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Abstract. Let A be a unital algebra over a field F with char(F) 6= 2, and
let f, g, h : A → A be linear maps. We say that f is a {g, h}-derivation if
f(xy) = g(x)y + xh(y) = h(x)y + xg(y) for all x, y ∈ A, and we say that f is a
Jordan {g, h}-derivation if f(x◦y) = g(x)◦y+x◦h(y) for all x, y ∈ A (here, x◦
y = xy+yx). We show that if the property that every Jordan {g, h}-derivation
is a {g, h}-derivation holds in A, then so does in the algebra A ⊗ S for every
commutative unital algebra S. We also show that every semiprime algebra A
has this property. Combining these two results it follows, in particular, that
the classical Jordan derivations are derivations on the tensor product between
a semiprime and a commutative algebra.

1. Introduction

In the recent paper [2] it was shown that, roughly speaking, if functional iden-
tities can be controlled on an algebra A, then they can be also controlled on the
tensor product A ⊗ S of A with an arbitrary finite dimensional unital algebra S
(for some identities even the assumption on finite dimensionality can be removed).
As a consequence of this general result one infers that certain Jordan and Lie maps
on A ⊗ S are of standard forms, as long as A is a well-behaved algebra with re-
spect to functional identities. Since S plays only a formal role in these statements,
one may wonder whether some simpler but more general phenomenon is hiding
behind this. If we take the statement that certain Jordan or Lie maps are always
standard on A as an assumption, does it follow that these maps are are also stan-
dard on A⊗ S? Some restrictions must certainly be imposed here for the answer
is obviously negative even when A is 1-dimensional. We will assume that S is
commutative. Then the question makes sense.

The purpose of this short non-technical paper is just to touch on this question,
and consider only Jordan derivations which are the easiest to study among various
Jordan and Lie maps. As a matter of fact, in order to obtain a positive answer
we will have to deal with certain more general maps which we call Jordan {g, h}-
derivations; see Section 2. In Section 3 we show that if Jordan {g, h}-derivations
are “standard” on A (i.e., they are what we call {g, h}-derivations), then the same
is true on A⊗S. Finally, in Section 4 we show that every semiprime algebra A has
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this property. As a corollary we then obtain that the usual Jordan derivations are
necessarily derivations on the tensor product of a semiprime and a commutative
algebra.

Throughout the paper we assume, without further mention, that all our algebras
are unital algebras over a fixed field F with char(F) 6= 2. By A we always denote
an algebra with center Z.

2. {g, h}-derivations and Jordan {g, h}-derivations

Let f, g, h : A→ A be linear maps. We will say that f is a {g, h}-derivation if

(2.1) f(xy) = g(x)y + xh(y) = h(x)y + xg(y) for all x, y ∈ A.

If f = g = h then f is, of course, the usual derivation. Actually, {g, h}-derivations
are very close to derivations. Namely, taking y = 1 in (2.1) we obtain

f(x) = g(x) + xh(1) = h(x) + xg(1),

and taking x = 1 we obtain

f(y) = g(1)y + h(y) = h(1)y + g(y).

Comparing both expressions we see that g(1) and h(1) lie in Z. Setting λ =
f(1) + g(1) we then infer from (2.1) that d(x) = f(x)− λx is a derivation. Thus,
every {g, h}-derivation f can be written as

(2.2) f(x) = λx+ d(x) for all x, y ∈ A,

where d is a derivation and λ is a central element. Conversely, if f is of the form
(2.2), then f is a {g, h}-derivation with, for example, g = f and h = d. Note
that g and h are not unique; we can pick any µ ∈ Z and take g(x) = f(x) + µx,
h(x) = d(x) − µx (choosing µ = −λ

2 we thus have g = h). In view of these
observations, the term {g, h}-derivation may now seem a bit awkward. However,
it is convenient for our purposes.

As usual, we will write x ◦ y = xy + yx for x, y ∈ A. We call x ◦ y the Jordan
product of x and y. Recall that the linear space of A endowed with the Jordan
product is a Jordan algebra. As above, let f, g, h : A → A be linear maps. We
will say that f is a Jordan {g, h}-derivation if

(2.3) f(x ◦ y) = g(x) ◦ y + x ◦ h(y) for all x, y ∈ A.

Since the Jordan product is commutative, the symmetric identity

f(x ◦ y) = h(x) ◦ y + x ◦ g(y)

follows from (2.3). In the special case where f = g = h, f is called a Jordan
derivation. It is a classical question in which algebras (and rings) A a Jordan
derivation is necessarily a derivation. In 1957, Herstein [6] showed that this is
true if A is prime, and in 1975 Cusack [5] generalized this to the semiprime case.
The question is still an active area of research; see, for example, the recent papers
[1, 7] and references therein. We will consider a more general question whether a
Jordan {g, h}-derivation is a {g, h}-derivation (note that the converse is trivially
true). As will be evident from the arguments in the next section, this question
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naturally appears in the context of tensor products of algebras, even if one only
wishes to study the ordinary Jordan derivations. Let us point out that our question
is truly more general. That is, if every Jordan {g, h}-derivation of A is a {g, h}-
derivation (for any pair of linear maps g and h), then every Jordan derivation of
A is, of course, a derivation, while the converse is not true, as the next example
shows.

Example 2.1. Suppose A contains a noncentral element a such that

(2.4) [a, [x, y]] = 0 for all x, y ∈ A.

Writing (2.4) as

(a ◦ x) ◦ y − (a ◦ y) ◦ x = 0

we see that 0 is a Jordan {g,−g}-derivation where g(x) = a ◦x. However, 0 is not
a {g,−g}-derivation. If it was, we would have 0 = g(x)1− xg(1) = [a, x] for every
x ∈ A, contradicting the assumption that a /∈ Z.

There exist algebras A containing noncentral elements a satisfying (2.4) in which
not every Jordan derivation is a derivation [3, Example 4.2]. However, there also
exist such in which all Jordan derivations are derivations. For instance, take
the algebra A of all 3 × 3 upper triangular matrices whose diagonal entries are
equal to each other. Note that A is noncommutative, yet every commutator
[x, y] with x, y ∈ A lies in Z. The condition from the preceding paragraph is
thus fulfilled, so not every Jordan {g, h}-derivation of A is a {g, h}-derivation.
However, every Jordan derivation of A is a derivation. One can check this by a
direct computation, that is, by considering the action of a Jordan derivation on
e12 ◦ e12 = 0, e23 ◦ e23 = 0, and e12 ◦ e23 = e13 (here, eij are matrix units). We
leave details to the reader.

Let us add a similar, but in some sense more convincing example of a Jordan
{g, h}-derivation which is not even a {g′, h′}-derivation for any pair of linear maps
g′ and h′.

Example 2.2. Assume now that A contains a noncentral element a satisfying
[a, x] ∈ Z for every x ∈ A (using the Jacobi identity we see that this assump-
tion implies (2.4)). Then f(x) = a ◦ x is a Jordan {f, 0}-derivation, but is not a
{g′, h′}-derivation for any linear maps g′ and h′. If it was, f would be of the form
(2.2) for some derivation d and λ ∈ Z, yielding a contradiction 2a = f(1) = λ
(namely, d(1) = 0 for d(1) = d(12) = d(1)1 + 1d(1) = 2d(1)).

Since there are many generalizations of the concept of a derivation, let us con-
clude this section with a few words of clarification. One should not confuse the
notion of a {g, h}-derivation with that of a (g, h)-derivation where g and h are
automorphisms of A. On the other hand, {g, h}-derivations are special examples
of what is known in the literature as generalized derivations. The notion of a Jor-
dan {g, h}-derivation, however, is a generalization of that of a Jordan generalized
derivation from [8].
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3. Jordan {g, h}-derivations on tensor products

We will now show that the general question posed in Section 1 has an affirmative
answer for Jordan {g, h}-derivations.

Theorem 3.1. If an algebra A has the property that every Jordan {g, h}-derivation
of A is a {g, h}-derivation, then the algebra A⊗ S, where S is an arbitrary com-
mutative algebra, has the same property.

Proof. Take a basis {bt | t ∈ T} of S. Let f be a Jordan {g, h}-derivation of A⊗S.
We can write

f(u) =
∑
t∈T

ft(u)⊗ bt, g(u) =
∑
t∈T

gt(u)⊗ bt, h(u) =
∑
t∈T

ht(u)⊗ bt

where for each u ∈ A ⊗ S we have ft(u) = gt(u) = ht(u) = 0 for all but finitely
many t ∈ T . Take x, y ∈ A and r, s ∈ S. By assumption,

f
(
(x ◦ y)⊗ rs

)
= f

(
(x⊗ r) ◦ (y ⊗ s)

)
= g(x⊗ r) ◦ (y ⊗ s) + (x⊗ r) ◦ h(y ⊗ s),

that is,∑
t∈T

ft
(
(x ◦ y)⊗ rs

)
⊗ bt =

∑
w∈T

(
gw(x⊗ r) ◦ y

)
⊗ bws+

∑
w∈T

(
x ◦ hw(y ⊗ s)

)
⊗ bwr.

Fix r and s, and take αtw, βtw ∈ F such that

bwr =
∑
t∈T

αtwbt, bws =
∑
t∈T

βtwbt.

The right-hand side of the last identity can then be written as∑
t∈T

((∑
w∈T

βtwgw(x⊗ r)
)
◦ y
)
⊗ bt +

∑
t∈T

(
x ◦
(∑
w∈T

αtwhw(y ⊗ s)
))
⊗ bt,

which yields

ft
(
(x ◦ y)⊗ rs

)
=
(∑
w∈T

βtwgw(x⊗ r)
)
◦ y + x ◦

(∑
w∈T

αtwhw(y ⊗ s)
)
.

Fixing t ∈ T we thus see that the map f̃(x) = ft
(
x ⊗ rs

)
is a Jordan {g̃, h̃}-

derivation of A, where

g̃(x) =
∑
w∈T

βtwgw(x⊗ r), h̃(y) =
∑
w∈T

αtwhw(y ⊗ s).

According to our assumption f̃ is then a {g̃, h̃}-derivation, so that

ft(xy ⊗ rs) =
(∑
w∈T

βtwgw(x⊗ r)
)
y + x

(∑
w∈T

αtwhw(y ⊗ s)
)
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for all x, y ∈ A and for every t ∈ T . Accordingly,

f(x⊗ r · y ⊗ s) = f(xy ⊗ rs) =
∑
t∈T

ft(xy ⊗ rs)⊗ bt

=
∑
t∈T

(∑
w∈T

βtwgw(x⊗ r)
)
y ⊗ bt +

∑
t∈T

x
(∑
w∈T

αtwhw(y ⊗ s)
)
⊗ bt

=
(∑
w∈T

gw(x⊗ r)
)
y ⊗

(∑
t∈T

βtwbt

)
+ x
(∑
w∈T

hw(y ⊗ s)
)
⊗
(∑
t∈T

αtwbt

)
=
∑
w∈T

gw(x⊗ r)y ⊗ bws+
∑
w∈T

xhw(y ⊗ s)⊗ bwr

=g(x⊗ r) · y ⊗ s+ x⊗ r · h(y ⊗ s).
This shows that f(uv) = g(u)v + uh(v) for all u, v ∈ A ⊗ S. Since f is a Jordan
{g, h}-derivation, the identity f(uv) = h(u)v + ug(v) clearly follows. �

4. Jordan {g, h}-derivations on semiprime algebras

In view of Example 2.1, our problem makes sense only in algebras not containing
noncentral elements a satisfying (2.4). In this framework it can be presented in a
simpler form.

Lemma 4.1. Let A be an algebra in which only central elements a satisfy (2.4). If
every Jordan {g, g}-derivation of A is a {g′, h′}-derivation (for some linear maps
g′ and h′), then every Jordan {g, h}-derivation of A is a {g, h}-derivation.

Proof. Let f be a Jordan {g, h}-derivation. From f(x ◦ y) = g(x) ◦ y+x ◦h(y) we
get

f(x) = g(x) + x ◦ a,
where a = 1

2h(1), and
f(y) = h(y) + y ◦ b

where b = 1
2g(1). Accordingly,

(4.1) f(x ◦ y) = f(x) ◦ y + x ◦ f(y)− (x ◦ a) ◦ y − x ◦ (y ◦ b).
Since x and y occur symmetrically in f(x ◦ y)− f(x) ◦ y− x ◦ f(y), it follows that

(x ◦ a) ◦ y + x ◦ (y ◦ b) = (y ◦ a) ◦ x+ y ◦ (x ◦ b),
which can be rewritten as [a−b, [x, y]] = 0. According to our assumption it follows
that γ := a− b ∈ Z. Consequently, we can write (4.1) as

f(x ◦ y) =
(
f(x)− x ◦ b− γx

)
◦ y + x ◦

(
f(y)− y ◦ b− γy

)
.

We are now in a position to use the assumption of the lemma. Thus, there exist
linear maps g′, h′ such that f is a {g′, h′}-derivation. In particular, f is a Jordan
{g′, h′}-derivation; since f is also a Jordan {g, h}-derivation, it readily follows that

(4.2)
(
g(x)− g′(x)

)
◦ y = x ◦

(
h′(y)− h(y)

)
for all x, y ∈ A. Setting y = 1 we obtain

(4.3) 2
(
g(x)− g′(x)

)
= x ◦

(
h′(1)− h(1)

)
,
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setting x = 1 we obtain

(4.4) 2
(
h′(y)− h(y)

)
=
(
g(1)− g′(1)

)
◦ y,

and setting x = y = 1 we obtain

g(1)− g′(1) = h′(1)− h(1).

Denoting this element by α it follows from (4.2) that (x◦α)◦y = x◦ (α◦y). That
is, [α, [x, y]] = 0 and hence α ∈ Z by our assumption. From (4.3) it now follows
that g(x) = g′(x)+αx, and from (4.4) it follows that h(y) = h′(y)−αy. Therefore

g(x)y + xh(y) = g′(x)y + xh′(y) = f(xy),

proving that f is a {g, h}-derivation. �

Recall that an algebra A is said to be semiprime if it has no nonzero nilpotent
ideals. Equivalently, for each a ∈ A, aya = 0 for every y ∈ A implies a = 0. Let
us first check that semiprime algebras satisfy the condition from Lemma 4.1.

Lemma 4.2. If an element a from a semiprime algebra A satisfies (2.4), then
a ∈ Z.

Proof. Since a commutes with every commutator, it commutes with y[a, x] =
[ya, x] − [y, x]a. Consequently, [a, y][a, x] = [a, y[a, x]] − y[a, [a, x]] = 0 for all
x, y ∈ A. Replacing y by xy and using [a, xy] = [a, x]y + x[a, y] it follows that
[a, x]y[a, x] = 0. But then [a, x] = 0 for A is semiprime. That is, a ∈ Z. �

Let us also recall that an algebra A is said to be prime if the product of any of its
two nonzero ideals is nonzero. Further, we say that an ideal of an algebra is prime
if the corresponding factor algebra is prime. As is well-known, the intersection of
all prime ideals of a semiprime algebra is {0}. This makes it possible for one to
reduce some problems on semiprime algebras to prime algebras, which are much
easier to deal with. One of the reasons for this is that the center of a prime algebra
can be embedded into a certain field, called the extended centroid, which has many
extremely useful properties; see, e.g., [4, Sections 7.5 and 7.6] for a survey on this
subject.

Theorem 4.3. Every Jordan {g, h}-derivation of a semiprime algebra A is a
{g, h}-derivation.

Proof. In light of Lemmas 4.1 and 4.2, it suffices to consider a Jordan {g, g}-
derivation f . The goal is to show that f is the sum of a derivation and the
identity map multiplied by an element from Z (see the beginning of Section 2).

Taking y = 1 in

(4.5) f(x ◦ y) = g(x) ◦ y + x ◦ g(y)

we obtain

(4.6) g(x) = f(x) + x ◦ β
where β = −1

2g(1). Suppose, temporarily, that β ∈ Z. Define d : A→ A by

d(x) = f(x) + 4βx,
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and note that

d(x ◦ y) = f(x ◦ y) + 4βx ◦ y = g(x) ◦ y + x ◦ g(y) + 4βx ◦ y
=
(
d(x)− 2βx

)
◦ y + x ◦

(
d(y)− 2βy

)
+ 4βx ◦ y

= d(x) ◦ y + x ◦ d(y).

That is, d is a Jordan derivation, and hence a derivation by [5]. Since f(x) =
d(x) − 4βx, this completes the proof. Thus, all we have to show is that β lies in
the center.

Returning to (4.5) and (4.6), we have

(4.7) f(x ◦ y) = f(x) ◦ y + x ◦ f(y) + (x ◦ β) ◦ y + x ◦ (y ◦ β).

Recall the Jordan identity (x2 ◦ y) ◦ x = x2 ◦ (y ◦ x). Using (4.7) we will now
consider the action of f on each of the two sides, and thereby derive a certain
identity involving β. Firstly, we have

f((x2 ◦ y) ◦ x) =f(x2 ◦ y) ◦ x+ (x2 ◦ y) ◦ f(x)

+ ((x2 ◦ y) ◦ β) ◦ x+ (x2 ◦ y) ◦ (x ◦ β).

Since

f(x2 ◦ y) =f(x2) ◦ y + x2 ◦ f(y) + (x2 ◦ β) ◦ y + x2 ◦ (y ◦ β)

=(f(x) ◦ x) ◦ y + ((x ◦ β) ◦ x) ◦ y + x2 ◦ f(y)

+ (x2 ◦ β) ◦ y + x2 ◦ (y ◦ β),

it follows that

f((x2 ◦ y) ◦ x) =((f(x) ◦ x) ◦ y) ◦ x+ (((x ◦ β) ◦ x) ◦ y) ◦ x+ (x2 ◦ f(y)) ◦ x
+ ((x2 ◦ β) ◦ y) ◦ x+ (x2 ◦ (y ◦ β)) ◦ x+ (x2 ◦ y) ◦ f(x)

+ ((x2 ◦ y) ◦ β) ◦ x+ (x2 ◦ y) ◦ (x ◦ β).

Secondly, we have

f(x2 ◦ (y ◦ x)) =f(x2) ◦ (y ◦ x) + x2 ◦ f(y ◦ x)

+ (x2 ◦ β) ◦ (y ◦ x) + x2 ◦ ((y ◦ x) ◦ β)

=(f(x) ◦ x) ◦ (y ◦ x) + ((x ◦ β) ◦ x) ◦ (y ◦ x) + x2 ◦ (f(y) ◦ x)

+ x2 ◦ (y ◦ f(x)) + x2 ◦ ((y ◦ β) ◦ x) + x2 ◦ (y ◦ (x ◦ β))

+ (x2 ◦ β) ◦ (y ◦ x) + x2 ◦ ((y ◦ x) ◦ β).

Equating both expressions, and then expanding and collecting the terms we obtain

(4.8)
x2y[β, x]− xy[β, x2] + y

(
[β, x]x2 − x[β, x]x+ x2[β, x]

)
=[β, x]yx2 − [β, x2]yx+

(
[β, x]x2 − x[β, x]x+ x2[β, x]

)
y

for all x, y ∈ A. Our intention now is to show that β ∈ Z follows merely from this
identity. To this end, it suffices to consider the case where A is prime. Namely, if I
is an ideal of A, then β+I ∈ A/I satisfies the same identity for all x+I, y+I ∈ A/I.
If the desired conclusion holds for prime algebras, then it follows that [β,A] ⊆ I
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for every prime ideal of A. Since the intersection of all prime ideals is {0}, this
yields [β,A] = {0}.

Thus, assume that A is prime. If x ∈ A is such that 1, x, x2 are linearly
independent over the extended centroid C of A, then it follows from (4.8) that [β, x]
lies in the linear span of 1, x, x2 [4, Theorem 7.43]. In particular, [[β, x], x] = 0.
Assume, therefore, that x2 = λx + µ for some λ, µ ∈ C. Then (4.8) reduces to
(λ2 + 4µ)[[β, x], y] = 0 for all y ∈ A. Thus, we have [[β, x], x] = 0 in this case too,
unless λ2 + 4µ = 0. If the latter holds, then (x− 1

2λ)2 = 0. Writing x′ = x− 1
2λ

we thus have

[[[β, x], x], x] = [[[β, x′], x′], x′] = βx′3 − 3x′βx′2 + 3x′2βx′ − x′3β = 0

for x′2 = 0. Thus, [[[β, x], x], x] = 0 for all x ∈ A. But this forces [β, x] = 0 for all
x ∈ A by, for example, [9, Theorem 1]. Thus, β ∈ Z. �

Theorems 3.1 and 4.3 together show that every Jordan {g, h}-derivation of the
tensor product of a semiprime and a commutative algebra is a {g, h}-derivation.
As a particular case we have the following corollary.

Corollary 4.4. Let A be a semiprime and S be a commutative algebra. Then
every Jordan derivation of A⊗ S is a derivation.

Let us point out that A ⊗ S is not semiprime if S is not semiprime. On the
other hand, even the tensor product of semiprime algebras is not always semiprime.
Corollary 4.4 is therefore, to the best of our knowledge, a new result.
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[3] M. Brešar, Jordan derivations revisited, Math. Proc. Camb. Phil. Soc. 139 (2005), 411–425.
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