > wpyh) +N(T,), i€l
=
(2.3) Fi®,) = =Y pi@d)ei— (@), je,

i€l,
i#]

Me=0 if k€Inl,
where
pij: X™ 2R, i€l jeJ i#],
Mo XMV 5 Z keluld,

are arbitrary functions (for m = 1 one should understand this as that p;; = 0 and Ay
is an element in Z). Note that (2.3) indeed implies (2.1), and hence also (2.2). The
standard solutions can be viewed as the “obvious”, or, more precisely, as unavoidable
solutions that always exist, independently of the structure of the ring in question.
We remark that the cases where one of the sets I and J is empty are not excluded.

We will follow the convention that the sum over @) is 0. Thus, if J = (), (2.1) reads
as

ZE vz =0 forall 7, € X™,

el
and the standard solution of this functional identity is £; = 0 for all ¢ € I. Similarly,
the standard solution of

> wFy(x,) =0 forall T, € X™
JjeJ
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is F; = 0 for each j.
Definition 2.1. Let d be a positive integer. We say that X is d-free subset of R if
the following two conditions hold for all m > 1 and all I,J C {1,2,...,m}:
(a) If max{|I|,|J|} <d, then (2.1) implies (2.3).
(b) If max{|I|,|J|} <d—1, then (2.2) implies (2.3).
Note that (b) can be replaced by
(b’) If max{|I|,|J|} <d—1, then (2.2) implies (2.1).

Namely, (2.3) trivially implies (2.1), and, according to (a), (2.1) implies (2.3) if
max{|I|,|J|} <d—1.

We remark that conditions (a) and (b) are usually handled in a similar manner,
but are independent in general. In applications of functional identities one usually
uses both, so each of them is necessary.

Remark 2.2. Suppose that X is a d-free subset of R and (2.1) with |/| < d and
|J| < d—1 holds for some functions E;, ;. Assume further that ¢ € I is such that
i ¢ J and F; maps into Z. Then E; = 0. Namely, by definition of d-freeness we
know that E; is of the form

Ei(®,) = Y aipii(T) + \i(®@)-
jeJ
Now, since i ¢ I N J we have \; = 0, and since
> wipi(E)) € Z
€,
i

it follows from (b) that each p;; = 0.

3. THE FINITE DIMENSIONAL CASE

We now assume that R is an algebra over a field F, X is a nonempty subset of R,
and S is a finite dimensional unital algebra over F. Fix a basis

{b1,...,bn}
of S over F. Set
R=R®S
and
X={z®s|lzeX,seS}

We will show that X is a d-free subset of R if X is a d-free subset of R. We identify
X by X ®1 C X. Accordingly, we will often write x ® 1 simply as x. By Zg we
denote the center of S. As is well-known, the center of R ® S is equal to

3=2Z®Zs(=Zp® Zs).
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Throughout, we assume that X is a d-free subset of R. Our goal is to show that
then X is a d-free subset of R. Thus, we have to show that functions E;, Fj : xm-l

R, 1 €1, e J satisfying either

(3.1) ZE 7 yZ+ZyJ @) =0 forally, cXx™
i€l jeJ

or

(3.2) ZE 7 yz—i—ZyJ (¥),) €3 forall g, € X"
el jeJ

are of standard form if max{|I|,|J|} < d (in case of (3.1)) and max{|I|,|J|} <d—1
(in case of (3.2)). We remark that in (3.2) we could replace 3 by Z ® S, but we will

not bother with this generalization.

In the first lemma we consider (3.1) and (3.2) restricted to X™~! (here, X stands
for X ® 1). As we will see, it is rather straightforward to derive that the functions
are of the desired form (2.3), however, with A\ mapping into Z ® S rather than into

3= Z ® Zg. Note that one cannot say more in this setting.
Iemma3J.LaE;F;Xm4—+mie]‘jeJcmdwt

ZE m)Ti + Zx]
iel Jje€J
Suppose that either
(a) ®(zy,) =0 for all Ty, € X™ and max{|I|,|J|} < d, or
(b) ®(Tm) € 3 for all Ty, € X™ and max{|I],|J|} <d—1.
Then there exist p;j : X™ 2 - R, i €1, jeJ,i#j, and N
ke IUJ, such that (2.3) holds.

Proof. Let us write

N

Ez(f;'n) = Z €it($m) ® by,
t=1
N

Fi@,) = fiu(@,) @b,
t=1

where e;, fji X™1 5 R. We have

B Z(Ze” ) ® bt) 2, ® 1)+ Z z;®@1)- (i fit(@) ® bt)
=1

el t=1 jeJ

=S (X eal@)wi+ 3 wiful@h)) @b

t=1 el jeJ
Consequently, for all T,,, € X™ and all 1 <t < N we have

> enl@)wi+ Y wifiu(E,) =

il jed

XMl 5 7@ 8,
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if (a) holds, and

Z ei(Ty, )i + Z:cjf]t xj ez

el jeJ

if (b) holds. Since X is a d-free subset of R, in each of the two cases we get the same
conlusion, namely that for each ¢ there exist

pijt: X" SR, i€l jEJ, i#],
Mot : XV 5 Z keluld,
such that

eit(ffn) = Zx]put +)\zt( ) 1€ 1,
e
i

Fn@) = = pi(@ e — Nu(®,), G €T,

At =0 if kgInd.

Now define p;j : X™ 2 R, ie€l,jeJ,i#j,and \p: X" ' - Z®S, ke lTuUl,
by

pzy(f%) = szgt ®bt7

)‘k(fﬁm) = Z)\kt ®bt

Note that

Eiz) = Z(Z xpijt(T)3) + Nt (T, )) ® by

t=1 JeJ,
J#i

> aipii (5) + Ni(Th,)
e,
i

for every ¢ € I, and similarly,

== pi(@)wi = \i(@)

iel,
i#£]

for every j € J. We also have \y =0if k& INJ. O

Let us introduce some auxiliary terminology and notation that will be used in the
proof of the main theorem. For any 1 < s < m we write

I,=1In{l,...,s}, Js=JnA{l,... s},
IL=1\I,, J.,=J\Js,
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and
Tsm = (ToyoonrTm),
fi,m = (xs,...,:pi_l,xi_i_l,...,xm),
T?sj,mzf?sfm = (ms,...,$i_1,xi+1,...,$j_1,.1‘j+1...,iL'm).

We also set T, = () for s > m.
We now assume that E;, I, i € I, j € J, are defined on X1 Let0<r<m-—1.
We will say that E;, Fj are standard on X" x X™ "1 if for every i € I,41 we have

Ei@i1,Tri2m) = Y Yipij (i1 Triom)
je‘.lr-!—lv
(33) 7. i = o
+ Z T5Pij (yr-i-l? $r+2,m) + )‘i(yr—i-l? ZCT+2,m>,
VIS
for every i € I} | we have

Ei(Ur Tog1m) = D UiDis (T Toi 1 m)

5 i€
+ D 20T T ) + AT T ),
ji{’r,
FE)

and, similarly, for every j € J,11 we have

Fj(@i+1afT+2,m):_ Z pij(y?_ﬂvjwrlm)yi
ie{r+1,
(3.5) 7 S .
— Z Pij (W1 Trom)Ti — Ny 1 Tri2,m),
i€l]

and for every j € J),; we have

Fj(yraf7]~+1,m) == szy@ivfi_wm)yz
1€ly
- Z pl](@raf;&rl,m)xl - )\j(grﬂfgdrl,m)
iell.,
=

(3.6)

for all z; € X and all y; € X, where p;; map into R and \; map into 3; moreover,
A, =0if k¢ I N J. In an analogous fashion we define when Fj;, F; are standard on
XU x XY x - x X% x X" for any choice of u;,v; > 0 such that Zé:l u; + vy =
m — 1. Further, we will say that E;, F; are r-standard if they are standard on
XU X XU x - x XM x XY whenever 22:1 u; = r (and hence 22:1 vi=m—r—1).
If all conditions in this definition are fulfilled except that Ay map into Z ® S rather
than into 3, then we will say that Ej;, Fj are r-standard modulo 3 (Lemma 3.1 thus
states that Ej;, F; are 0-standard modulo 3). Note that saying that E; and F} are
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standard solutions of (3.1) and (3.2) is the same as saying that they are (m — 1)-
standard.
We can now prove our main result in this section.

Theorem 3.2. Let R and S be unital algebras with S finite dimensional. If X is a
d-free subset of R, then X = {r @ s|z € X,s € S} is a d-free subset of R=R® S.

Proof. We have to show that conditions (a) and (b) from Definition 2.1 are fulfilled.
We will deal with (a) and at the end mention what modifications are necessary to
establish (b). Assume, therefore, that (3.1) holds with max{|I|,|J|} < d.

The proof of the validity of (a) consists of two parts. We begin by introducing the
setting needed for both. Let 0 < r < m — 1. A special case of (3.1), where y; € X if
1<r+4+1landy; =x; € X if ¢ > r 4 1, reads as follows:

Z E (yr+17xT+2m Yi + Z y7'+1a 'r+2 m)

1€l el

(3 7) r+1
+ Z yj yr+1’ xT’+2 m) + Z xjﬂ(yr+17fg‘+2,m) = 0.
J€Jrs1 jEJ;+1

Assume that E;, Fj are standard on X" x X™ "~ modulo 3. Applying (3.3) and
(3.5) to (3.7) we obtain

(3.8) > e+ Y. Giwi+ Y xH

kel 41NJry1 zG]T/NJrl JGJ,

where

)\k - >\k (yf+17 fT-&-Q,m)a

(39) GZ = Gi(gr—ﬁ-laffq»lm) = Ei(yr+17f:;+2,m) - Z yjpij(gfﬂ—l?ffdrlm)?

J€Jr41

and

(310)  Hj = Hj(J,41,7, Ty iom) = Fj (U1 Tryom) + Z Pij (Trs1s T o m )Y
1€l 41

Let us add a little comment before we start. In the first part we will deal with
functions with indices from 7,11 N Jy41, and in the second part with functions with
indices from I} ; N J ;. The only reason is that this is notationally easier.

We now proceed to the first part of the proof.

Claim 1. Let 0 <r < m — 1. If E;, Fj are r-standard modulo 3, then they are
r-standard.

Proof of Claim 1. We will only consider the set X” x X™"~! and show that )
from (3.3) and (3.5), i.e., A\; for k € I,4+1 N Jp41, maps into 3. Other cases can be
handled analogously, just the notation is (even) heavier (even the proof that \j from
(3.4) and (3.6) maps into 3 is notationally slightly more involved for one also has to
deal with the set X7 x X*77=1 x % x X™m=k=1),
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By our assumption, (3.3) and (3.5) are fulfilled, and so (3.8) holds. We can write

N
M=) A @by,
t=1

where
Akt = )\kt(yf+1vfr+2,m) €z
Similarly we write

N N
Gi=) Guw®by, and Hy=) Hju®bu,
w=1 w=1
where ‘
Giw = Giw(yr+1afqzﬂ+2,m) €ER
and

Hj, = jw(yr—&-lvfi—i&,m) €R.
There is nothing to prove if I, 1 N.J,4+1 = (). We may therefore assume, without loss
of generality, that

IT+1 N ']TJrl = {17 . >Q}
for some ¢ < 1+ 1. Let us set

Y =28k, k=1,...,q.
We can now write (3.8) as
N

q N N
311 ZZ)\kt:UkGEJ btask Z ZGZ‘wCCi(X)bw-F Z Z:Iinjw@bw:O.

k=1t=1 iell  , w=1 JeJ)  w=l

For each t and k take apyy € F, w =1,..., N, such that

btask E Cthw w -

Hence (3.11) becomes

N q N
(3.12) Z <Z(Z aktw/\kt>wk + Z GiwTi + Z QUjij> ® by = 0.

w=1 \ k=1 t=1 i€l JEJ 41

This, of course, implies

q N
(3.13) Z(Z aktw)\kt>xk + Z Giwxi + Z .%'jij =0.

k=1 t=1 i€l J€J

for every w = 1,..., N. Note that we are now in a position to apply Remark 2.2
(with (Z,41 N0 Jpy1) UI) . C T playing the role of I and J)_; C J\ {1} playing the
role of J). Accordingly,

N
Z st At = 0
t=1
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for every k =1,...,q and every w = 1,..., N. This yields

N N N
[)\k,a?k & Sk] = Z At T @ [bt, Sk] = Z (Zaktw)\kt>xk R by =0
t=1 w=1 t=1

for every k =1,...,q, every xp € X and every s € S. This means that

e = Me(Tr 1, Traom)

commutes with every element of the form zj; ® si, and hence with every element in
R. Therefore A\, € 3 for all k € I,11 N J.41, which is the desired conclusion.

We proceed to the second part of the proof.

Claim 2. Let 0 < r < m — 2. If E;, F} are r-standard, then they are also
(r 4+ 1)-standard.

Proof of Claim 2. Again (3.3) and (3.5) hold by our assumption, and so (3.8)
holds, too. However, since now we are assuming that A\, map into 3, this identity
reduces to

(3.14) > G+ Y xH;=0,
i€l] JEJ
where G and Hj are given by (3.9) and (3.10), respectively. We can now use Lemma
3.1 (for any fixed y; and xj with k ¢ I, U J/ ). Accordingly, for every i € I},
we have N ‘
G = Z LjDij (yr+17f?+27m) + Ai(yr+1>fi*+2,m)7
J€T] 4,
i
and for every j € J/; we have

Hi=—= " 01T 2m)Ti = X o1y T, )
i€l g,
it
where p;; map into R (if 7 = m — 1 then they are all zero) and A\; map into Z ® S.
Moreover, A\, = 0 if & ¢ I N J. From (3.9) and (3.10) we now see that E; and
F}; are of the desired form on X" x X™ "2 for i € I, and j € J|,,, except
that A\r have their ranges in Z ® S. The same (just notationally more annoying)
proof shows that this is also true for ¢ € I,4; and j € J,41, and for all other sets
XM x X x...x X x X" withuy+---+uy=r+landvi+---+vyy=m—r—2.
Accordingly, we can make use of Claim 1 telling us that Ay map into 3. This
completes the proof of Claim 2.

Both claims together with Lemma 3.1 imply the validity of condition (a). Namely,
the lemma and Claim 1 show that the assumption of Claim 2 is fulfilled for » = 0.
Claim 2 then yields (a) by induction on 7.

It remains to verify the validity of condition (b). Assume that (3.2) holds with
max{|I|,|J|} < d— 1, and just follow step by step the proof of the validity of (a).
The first change that occurs is that in (3.7) and (3.8) one has to replace “= 0” by
“e 3”. The same replacement must therefore be made in the identities (3.11) and
(3.12) from the proof of Claim 1. This implies that the expression in (3.13) lies in Z
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rather then being equal to zero. However, since max{|I|,|J|} < d—1, this expression
must be zero anyway (see the comment on condition (b’) following Definition 2.1).
The rest of the proof of Claim 1 is thus the same as above. At the beginning of the
proof of Claim 2 one has to substitute “€ 3” for “= 0” in (3.14). However, since
Lemma 3.1 also covers the central case, this change does not affect the proof. Thus,
the condition (b) is fulfilled, too. O

Those d-free sets that appear in applications usually have some algebraic structure;
the least one usually requires is that they are additive subgroups. Let us therefore
record the following immediate corollary to Theorem 3.2.

Corollary 3.3. Let R and S be unital algebras with S finite dimensional, and let X
be a linear subspace of R. If X is a d-free subset of R, then X ® S is a d-free subset
of R®S.

Proof. The space X ® S is the linear span of X = {x®s |z € X, s € S}. The desired
conclusion therefore follows from the fact that if a set is d-free, then a larger set is
d-free, too [8, Corollary 3.5]. O

4. A COUNTEREXAMPLE IN INFINITE DIMENSIONS

In this short section we give an example showing that the result of the previous
section in general does not hold if S is infinite dimensional, not even if the set X is
a simple algebra which is a d-free subset of some larger algebra R for any d > 1.

Ezample 4.1. Let R be an F-algebra and let X be its linear subspace. Suppose there
exists a sequence (e,)ne; of elements in R which satisfies the following conditions:

(a) For each n there exists € X such that xe, # 0.
(b) For each x € X we have xe, = e,z = 0 for all but finitely many n.

Let us show that then X ® F[¢] is a not a 2-free subset of R ® F[¢]. We identify
R @ F[¢] with R[¢] (and hence X ® F[¢] with X[¢]). Define E, F : X[¢] — R[] by

FE ( Zk: xzfl) = Zk: io: zien "t
i=0

=0 n=1

l I oo
P2 use) = 303 enus™™.

j=0 7j=0n=1

In view of (b), each of this summations contains only finitely many nonzero terms.
The definitions therefore make sense. As one immediately checks,

E(y)z = yF(2)

holds for all y,z € X[¢]. If X[{] was a 2-free subset of R[], there would exist
p =31, rE¥ such that E(y) = yp and F(z) = pz for all y,z € R[¢]. Therefore
E(z0) had degree at most m for every z¢p € X. However, by (a) we can choose xg so
that zpem+1 # 0, and so E(xg) has degree at least m + 1 in light of definition of E.
Therefore X [£] is not 2-free in R[¢].
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The point we wish to make is that, under the above conditions, X can still be
a 2-free subset of R. Consider the following concrete example. Let X = A be the
algebra all (countably) infinite matrices with finitely many nonzero entries. It is
well-known that A is a (non-unital) simple algebra. Moreover, A does not satisfy a
nontrivial polynomial identity. The general theory therefore tells us that there exist
algebras R containing A such that A is their d-free subsets for every d > 1; say,
the maximal left algebra of quotients of A is an example of such an algebra R [8,
Corollary 5.12]. Let e, € A be the diagonal matrix whose only nonzero term is 1
on the (n,n) position. It is immediate that the sequence (e,)2° ; satisfies conditions
(a) and (b). Therefore A ® F[{] is a not a 2-free subset of R ® F[¢].

5. THE INFINITE DIMENSIONAL CASE

In Section 3 we were assuming that S is finite dimensional. This assumption was
actually used only at one place, namely in the definition of p;; and A in the proof of
Lemma 3.1, where summations make sense only if they are finite. If J = () and S is
infinite dimensional, then by following the proof of this lemma (the only difference
is that a basis of S is now infinite) we see that all p;j; and Ay are 0, so one simply
defines p;; = 0 and A, = 0. With reference to the notation introduced in the previous
sections, we can thus state the following theorem.

Theorem 5.1. Let R and S be unital algebras, and let X be a d-free subset of R.
Set X ={z®@s|lz c X,s € S} andlet E; : X' - R® S, i € I, be arbitrary
functions. Suppose that either

(@) > ier Ei(¥ )yi =0 for all 3, € X™ and |I| < d, or

(b) > icr E;(y,)y; €3 for ally,, € X™ and |I| <d — 1.
Then each E; = 0.

A similar theorem of course holds for functional identities
Z y; F,(7.,) =0 and Z y; F, (T, € 3.
jed jeJ

As we saw, Theorem 3.2 does not hold for infinite dimensional algebras S. In
the next theorem we will see that a special but important functional identity can be
handled in infinite dimensions under the following mild technical assumptions:

(¥) There exist x1, 22 € X such that for all a1, e in the center Z of R,
a1T1T9 + aoxox1 € L1+ Lo+ 2
implies a1 = ag = 0.
(%) For each z € X there exists u € X such that for all a € Z,
au € Zx + Z

implies o = 0.
Later we will see that these conditions are satisfied in the situation in which we are
primarily interested.

In the course of the proof we will make use of the results on the so-called quasi-
polynomials. We refer the reader to [8, Chapter 4] (or to the original source [4]) for
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a complete account on this topic. Let us give here only a brief informal introduction.
Let R be a ring with center Z. A quasi-polynomial of degree 2 on X C R is a function
F : X? - R of the form

F(x1,22) = Mxz1m2 + Aoxoxy + p(x1)z2 + po(x2)z1 + (21, 22),

where A1, Ao € Z, 1,0 : X — Z and v : X2 — Z. We call \;, yi; and v the coeffi-
cients of F'. The coeflicient v plays a special role; we call it the central coefficient.
A quasi-polynomial of degree m is defined analogously, i.e., as a sum of functions of
the form

(xl,...,xm) — )‘(:Cilv"'7$ik)$ik+1 R 7

m

where A : X* — Z. If a quasi-polynomial of degree at most m is zero on X™ and
X is (m + 1)-free, then all its coefficients are zero; moreover, under the assumption
that its central coefficient is 0 it is enough to assume that X is m-free. This is the
content of [8, Lemma 4.4]. This result is very useful, although fairly easy. The next
one is deeper. It states that if the function

Q@n) = [Ei(T,), ]
1€l
is a quasi-polynomial (of degree at most m) on X, then all E; are quasi-polynomials,
provided that X is (m + 1)-free, or, if the central coefficient of @ is 0, m-free. This
is a special case of [8, Theorem 4.13].
We now have enough information to prove the next theorem which, roughly speak-

ing, states that under appropriate assumptions the functional identity (5.1) below
has only standard solutions.

Theorem 5.2. Let R and S be unital algebras, and let X be a 3-free subset of R
which satisfies conditions (x) and (xx). Set X = {z®@s|z € X,s € S} and R = R®S.
If F: X2 — R satisfies
(5.1) F(y,z)w+ F(w,y)z + F(z, w)y = wF(y, 2) + 2F(w,y) + yF(z,w)
for ally,z,w € X, then F is of the form
F(y,z) =eyz + &2y + u(y)z + p(z)y + v(y, 2)
for all y,z € X, where €,¢' lie in the center 3 of R, and pn: X — 3, v: X2 — 3.
Proof. Pick a basis {b; |t € T'} of S. We can write
F(y7 Z) = Z ft(ya Z) ® btv
teT

where f; : X2 — R and for each pair 3,z € X we have f;(y, z) = 0 for all but finitely
many ¢t € 7.

We first consider (5.1) in the case where all elements lie in X ® 1. As above, we
identify X with X ® 1 and sometimes write = for x ® 1. We have

Z (ft(m,u)v—i—ft(v, r)u+ fi(u, v)x) Qb = Z (vft(a:,u)—l—uft(v,x)—i-xft(u, v)) @by

teT teT
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for all z,u,v € X. Consequently,

(5.2) filz,w)v + fi(v,z)u+ fi(u,v)x = vfi(z,u) + ufi(v, z) + z fi(u,v)

for each t € T. Since R is 3-free, we may use [8, Theorem 4.13] to conclude that
each f; is a quasi-polynomial. This means that there exist e, €, € Z and functions
pes by 2 X — Z, v » X2 — Z such that

(5.3) fi(z,u) = epzu + ehux + pe(x)u + py(u)x + ve(z, u)
for all ,u € X. A little more can be said, namely,

(5.4) pe = py-

Indeed, using (5.3) in (5.2) we obtain

(e = i) (@) [, 0] + (e = pr) (u) v, 2] + (e = i) (v) [, u] = 0,

which yields (5.4) by [8, Lemma 4.4].

Let x1, x2 be elements satisfying (x). Since fi(z1,22) = 0 for all but finitely many
t € T, it follows from (5.3) that e; and £} are 0 for all but finitely many ¢ € T'. This
makes it possible for us to define

€:Z€t®bt and 6,:Z€£®bt.

teT teT

Let us point out that e,¢’ are elements in Z ® S — only later we will see that they
actually lie in 3. Now take x € X and let u be an element satisfying (xx). Since the
identities fi(z,u) = 0 and &, = £, = 0 hold for all but finitely many ¢ € T, it follows
from (5.3) that u¢(x) = 0 for all but finitely many ¢ € 7. Finally, since, for each
pair z,u € X, the elements e, e}, (), pue(w), fi(x,u) are 0 for all but finitely many
t, the same is true for v (z, u).

Now take z,u,v € X and s € S. Consider the following special case of (5.1):

F(z,u)(v®s)+ Fv®s,x)u+ Flu,v® s)x
=(w®s)F(x,u)+uF(v®s,z)+ xF(u,v® s).

That is,

th(a:,u)v ® bys + Z fw(v® s, z)u® by + Z fw(u, v ® s)x @ by,

teT weT weT
:vat(x,u)®sbt+ Zufw(v®s,x)®bw+ Z:sz(u,v@)s)@bw.
teT weT weT

Let Biw, 11w € F be such that

(5.5) bis = Z Biwbw and  sby = Z Vb -

weT weT



FUNCTIONAL IDENTITIES ON TENSOR PRODUCTS 15

Of course, for each ¢t € T there can be only finitely many nonzero [, and ~4,. Using
(5.5) in the last identity it readily follows that

Z Brw fr(z,u)v + fu(v @ s, z)u+ fu(u,v ® s)x

teT
= Y0 fo(@,u) + ufu(v @ 5,2) + T fu(u,v S 5)
teT

for every w € T. Fix s € S; since, by (5.3), the functions », p B fi(z,u)v and
> et Vew fi(x, u) are quasi-polynomials, it follows from [8, Theorem 4.13] that the
functions f,(v® s, z) and f,(u,v® ) are quasi-polynomials, too. Therefore we have

(5.6)

(5.7) Juw(v @ 8,2) = Az + N )20 + 110y (v @ 8)T + N ()0 + 1y (v @ 8, ),
and
(5.8) Juw(u,v @ 8) = Gpuv + Slvu + op(u)v + pl, (v @ s)u + vy (u, v @ s),

where Ay, AL, Bu, B, are elements in Z (they depend on s) and the functions fi, 7y
etc. map into Z (we have used the same notation i, 1, as above since these new
functions are in fact extensions of the old i, ). Rewriting (5.6) according to (5.7),
(5.8), and (5.3) we get

Z Brwerruv + Z Brweiuzv + Z Bruwpit () uv

teT teT teT
+ Z Brwpe(u)zv + Z Brwve(z, u)v
teT teT

+ AU + Ny 20u + iy (v @ 8)zu 4 Ny (2)vu + vy (v @ 8, T)u
+ Spuvz + Svux + oy (u)ve 4 pl, (v @ s)ux + vy (u,v @ s)x
= Z ViwEtvTU + Z VewELVUT + Z Yew ot () v

teT teT teT
+ Z Yew ot () v + Z ViVt (T, u)v
teT teT
+ AT + A uxv + iy (v @ 8)ur + Ny (T)uv + vy (v @ 8, 7)u
+ Swruv + O, xvu 4 oy (w)zv 4 pily, (v @ 8)zu + vy (u, v @ ).
We can interpret (5.9) as equality of two quasi-polynomials of degree 3 with zero cen-
tral coefficients. By [8, Lemma 4.4], this is possible only if these quasi-polynomials

have identical coefficients. Comparing the coefficients at vzu we obtain A\, =

> ter Vewet- On the other hand, examining the coefficients at uvz and zuv we get
0w = A and 0y, = Y, Brwes. Thus,

(510) )‘w = 6111 = Z/Btwf‘:t = Z’thet-

teT teT
Similarly we see that

(5.11) Xy, =0, = Zﬁtwag = Z%ws;,

teT teT
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and also that

Mo (@) =Y Brwote(®) = Y Yewpie(2),

teT teT
§ Bruw e (u 5 Vew it (U
teT teT

fw (v ® ) = p1,(v ® 5).

We can now rewrite (5.7) and (5.8) as

fuw(v® s, 2) (Z Btwet)vzn + (Z Btwet)

(512) + pw(v ® ) + (Zﬁtwut(fﬂ))vJFVw(U@S’:U)
teT
and
fuw(u,v® s) (Zﬁtwet)uv—i- (Zﬂtw&e)
(5.13) = <
(3 Bruote(w) )+ (v @ s)u + viy(u, 0 @ ).

teT

Similarly as above we see that for every s € S we have Y, .1 Brwet = D iep Brwe; =0
for all but finitely many w, and consequently, for every v®s € X we have i, (v®s) = 0
for all but finitely many w. This makes it possible for us to define p: X - Z® S by

pO®s) = (v ® 5) @by,
weT
There is another important relation that we can deduce from (5.10), namely

[ev®s] = Z[et ® b, v® 8] = Zetv ® [by, $]
teT teT

= Zetv & < Z Btw r)/tw) w) = Z (Z(ﬁtw - ’th)gt)U & bw =0.
teT weT weT teT
Similarly we infer from (5.11) that [¢/,v ® s] = 0. Accordingly, €,&’ € 3.
Now take z,u,v € X and ¢,s € S. As a special case of (5.1)we have
Flz,u®q)(v®s)+ Flo®s,2)(u®q)+ Fu®qv® s)x
=w®s)F(r,u®q) +(u®qFlv®sz)+zF(u®quv®s).

That is,
Z fr(z,u® q)v @ brs + Z fi(v® s,2)u @ brq
teT teT

(5.14) +Zfw(u®q,v®s)a:®bw:vat(x,u®q)®sbt
weT teT

+Zuft(v®8,96) ® gbt + fow(u@)q,v@s) ® by -
teT weT
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Let Biw, Ytw be scalars satisfying (5.5), and let py,, Ty be scalars satisfying

biq = Z prwby and gby = Z Ttwbuw -
weT weT

Note that (5.14) implies that for every w € T we have

Zﬁtwft(x,u ®q)v + Zptwft(v ® s, z)u+ fu(u®q,v® s)x

(5 15) teT teT
= Z’thvft(xvu ® Q) + ZTtwuft('U ® 571') + $fw(u XUV 5)'
te’T te’T

Fix s and ¢. Since fi(z,u ® q) and f;(v ® s,x) are quasi-polynomials by (5.12) and
(5.13), [8, Theorem 4.13] implies that f,(u ® ¢,v ® s) is a quasi-polynomial, too.
Thus,

fu(u® q,v® s) = ayuv + alyou

(516) +Cw(u®q)v+cl/v(v®8)u+Vw(U®Q7U®S)

' € Z and (y,(,, 1y map into Z (ay, and «!, depend on ¢ and s,
Cw depends on s, and (], depends on ¢). The usual argument in particular shows
that for each pair u ® ¢,v ® s € X there can be only finitely many w such that
vw(u ® q,v ® s) = 0. We can therefore define v : X2 — Z ® S by

where ay,, o

v(u®q,v®s) = Zuw(u®q,v®s)®bw.
weT



18 MATEJ BRESAR

Setting (5.16), as well as (5.12) and (5.13) (with some notational adjustments) to
(5.15) we obtain

Z Z Btwpt€-TUv + Z Z Brwpzieruzv

teT zeT teT zeT

+ Z Z Brwpatphz(x)uv + Z Brwiit(u @ q)xv + Z Brwv(z,u ® q)v
teT zeT teT teT

+ Z Z ptwﬁzt‘gzvxu + Z Z thﬁztef/ziwu
teT zeT teT zeT

) ooV @ S)zu+ > > pruBaiz(@)vu+ Y provi(v @ s, 2)u
teT teT zeT teT

+ apuvz + ayvur + Gu(u ® q)vz + ¢, (v ® s)uz + vy (u ® ¢, v ® s)x

=D D Vb vzut Y D Yrwpsciour

teT zeT teT zeT

(5.17)

+ Z Z Vewpzthz(T)vu + Z Yewh (U ® q)vx + Z Yewlt (T, u @ q)v

teT zeT teT teT
/
+ E § Ttwﬁztgzuvx'f‘ § § Ttwﬁztezuxv
teT zeT teT zeT
+ E Trwpit(V @ s)uz + g E Tow Btz (T)uv + E Tt (V @ 8, T)u
teT teT zeT teT

+ apruv + al,xvu + Cu(u @ @)zv + ¢, (v ® s)zu + vy (U ® ¢, v @ 8).

We are again at a position to apply [8, Lemma 4.4]. In particular we infer that

Qg = BiwpPt€ -
22

teT zeT

This yields

e(u®q)(ves) = (Zszu@)bzq)(v@s)

zeT
_<Z€zu ® (sztbt>> (v®s) = Z (szt&?,z)uv ® bys
(5.18) z€T teT teT z€T
= Z ( Z pzt5z>u’l) ® ( Z ,Btwbw) = Z (Z Z Btwpzt52>uv ® by
teT zeT weT weT teT zeT
= Z QU @ by,.
weT

Similarly we see that

arlw = Z Z ptw/thg/z

teT zeT
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and hence
(5.19) gv®s)(u®q) = Za VU @ byy.
weT
Next we infer from (5.17) that
Cww®q) = Brom(u®q) =Y Ywp(u®
teT teT

On the one hand, this implies

pu®q)(ves) = Z,ut(u® q)v ® bis

teT
(5.20) = Z pi(u® q)v ® ( Z /Btwbw) = Z (Z Brwhte(u ® q))v ® by
teT weT weT teT
=3 (U ® Qv @ b,

weT
and, on the other hand, it can be easily checked that it also implies
pu®@q)(ves) = (ves)u(u®q).

Therefore, pu(u ® q) € 3.
Further, (5.17) yields

va®s Zptwlitv@S

teT
from which
(5.21) p(v®s)(u Z ¢ (v®s)u
weT

follows.
Let us gather together all information obtained so far. From (5.18), (5.19), (5.20),
(5.21), along with (5.16) we see that

Flu®qus) =Y fulu®qv®s) @by
weT

= Z (awuv + al,vu + Cuw(u @ q)v + ¢, (v @ s)u + vy (u ® q,v @ 8)) ® by
weT

=(u®q)v®s)+e(wRs)(u®q)+ uu®q)(ves)
+uv@s)(u®q)+rv(u®qves).

The only thing that remains to be shown is that v(u ® ¢,v ® s) lies in 3. To this
end, we first observe that (5.1) now reduces to

v(y, 2)w +v(w,y)z + v(z, w)y = wr(y, 2) + zv(w,y) + yv(z, w).
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Writing x ® p for y, u ® ¢ for z, and v ® s for w and using the definition of v we
obtain

Zyt(a: QRp,u®q)v® [be, ] + Z n(v®s,x®@p)ud (b, q]
teT teT

+Y) uweques)z®[b,p) =0.
teT

(5.22)

Take o1y, Etw, wiw € F such that

bt, Z Otwbw, bt, Z Stwbw, bt7 Zwtw W

weT weT weT

and note that (5.22) implies that for each w € T' we have

(Zatht(IB Qp,u q))v + (thwl/t(v s, x ®p))u

teT teT

+ (Zwtwyt(u ®q,v® s))x =0.
teT
Using [8, Lemma 4.4] (or Remark 2.2) it follows that all the coefficients of this
quasi-polynomial are 0. In particular,

> wwr(u®qv®s) =0,
teT

which readily yields [v(u®¢q,v®s), z®p|] = 0. This shows that v(u®q,v®s) € 3. O

Assume now that A is a prime ring. Recall that the center C' of the maximal left
ring of quotients Q,,;(A) of A is a field, called the extended centroid of A. Given
t € A, we denote by deg(t) the degree of algebraicity of t over C' if ¢ is algebraic, or
oo if it is not algebraic. We set deg(A) = sup{deg(t) |t € A}. It is well-known that
deg(A) < n < oo if and only if A satisfies the standard polynomial identity of degree
2n. Equivalently, A can be embedded into the ring of n X n matrices over some field.
The fundamental theorem on functional identities, which is due to Beidar [3], states
that A is a d-free subset of Q,,;(A) if and only if deg(A) > d [8, Corollary 5.12]. This
theorem combined with Theorem 5.2 will yield the next corollary. We also need the
following auxiliary result, based on basic results on polynomial identities.

Lemma 5.3. Let A be a prime ring. The following conditions are equivalent:

(i) For each pair x1,x9 € A, the elements x1x2, xox1,21,22 and 1 are linearly
dependent over the extended centroid C of A.
(ii) deg(A) < 2.

Proof. (i) = (ii). Let c5 be the 5th Capelli polynomial, i.e.,
cs = c5(81,82, €3, €45 €55 511, M2, 113, M4)
=) sgn(0)€o(1)MEo(2) 1260 (3) 1350 (1) 1o (5):

TgES5
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here, & and n; are noncommuting indeterminates. The condition (i) implies that

= f(&,82,m,m2,m3,m) = c5(&1€2, €281, 61,62, 1,11, M2, M3, 14)

is a polynomial identity of A (see, e.g., [6, Section 6.3]). Since A satisfies a nontrivial
polynomial identity, its center Z is nonzero and C' is the field of quotients of Z [6,
Corollary 7.57]. Multiplying

05(1113327332%,3717962, 1,y1,y2,y3,y4) =0

by )\1_3)\2_3%_1/12_1/@1/@1 where A;, u; are nonzero elements in Z, it thus follows
that f is a polynomial identity of the ring of central quotients Qz(A) of A, which
is a finite dimensional central simple algebra over C' [6, Theorem 7.58], and hence,
by Wedderburn’s structure theorem [6, Corollary 2.62], isomorphic to the matrix
algebra M, (D) for some n > 1 and a finite dimensional central division algebra D
over C. If C is finite, then D is a field by Wedderburn’s theorem on finite division
rings [6, Theorem 1.38]. Assume that C' is infinite. Then f is a stable identity for
Qz(A) [6, Theorem 6.29], so that f is also a polynomial identity of C ®¢ Qz(A)
where C' is the algebraic closure of C. Since the algebra C ®¢ Qz(A) is isomorphic
to M, (C) for some n > 1 [6, Theorem 4.39], in both cases we have arrived at the
same conclusion: there exist n > 1 and a field K such that A can be embedded into
M, (K) and f is a polynomial identity of M, (K). Suppose that n > 3. Take the
matrix unit eqo for x1 and the matrix unit es; for zo. Then z1x0 = €11, Tox1 = €99,
z1, 22 and 1 = Y7 | e; are linearly independent matrices. Consequently, by [6,
Theorem 7.45] there exist y1,y2,ys3, ys € M, (K) such that

f(@1, 2,91, Y2, Y3, Y1) = c5(2122, B271, 21, T2, 1, Y1, Y2, Y3, Y1) # 0.
This contradiction shows that n > 2, and hence that deg(A) < 2.

(ii) = (i). Using the Cayley-Hamilton theorem one can show that deg(A) < 2
implies that there exist an additive map 7 : A — C and a biadditive map ¢ : A2 — C
such that 22 +7(z)x+8(z, x) = 0 for every x € A [8, Theorem C.2]. The linearization
of this identity gives

x129 + X2y + T(21)22 + T(22)21 + §(21, 22) + §(22, 21) = 0,
which implies (i). O

We remark that in Lemma 5.3 we did not assume that A is unital. The unity 1
from (i) may belong to Qz(A4) \ A.

We now have enough information to prove the following corollary.

Corollary 5.4. Let A be a prime algebra with deg(A) > 3 and let S be an arbitrary
unital algebra. Set A =A® S and 3 = C ® Zg where C is the extended centroid of
A and Zg is the center of S. If a bilinear map F : A% — A satisfies

F(y,z)w+ F(w,y)z + F(z,w)y = wF(y, z) + 2F(w,y) + yF (2, w)
for all y, z,w € A, then F is of the form
(5.23) F(y,z) = eyz +e'zy + p(y)z + p(2)y + v(y, 2)

for all y,z € A, where e,e’ € 3, pu: A — 3 is a linear and v : A*> — 3 is a bilinear
map.
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Proof. Lemma 5.3 of course shows that A satisfies the condition (x) (with C playing
the role of Z). Since A is noncommutative (i.e., deg(A) # 1), it trivially satisfies (xx).
In view of [8, Corollary 5.12], we may now use Theorem 5.2 (with Q,,;(A) playing
the role of R) to conclude that F' is of the desired formon X = {z®s|x € A,s € S}.
Thus, there exist €,' € 3, p: X — 3, and v : X2 — 3 such that (5.23) holds for all
y,z € X. By assumption, F(\y, z) = AF(y, z) for every A € F. Consequently

(5.24) (H(Ay) = Mu(y))z = Av(y, z) — v(dy, 2) € 3.

We claim that this implies that a = p(Ay) —Au(y) € 3is 0. Indeed, since a(z®1) € 3,
we have [a(z ® 1),y ® 1] =0 for all z,y € A. Writing a = ), a¢ ® by where oy € C
and b; € S are linearly independent, it follows that ), ox[z, y] ® by = 0. Therefore
ailz,y] =0 for all z,y € A and all ¢, implying that oy = 0; consequently, a = 0. We
have thus proved that p(Ay) = Au(y) for all A € F and all y € X, and hence, by (5.24),
also v(A\y, z) = Av(y, z) for all A € F and all y, z € X. Similarly, v(y, \z) = Av(y, 2).

We have to extend p from X to 24 = span X. We do this in the obvious way, i.e.,

M(Zyz) = ;u(yi),

1

however, we have to show that this is well-defined. Suppose that >, y; = 0. Then
> Flyin2) = F(Ywiz) =0,
which in light of (5.23) yields

(Snt0)s == utws) €3

)

As we saw in the previous paragraph, this implies >, u(y;) = 0. Thus, p is well-
defined. We have also shown that . v(y;, z) = 0 follows from ), y; = 0. Similarly
we see that Zj zj = 0 implies zj v(y,zj) = 0. Accordingly, we can extend v from

X2 to A2 by
V( > Y Y Zj) =) vliz).
i j i

Note that p is linear, v is bilinear, and that (5.23) is fulfilled for all y and z in 2. O

Remark 5.5. Let B : A% — A be a bilinear map. The map ¢ : A — A, ¢(z) = B(z, z),
is called the trace of B. Recall that ¢ is said to be commuting if [¢(y),y] = 0 for all
y € . Linearizing this identity we obtain that F(y, z) = B(y, z) + B(z,y) satisfies
the functional identity of Corollary 5.4. Under the additional assumption that the
characteristic of IF is not 2, the conclusion of the corollary implies that q is of standard
form, i.e., g(y) = A\y? + pu(y)y + 0(y, y) (where X = 3(c + &) and 0(y, 2) = Sv(y, 2)).
Neglecting some small differences in assumptions, Corollary 5.4 thus generalizes [5,
Theorem 1] (see also [8, Theorem 5.32]) from prime algebras to tensor products of
prime algebras with arbitrary unital algebras.
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Recall that a linear map ¢ from an algebra B onto an algebra A is called a Lie
homomorphism if

¢([y,2]) = [p(y), ()] forall y,z € B.

Examples include homomorphisms, the negatives of antihomomorphisms, and their
direct sums. By the latter we mean that there exists a central idempotent € in
A such that x — ep(x) is a homomorphism and =z — (1 — ¢)p(z) is the negative
of an antihomomorphism. Further, if ¢ is a Lie homomorphism and 7 is a linear
map into the center of A that vanishes on commutators, then ¢ + 7 is again a Lie
homomorphism.

Lie isomorphisms between prime rings were described in [5] (see also [8, Corollaries
6.4 and 6.5] for slightly more general results). The conclusion involves the extended
centroid, and this is unavoidable (see [8, Example 6.10]). We will now extend this
description to the tensor products of prime algebras with arbitrary unital algebras.
We remark that in the prime case there are no nontrivial central idempotents, so
direct sums do not appear. They obviously cannot be avoided when tensoring with
an arbitrary algebra, so the next result is necessarily more complicated. The concept
of the proof, however, is the same. We will actually follow closely the proof of [8,
Theorem 6.1], and make some necessary adjustments at a few points.

Corollary 5.6. Let A be a prime algebra with deg(A) > 3 and let S be an arbitrary
unital algebra. Set A=A S, A =(A+C)® S, and 3 = C ® Zg, where C is the
extended centroid of A and Zg is the center of S. If v is a Lie isomorphism from
an arbitrary algebra B onto A, then ¢ = 0 + 7 where 0 : B — A’ is the direct sum
of a homomorphism and the negative of an antihomomorphism, and 7 :B — 3 is a
linear map which vanishes on commutators.

Proof. Our starting point is the identity [ab, ¢] + [ca, b] 4 [bc, a] = 0 which obviously
holds for any elements in an arbitrary algebra. Applying ¢ to this we get

(5.25) [p(ab), p(c)] + [@(ca), p(b)] + [p(bc), (a)] = 0
for all a,b,c € B. Write y for p(a), z for ¢(b), and w for ¢(c). Then (5.25) reads as
[o(e™ W)e™ (2), wl + (¢~ (W)™ (y), 2] + [ (0™ ()0~ (), 5] = 0

and so Corollary 5.4 is applicable. Therefore there exist ,&/ € 3, a linear map
A — 3 and a bilinear map v : A2 — 3 such that

el (W) N (2) = eyz + 2y + u(y)z + w(2)y + v(y, 2)
for all y,z € 2. That is,
(5.26) p(ab) = ep(a)p(b) + 'w(b)p(a) + Tila)p(b) + F(b)p(a) + 7(a,b)

for all a,b € B where fi(a) = u(p(a)) and v(a,b) = v(e(a), p(b)).
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We continue by computing ¢(abc) in two ways. First we have
p((ab)c) =ep(ab)p(c) + &'p(c)p(ab) + Fi(ab)p(c) + Fi(c)p(ab) + v(ab, c)
=*p(a)p(b)p(c) + e’ (b)p(a)p(c) + ei(a)p(b)¢(c) + en(b)p(a)p(c)
+ev(a, b)p(e) + e’ p(c)p(a)p(b) + €% (c)p(b)p(a) + &'Tila)p(c)p(b)
+"ab)p(c)p(a) + £T(a, b)p(c) + m(ab)p(c) + efilc)p(a)p(b)
+eTi(e)p(b)p(a) + Ti(a)i(c)p(b) + T(b)f(c)p(a) + Fi(c)7(a, b) + T(ab, c).
On the other hand,
p(a(be)) ==p(a)p(be) + & so(bc)so( ) + Tila)p(be) + i(be)p(a) + P(a, be)
=e%p(a)p(b)p(c) + e€'p(a)p(c)p(b) + efi(b)p(a)p(c) + efi(e)p(a)p(b)
+ev(b, c)p(a) + ee @(b)@(C)so(a) +e%0(c)p(b)p(a) + e'H(b)p(c)p(a)
+e'fi(c)p(b)p(a) + Db, c)p(a) + efi(a)p(b)p(c) + 'fia)p(c) (D)
+ 1(a)z(b)e(c) + m(a)i(c) e (b) + ma)v(b, ¢) + f(be)p(a) + v(a, be).
Comparing these two identities we obtain
(5.27) e/ Tp(v), [p(a), (O] + D(a, b)p(e) —@(b, c)pla) € 3
for some @ : B2 — 3. We can rewrite this as
(5.28) e[z, [y, w]] + w(y, 2)w — w(z,w)y € 3

where w : %2 — 3. Our goal now is to show that (5.28) implies e’ = 0. Let us
write ee’ = Y, .6 ®@ by and w(y, 2) = Y cp wier (Y, 2) ® by where e, wi(y,2) € C
and {b; |t € T} is a basis of S. Taking z ® 1 for y, u® 1 for z, and v ® 1 for w it
follows from (5.28) that

(5.29) étfu, [z,v]] + wi(z, w)v — wi(u,v)x € C

a

a

for every t € T (here, wi(z,w) stands for wi(x ® 1,w ® 1)). Suppose € # 0 for some
t. Fix a noncentral u € A and set u; = ¢u. Then u; ¢ C. We can write (5.29) as

Ei(z)v + Es(v)x + vFi(z) + 2Fa(v) = 0,

where Eq(z) = wiz +wi(x,u), E2(v) = —u1v —wi(u, v), Fi(r) = zug, Fa(v) = —vu;.
Since A is a 3-free subset of Q,,;(A) [8, Corollary 5.12] it follows that there are
D € Qmi(A)and A : A — C such that Ey(z) = xp+A(x). Consequently, uyjz—zp € C.
However, this is impossible for u; ¢ C and A is a 3-free. Thus, each ¢, = 0 and
hence &’ = 0.

Our next goal is to show that ¢’ = ¢ — 1. By (5.26) we have

Sp(ab) - go(ba) = (6 - E/)[QO(CL), Qp(b)] + ﬁ(aa b) - ﬁ(ba CL).
Since ¢ is a Lie homomorphism, this is also equal to [p(a), p(b)]. Consequently,
(1 —e+e)le(a), ()] € C.

Similarly as in the previous paragraph we see that this yields 1 — e +¢& = 0, as
desired. Note that this together with e’ = 0 implies that ¢ is an idempotent.
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Define 6 : B — A’ by

0(a) = ¢(a) — (1 = 2¢)p(a).

Using (5.26) one easily derives that p(a,b) = cf(ab) — €0(a)0(b) lies in 3. Con-
sequntly, computing, similarly as above, £6((ab)c) = €f(a(bc)) in two ways results
in p(a,b)f(c) — p(b,c)f(a) € 3, which clearly yields p(a,b)p(c) — p(b,c)p(a) € 3.
This is similar to (5.27), but simpler. Using the same approach as above one easily
shows that p(a,b) = 0 for all a,b € B. Thus, cf(ab) = €b(a)f(b), ie., a — £6(a)
is a homomorphism. Similarly we see that a — (1 — €)f(a) is the negative of an
antihomomorphism.

Finally we define 7 : B — 3 by 7(a) = (1 — 2¢)f(a), so that ¢ = 6 + 7. Since
both ¢ and 6 are Lie homomorphisms it follows immediately that 7([a,b]) = 0 for
all a,b € %B. O

Remark 5.7. A similar theorem can be obtained for Lie derivations, cf. [8, Theorem
6.6]. Also, Jordan derivations can be handled under similar assumptions, only 3-
freeness must be replaced by 4-freeness. Actually, Jordan derivations are much
easier to deal with than Lie derivations — one can show that they are ordinary
derivations as an immediate corollary to Theorem 5.1. See [8, p. 177]. Let us finally
remark that inspired by the (preliminary) results of the present paper, the author
has simultaneously written a paper on Jordan derivations and some related maps
on the tensor product between an arbitrary (not necessarily d-free) algebra and a
commutative algebra [7].
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