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Abstract. Let θ be a Jordan homomorphism from an algebra A into an al-

gebra B. We find various conditions under which the restriction of θ to the
commutator ideal of A is the sum of a homomorphism and an antihomomor-

phism. Algebraic results, obtained in the first part of the paper, are applied

to the second part dealing with the case where A and B are C∗-algebras.

1. Introduction

Jordan homomorphisms of associative rings and algebras play a significant role
in various mathematical areas, in particular in ring theory and in the theory of
operator algebras. The standard problem in this context is whether Jordan ho-
momorphisms can be expressed through homomorphisms and antihomomorphisms.
This problem has a long and rich history. Let us mention, just to give the flavor of
the subject, a few classical results from the 1950’s.

In [12] Jacobson and Rickart proved that a Jordan homomorphism from an
arbitrary ring into a domain is either a homomorphism or an antihomomorphism.
The same conclusion holds for Jordan homomorphisms onto prime rings, as shown
by Herstein [10] and Smiley [17]. Jacobson and Rickart also proved in the same
paper [12] that a Jordan homomorphism from the ring of n × n matrices over an
arbitrary unital ring (where n ≥ 2) into another ring is the sum of a homomorphism
and an antihomomorphism. This result was used by Kadison [13] for proving that
a Jordan ∗-homomorphism from a W ∗-algebra onto a C∗-algebra is the sum of a
∗-homomorphism and a ∗-antihomomorphism.

In the present paper we will show that under suitable conditions a Jordan ho-
momorphism defined on an algebra A is the sum of a homomorphism and an anti-
homomorphism, however, not necessarily on A but only on the commutator ideal
of A. As we shall see, there are good reasons for the restriction to the commutator
ideal.

The paper is organized as follows. Section 2 is of an introductory nature, it
contains definitions and remarks on the concepts that are studied. Section 3 con-
siders the action of Jordan homomorphisms on tetrads. It is known that this action
can be decisive, so the idea to treat this is not new. What seems to be new, and
what is one of the principal ideas upon which this paper is based, is to consider
those tetrads that one of the four elements involved is an idempotent. Section 4
considers Jordan homomorphisms that also preserve tetrads (which we call reversal
homomorphisms). A rough summary of both Sections 3 and 4 is given in Theorem
4.4; it tells us that under a mild assumption on the range, Jordan homomorphisms
can be described on the commutator ideal provided that the algebra on which they
are defined is linearly spanned by its idempotents. We believe that the algebraic
results from these first sections are interesting in their own right. However, their
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main purpose is to apply them, in Section 5, to the study of Jordan homomor-
phisms on C∗-algebras that are either surjective or adjoint preserving (i. e. Jordan
∗-homomorphisms). The main result is Theorem 5.2. In its corollaries we in par-
ticular give generalizations of Kadison’s theorem.

The present paper continues the series [6, 7, 8]. In these papers it was showed
that various problems about the Jordan structure of an associative algebra A (about
Jordan ideals, Jordan modules, Jordan derivations, etc.) can be solved not on the
entire algebra A, but on some of its ideals; in particular the commutator ideal of
A often came into play. From the technical point of view these papers are quite
different from the present one. Namely, it is not clear to us how to use the ideas upon
which these related papers are based in order to handle a similar, but apparently a
more entangled problem of describing Jordan homomorphisms on A. In the present
paper we use a different approach which remarkably leads to analogous conclusion:
Jordan homomorhisms can be “controlled” on the commutator ideal of A. All these
indicate that something deeper, not yet fully understood might be hidden behind
the results from [6, 7, 8] and this paper.

2. Preliminaries

Throughout, F will denote a field with characteristic not 2, and we will consider
algebras over F . Except in the last section on C∗-algebras (where F is therefore
C), we shall not impose any further assumptions on F . It should be mentioned that
the algebraic part of the paper could be presented in the setting of 2-torsionfree
rings, but for simplicity of the exposition we shall deal with algebras over F .

Let X = {x1, x2, . . .} be an infinite set and let F 〈X〉 be the free (associative)
algebra on X, i. e. the algebra of all polynomials in noncommuting indeterminates
xi. The reversal involution on F 〈X〉 is defined by x∗i = xi for every xi ∈ X (and
consequently (xi1xi2 . . . xin)∗ = xin . . . xi2xi1 for all xik ∈ X). Let us denote by
H〈X〉 the set of all symmetric elements with respect to this involution. Clearly, as
a linear space H〈X〉 is generated by elements of the form

{xi1xi2 . . . xin} = xi1xi2 . . . xin + xin . . . xi2xi1 ,

xik ∈ X. The case when n = 4 and all xik are different is of special interest. Such
elements, that is {xi1xi2xi3xi4} = xi1xi2xi3xi4 + xi4xi3xi2xi1 , xik 6= xil if k 6= l,
are called tetrads.

Further, let J〈X〉 be the free special Jordan algebra, i. e. J〈X〉 is the Jordan
subalgebra of F 〈X〉 generated by 1 and all xi ∈ X. Its elements are the so-called
Jordan polynomials. Let us state a few concrete examples:

xi ◦ xj = xixj + xjxi,

x2
i =

1

2
xi ◦ xi,

xixjxi =
1

2

(
xi ◦ (xi ◦ xj)− x2

i ◦ xj
)
,

{xixjxk} = (xi + xk)xj(xi + xk)− xixjxi − xkxjxk,
[[xi, xj ], xk] = (xj ◦ xk) ◦ xi − (xi ◦ xk) ◦ xj ;

here, as usual, [u, v] denotes uv − vu. It is clear that J〈X〉 ⊆ H〈X〉. It is easy to
see that tetrads do not lie in J〈X〉 (see e. g. [11, p. 8]), so that J〈X〉 6= H〈X〉. A
well-known theorem by Cohn states that H〈X〉 is generated as a Jordan algebra
by X and all tetrads [11, p. 8].

Now let A and B be (associative) algebras over F , and let θ : A → B, a 7→ aθ,
be a linear map. We say that θ is a Jordan homomorphism if

(a1 ◦ a2)θ = aθ1 ◦ aθ2
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for all a1, a2 ∈ A; equivalently, θ preserves all Jordan polynomials, that is

(1) f(a1, . . . , an)θ = f(aθ1, . . . , a
θ
n)

for all f(x1, . . . , xn) ∈ J〈X〉 and all ai ∈ A. So, in particular, a Jordan homomor-
phism satisfies

(a1a2a1)θ = aθ1a
θ
2a
θ
1,(2)

[[a1, a2], a3]θ = [[aθ1, a
θ
2], aθ3](3)

for all a1, a2, a3 ∈ A.
Let us call θ a reversal homomorphism if (1) holds for all f(x1, . . . , xn) ∈ H〈X〉

and all ai ∈ A. In view of Cohn’s theorem, θ is a reversal homomorphism if and
only if θ is a Jordan homomorphism and it preserves tetrads:

{a1a2a3a4}θ = {aθ1aθ2aθ3aθ4}

for all a1, a2, a3, a4 ∈ A.
The ultimate goal when considering Jordan homomorphisms is to show that

they arise from homomorphisms and antihomomorphisms. In this regard we in-
troduce the following concept: we shall say that θ : A → B is the sum of a
homomorphism and an antihomomorphism (SHA for brevity) if there exists ideals
I and J of Alg(Aθ), the (associative) subalgebra of B generated by the range of
θ, a homomorphism ϕ : A → I and an antihomomorphism ψ : A → J such that
θ = ϕ+ ψ and IJ = JI = 0 (so, in particular, AϕAψ = AψAϕ = 0). For example,
A 7→ (A,At), where At denotes the transpose of the matrix A, is an SHA from
Mn(F ) to Mn(F ) ×Mn(F ). Note that the range of this SHA is not an associa-
tive algebra. SHAs from one algebra onto a semiprime algebra can be described in
greater detail.

Lemma 2.1. Let θ be an SHA from an algebra A onto a semiprime algebra B.
Then there exist ideals I0 and J0 of A and ideals I and J of B such that

(a) I0 + J0 = A and I0 ∩ J0 = ker θ;
(b) I ⊕ J = B;
(c) θ|I0 is a homomorphism from I0 onto I;
(d) θ|J0 is an antihomomorphism from J0 onto J .

Proof. Let ϕ, ψ, I and J be as in the above definition, and define I0 = kerψ and
J0 = kerϕ. Since IJ = 0 we have (I ∩ J)2 = 0, and hence I ∩ J = 0 as B is
semiprime. Moreover, since xϕ + xψ = xθ for every x ∈ A, we have I + J = B
and so (b) holds. Further, given x ∈ A we have xϕ ∈ B and so there exists x0 ∈ A
such that xθ0 = xϕ. Thus I 3 (x − x0)ϕ = xψ0 ∈ J and hence x − x0 ∈ J0 and
x0 ∈ I0. This proves that I0 + J0 = A. It is obvious that I0 ∩ J0 = ker θ, so (a)
holds. Further, it is clear that θ|I0 = ϕ|I0 and θ|J0 = ψ|J0. It remains to show that
Iθ0 = I and Jθ0 = J . Pick y ∈ I. Then there is x ∈ A such that y = xθ = xϕ + xψ.
As I 3 y − xϕ = xψ ∈ J it follows that xψ = 0, i. e. x ∈ I0. Thus Iθ0 = I, and
similarly we see that Jθ0 = J . �

Let us add a few additional remarks to Lemma 2.1 If θ is bijective, then (a) can
be read as

(a’) I0 ⊕ J0 = A,

and we have the decomposition of θ that one could call a “direct sum” of an isomor-
phism and an antiisomorphism. Next, if B is a unital algebra, then (b) is equivalent
to

(b’) I = eB and J = (1− e)B for some central idempotent e ∈ B,
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and in this case x 7→ exθ is a homomorphism and x 7→ (1 − e)xθ is an antihomo-
morphism.

We remark that the conditions (a)–(d) appeared in the study of Jordan homo-
morphisms onto semiprime rings in [3, 4]. Lemma 2.1 shows that in this context a
seemingly weaker condition that θ is an SHA is actually equivalent to (a)–(d). This
lemma will not be used in the sequel, we just thought it is appropriate it to record
it in order to help the reader to understand better the concept of an SHA.

The following example shows the nontriviality of the concepts that were intro-
duced.

Example 2.2. Let A be the exterior algebra with generators e1, e2, . . . , en. Thus
e2
i = eiej +ejei = 0 for all i and j, and as a linear space A is generated by elements
ei1ei2 . . . eik with i1 < i2 < . . . < ik, 1 ≤ k ≤ n. Define a linear map θ : A→ A by
eθi = ei and (ei1ei2 . . . eik)θ = 0 if k ≥ 2.

We claim that θ is a Jordan homomorphism. It is enough to show that

(ei1ei2 . . . eik ◦ ej1ej2 . . . ejl)θ = (ei1ei2 . . . eik)θ ◦ (ej1ej2 . . . ejl)
θ.

If k ≥ 2 or l ≥ 2, then both sides are obviously 0. But actually the same is true if
k = l = 1. Indeed, (ei ◦ ej)θ = 0 and eθi ◦ eθj = ei ◦ ej = 0. Our claim is thus proved.

Suppose that θ is the sum of a homomorphism ϕ and an antihomomorphism ψ.

Then eie
ϕ
i = (eϕi + eψi )eϕi = (e2

i )
ϕ + eψi e

ϕ
i = 0. Therefore eϕi = λiei + hi, where

λi ∈ F and hi lies in the linear span of all elements ei1ei2 . . . eik where k ≥ 2.

Accordingly, eψi = eθi − e
ϕ
i = (1 − λi)ei − hi. Suppose that λj 6= 0 for some j, say

λ1 6= 0. Since eϕ1 e
ψ
i = 0 for every i ≥ 2, that is (λ1e1 + h1)((1− λi)ei − hi) = 0, it

follows that

λ1(1− λi)e1ei = λ1e1hi − (1− λi)h1ei + h1hi.

This readily yields λ1(1 − λi) = 0 and so λi = 1 for all i ≥ 2. But then eϕ2 e
ψ
1 = 0

implies that λ1 = 1 as well. Hence we have

0 = (e1e2)θ = eϕ1 e
ϕ
2 + eψ2 e

ψ
1 = (e1 + h1)(e2 + h2) + (−h2)(−h1),

and so e1e2 = −h1e2 − e1h2 − h1h2 − h2h1, which is obviously a contradiction.

Therefore λj = 0 for every j, so that eϕi = hi and eψi = ei − hi. However, again

considering eϕ1 e
ϕ
2 + eψ2 e

ψ
1 = (e1e2)θ = 0, we see that this is also impossible. Thus θ

is not an SHA.
If n < 4, then A4 = 0 and hence {a1a2a3a4} = 0 for all ai ∈ A, so that θ is

trivially a reversal homomorphism. If, however, n ≥ 4, then {e1e2e3e4}θ = 0 while
{eθ1eθ2eθ3eθ4} = {e1e2e3e4} = 2e1e2e3e4 6= 0. Thus θ is not a reversal homomorphism
in this case.

Note that the algebra A from this example has plenty of nilpotent elements,
including those that lie in the center of A. In the sequel, when considering a
Jordan homomorphism θ : A → B, we shall be frequently forced to assume that
the center of Alg(Aθ) does not contain nonzero nilpotents.

It is easy to check that every SHA is also a reversal homomorphism. So we have

θ is an SHA =⇒ θ is a reversal homomorphism =⇒ θ is a Jordan homomorphism

and, as Example 2.2 shows, none of these implications can be reversed in general.
When can they be reversed?

3. When Jordan homomorphisms are reversal homomorphisms

Throughout this section A and B will be arbitrary algebras and θ : A→ B will
be a Jordan homomorphism.
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The next lemmas are simple and elementary; anyhow, when gathered together
they yield Theorem 3.5, which describes a useful property of Jordan homomor-
phisms. The first lemma is actually known [12, Corollary 2], and the second one
could be derived from [12, Corollary 1]; anyway we give the proofs since they are
very short.

Lemma 3.1. If e = e2 ∈ A commutes with a ∈ A, then (ea)θ = eθaθ = aθeθ.

Proof. Since e commutes with a we have e◦a = ea+ae = 2eae, hence eθaθ+aθeθ =
2eθaθeθ by (2). Since eθ is also an idempotent it follows easily that eθaθ = aθeθ.
But then (ea)θ = (eae)θ = eθaθeθ = eθaθ. �

Lemma 3.1 in particular shows that if e is a central idempotent in A, then eθ is
a central idempotent in Alg(Aθ), and if A is unital, then 1θ is the unity of Alg(Aθ).

Lemma 3.2. Suppose that the center of Alg(Aθ) does not contain nonzero nilpotent
elements. Then for all a, b ∈ A, ab = ba = 0 implies aθbθ = bθaθ = 0.

Proof. First note that aθbθ = −bθaθ since a ◦ b = 0. Next, for every x ∈ A we have
[[a, b], x] = 0 which, in view of (3), yields [[aθ, bθ], xθ] = 0. That is, 2[aθbθ, xθ] = 0,
so that aθbθ lies in the center of Alg(Aθ). Since (aθbθ)2 = (aba)θbθ = 0 it follows
from our assumption that aθbθ = 0. �

Let a1, a2, a3, a4 ∈ A. Our main concern in this section is the question whether
θ satisfies

(4) {a1a2a3a4}θ = {aθ1aθ2aθ3aθ4}.

Lemma 3.3. Suppose that a1a2 = a2a1 and (a1a2)θ = aθ1a
θ
2. Then (4) holds for

all a3, a4 ∈ A.

Proof. Note that our assumptions imply that (a1a2)θ = aθ1a
θ
2 = aθ2a

θ
1. Accordingly,

we have {a1a2a3a4}θ = {(a1a2) a3 a4}θ = {(a1a2)θ aθ3 a
θ
4} = {aθ1aθ2aθ3aθ4}. �

Let us consider a modified version of (4):

(5) {aπ(1)aπ(2)aπ(3)aπ(4)}θ = {aθπ(1)a
θ
π(2)a

θ
π(3)a

θ
π(4)}

where π ∈ S4 is a permutation.

Lemma 3.4. If (5) holds for some π ∈ S4, then (5) holds for every π ∈ S4.

Proof. Without loss of generality we may assume that (4) holds, and we have to
show (5) holds for every permutation π. From the identities

{a2a1a3a4} = {(a1 ◦ a2)a3a4} − {a1a2a3a4},
{a3a2a1a4} = {a1a2a3} ◦ a4 − {a1a2a3a4},

{a4a2a3a1} = {a1a3a2a4} = {a1(a2 ◦ a3)a4} − {a1a2a3a4},
{a1a4a3a2} = a1 ◦ {a2a3a4} − {a1a2a3a4},
{a1a2a4a3} = {a1a2(a3 ◦ a4)} − {a1a2a3a4}

it follows that (5) holds whenever π is a transposition. But then it holds for every
permutation π. �

We now have enough information to prove the main result of this section.

Theorem 3.5. Let θ : A → B be a Jordan homomorphism such that the cen-
ter of Alg(Aθ) does not contain nonzero nilpotent elements. Then {a1a2a3e}θ =
{aθ1aθ2aθ3eθ} for all a1, a2, a3 ∈ A and all idempotents e ∈ A.
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Proof. For every a ∈ A we write ae⊥ = a − ae and e⊥a = a − ea (if A was unital
then we would simply define e⊥ as 1− e). In view of the Peirce decomposition,

A = eAe⊕ e⊥Ae⊕ eAe⊥ ⊕ e⊥Ae⊥,

we may assume without loss of generality that

a1, a2, a3 ∈ eAe ∪ e⊥Ae ∪ eAe⊥ ∪ e⊥Ae⊥.

Suppose first that at least one ai lies in eAe ∪ e⊥Ae⊥. Then e commutes with ai
and so (eai)

θ = eθaθi = aθi e
θ by Lemma 3.1. Consequently, Lemma 3.3 implies that

{eaiajak}θ = {eθaθi aθjaθk}, where {i, j, k} = {1, 2, 3}. The desired conclusion then

follows from Lemma 3.4. Thus we may assume that a1, a2, a3 ∈ e⊥Ae ∪ eAe⊥. But
then at least two among these three elements lie in one of the sets on the right hand
side, i. e. either ai, aj ∈ e⊥Ae or ai, aj ∈ eAe⊥, i 6= j. Therefore aiaj = ajai = 0.
The desired result now follows from Lemmas 3.2, 3.3 and 3.4. �

Corollary 3.6. Suppose that the algebra A is equal to the linear span of its idem-
potents. If θ : A → B is a Jordan homomorphism such that the center of Alg(Aθ)
does not contain nonzero nilpotent elements, then θ is a reversal homomorphism.

In Section 5 we will need the following anayltic version of Corollary 3.6.

Corollary 3.7. Let A and B be normed algebras. Suppose that A is equal to
the closed linear span of its idempotents. If θ : A → B is a continuous Jordan
homomorphism such that the center of Alg(Aθ) does not contain nonzero nilpotent
elements, then θ is a reversal homomorphism.

4. When reversal homomorphisms are SHAs

Let us mention at the beginning that some ideas from McCrimmon’s paper [15]
(and partially also from Martindale’s paper [14]) will be hidden in our arguments
in this section. However, unlike the approach in [15] (and [14]), which is based
on Zelmanov’s theory of Jordan algebras, our approach is rather elementary and
direct.

In what follows the commutator ideal, i. e. the ideal generated by all commuta-
tors in the algebra in question, will play an important role.

Lemma 4.1. Let A be an arbitrary algebra and let k ∈ A. Then k lies in the
commutator ideal K of A if and only if there exist aij ∈ A such that

(6) k =
∑

ai1ai2 . . . ain and
∑

ain . . . ai2ai1 = 0.

Proof. Consider the element of the form k = a[b, c]d ∈ K with a, b, c, d ∈ A. We
have

k = a · b · c · d− a · cb · d and d · c · b · a− d · cb · a = 0.

Similarly we consider elements of the form a[b, c], [b, c]d and [b, c]. Since K is
linearly spanned with such elements, this proves the “only if” part. Conversely, if
(6) holds, then

k =
∑

ai1ai2 . . . ain −
∑

ain . . . ai2ai1 ,

so it suffices to show that every element of the form a1a2 . . . an − an . . . a2a1 lies in
K. Using the identity

a1a2 . . . an − an . . . a2a1

= [a1a2 . . . an−1, an] + an(a1a2 . . . an−1 − an−1 . . . a2a1)

this follows immediately by induction on n. �
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Theorem 4.2. Let A and B be arbitrary algebras and let θ : A→ B be a reversal
homomorphism. Suppose that Alg(Aθ) does not contain nonzero nilpotent central
ideals. Then the restriction of θ to the commutator ideal K of A is an SHA.

Proof. Set T = Alg(Aθ), and define ϕ,ψ : K → T as follows: for every k of the
form (6) let

kϕ =
∑

aθi1a
θ
i2 . . . a

θ
in and kψ =

∑
aθin . . . a

θ
i2a

θ
i1 .

In order to prove that ϕ and ψ are well-defined, we have to show that the conditions∑
ai1ai2 . . . ain = 0 and

∑
ain . . . ai2ai1 = 0

imply that

u =
∑

aθi1a
θ
i2 . . . a

θ
in and v =

∑
aθin . . . a

θ
i2a

θ
i1

are both zero.
Note first of all that∑

ai1ai2 . . . ain +
∑

ain . . . ai2ai1 = 0,

and hence, since θ is a reversal homomorphism, u+ v = 0. Secondly, we claim that
u2 = 0, i. e. uv = 0. We have

uv =
(∑

aθi1a
θ
i2 . . . a

θ
in

)(∑
aθin . . . a

θ
i2a

θ
i1

)
=

∑(
aθi1a

θ
i2 . . . a

θ
ina

θ
jn . . . a

θ
j2a

θ
j1 + aθj1a

θ
j2 . . . a

θ
jna

θ
in . . . a

θ
i2a

θ
i1

)
+

∑
aθi1a

θ
i2 . . . a

θ
ina

θ
in . . . a

θ
i2a

θ
i1 .

Since θ is a reversal homomorphism it follows that

uv =
∑

(ai1ai2 . . . ainajn . . . aj2aj1 + aj1aj2 . . . ajnain . . . ai2ai1)θ

+
∑

(ai1ai2 . . . ainain . . . ai2ai1)θ

=
((∑

ai1ai2 . . . ain
)(∑

ain . . . ai2ai1
))θ

= 0,

establishing our claim.
Further, we have∑

ai1ai2 . . . ainy1y2 . . . ym +
∑

ym . . . y2y1ain . . . ai2ai1 = 0

for all yi ∈ A, implying that∑
aθi1a

θ
i2 . . . a

θ
iny

θ
1y
θ
2 . . . y

θ
m +

∑
yθm . . . y

θ
2y
θ
1a
θ
in . . . a

θ
i2a

θ
i1 = 0.

That is,
uyθ1y

θ
2 . . . y

θ
m + yθm . . . y

θ
2y
θ
1v = 0,

and so
uyθ1y

θ
2 . . . y

θ
m = yθm . . . y

θ
2y
θ
1u

for all yi ∈ A. Taking m = 1 in the last identity we see that [u,Aθ] = 0, and so
u lies in the center of T . Next, taking m = 2 it follows that u[yθ1 , y

θ
2 ] = 0, which

further yields

[uyθ1 . . . y
θ
s , y

θ] = u[yθ1 . . . y
θ
s , y

θ]

= u[yθ1 , y
θ]yθ2 . . . y

θ
s + uyθ1 [yθ2 , y

θ]yθ3 . . . y
θ
s + . . .+ uyθ1 . . . y

θ
s−1[yθs , y

θ] = 0

for all yi, y ∈ A. This shows that the ideal N of T generated by u lies in the center
of T . Since u2 = 0 it is clear that also N2 = 0. But then N = 0 according to
our assumption. That is, u = 0, and hence of course also v = 0. We have thereby
proved that ϕ and ψ are well-defined.
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From the definition of ϕ and ψ it is clear that

(kx)ϕ = kϕxθ, (xk)ϕ = xθkϕ, (kx)ψ = xθkψ, (xk)ψ = kψxθ(7)

holds for all x ∈ A and all k ∈ K. Further, it is easy to show that

(8) (kk′)ϕ = kϕk′ϕ and (kk′)ψ = k′ψkψ

for all k, k′ ∈ K. Indeed, just write k as in (6), and similarly, let k′ =
∑
bj1bj2 . . . bjm

where
∑
bjm . . . bj2bj1 = 0. Then we have

kk′ =
∑

ai1ai2 . . . ainbj1bj2 . . . bjm and
∑

bjm . . . bj2bj1ain . . . ai2ai1 = 0,

and now (8) follows directly from the definition of ϕ and ψ. Thus ϕ is a homomor-
phism and ψ is an antihomomorphism.

Next, picking k ∈ K and representing it as in (6), we have

kθ =
(∑

ai1ai2 . . . ain

)θ
=
(∑

ai1ai2 . . . ain + ain . . . ai2ai1

)θ
=

∑
aθi1a

θ
i2 . . . a

θ
in +

∑
aθin . . . a

θ
i2a

θ
i1 = kϕ + kψ.

Thus, the restriction of θ to K is the sum of ϕ and ψ.
Let k, k′ ∈ K. By (8) we have (kk′)ϕ = kϕk′ϕ, and on the other hand, in view of

(7), (kk′)ϕ = kϕk′θ = kϕ(k′ϕ + k′ψ). Comparing we get KϕKψ = 0. By induction
on n it can be easily deduced from (7) that (kx1 . . . xn−1xn)ϕ = kϕxθ1 . . . x

θ
n−1x

θ
n

for all k ∈ K and xi ∈ A. Therefore

kϕxθ1 . . . x
θ
n−1x

θ
nk
′ψ = (kx1 . . . xn−1xn)ϕk′ψ ∈ KϕKψ = 0,

which shows that KϕTKψ = 0. Similarly one proves that KψKϕ = 0 and
KψTKϕ = 0. Denoting by I the ideal of T generated by Kϕ, and by J the
ideal of T generated by Kψ, we thus have IJ = JI = 0. Thus, the restriction of θ
to K is indeed an SHA. �

Remark 4.3. Suppose additionally that A (from Theorem 4.2) is an algebra with
involution ∗ and θ is a Jordan ∗-homomorphism, i. e. a Jordan homomorphism
that also preserves adjoints: (x∗)θ = (xθ)∗. From the definition of ϕ and ψ it
is clear that they also preserve adjoints, so they are a ∗-homomorphism and a
∗-antihomomorphism, respectively.

Consider Example 2.2 for n < 4: θ from this example is a reversal homomor-
phism, which is not an SHA on A. But on the commutator ideal K of A it certainly
is an SHA, in fact Kθ = 0. So, the restriction to the commutator ideal in Theorem
4.2 is really necessary. See also Example 5.1 below.

Combining Corollary 3.6 and Theorem 4.2 we get the following result.

Theorem 4.4. Let A and B be algebras, and suppose that A is equal to the linear
span of its idempotents. If θ : A → B is a Jordan homomorphism such that the
center of Alg(Aθ) does not contain nonzero nilpotent elements, then the restriction
of θ to the commutator ideal K of A is an SHA.

5. Jordan homomorphisms on C∗-algebras

Jordan homomorphisms are of special importance in the theory of C∗-algebras.
In his classical 1951 work [13] Kadison proved that a linear bijective map from
one C∗-algebra onto another one is an isometry if and only if it is a Jordan ∗-
homomorphism followed by left multiplication by a unitary element. In the same
paper he also proved that a Jordan ∗-homomorphism from a W ∗-algebra onto a
C∗-algebra is an SHA [13, Theorem 10]. In 1965 Størmer generalized Kadison’s
theorem as follows: If θ is a (not necessarily surjective) Jordan ∗-homomorphism
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from a C∗-algebra A into another C∗-algebra B ⊆ B(H), then the weak closure of
the C∗-algebra generated by Aθ contains a central projection e such that x 7→ exθ

is a ∗-homomorphism and x 7→ (1− e)xθ is a ∗-antihomomorphism.
Our aim in this section is to extend these results by Kadison and Størmer in

different directions. In our proofs we will rely heavily on algebraic results from the
previous sections. Let us mention that both Kadison and Størmer also used an
entirely algebraic result as the basic tool in their proofs, namely the theorem by
Jacobson and Rickart on Jordan homomorphisms on matrix rings mentioned in the
introduction. In our approach we will be able to avoid using this result.

Of course, Størmer’s result is in some sense definitive of its kind. In particular
it shows that a Jordan ∗-homomorphism from a C∗-algebra A into a C∗-algebra B
is an SHA; however, the ranges of the homomorphism and the antihomomorphism
from this decomposition may not lie in B but in a bigger algebra (incidentally,
results showing that Jordan homomorphisms can be expressed as SHA’s only when
extending the target algebra also appear in pure algebra, see e. g. [1] and [2]). Our
goal is to find an intrinsic decomposition of θ, that is, we wish to express θ as the
sum of a homomorphism and an antihomomorphism that both also map in B. The
next example shows, however, that in this context we have to face some limitations.
This example is based on the same idea as the one given in [1, p. 458]. The authors
of [1] attributed that example to Kaplansky.

Example 5.1. Let K(H) be the C∗-algebra of all compact operators on an infinite
dimensional, separable Hilbert space H. Let A be the unitization of the C∗-algebra
K(H) ×K(H). Define θ : A → A by ((S, T ) + λ)θ = (S, T t) + λ; here T t denotes
the transpose of T relative to a fixed orthonormal basis. Note that θ is a Jordan
∗-automorphism, and moreover a reversal homomorphism. However, θ is not an
SHA, at least not on the entire A. Indeed, suppose that θ was equal to ϕ + ψ as
in the above definition. Then 1 = 1θ = e+ f where e = 1ϕ and f = 1ψ. Clearly e
and f are orthogonal idempotents. Moreover, e commutes with all elements from
Aϕ (since ϕ is a homomorphism) and it also commutes with all elements from Aψ

(since eAψ = Aψe = 0). Thus e commutes with Aθ = A, that is to say, e lies in
the center of A. But clearly the only central idempotents in A are 0 and 1, which
yields that ϕ = 0 or ψ = 0 – a contradiction.

On the other hand, the restriction of θ to K = K(H)×K(H) is clearly the (di-
rect) sum of a homomorphism (S, T ) 7→ (S, 0) and an antihomomorphism (S, T ) 7→
(0, T t). Note that K is the commutator ideal of A (actually, every element in K is
the sum of commutators in A, see [16, Theorem 1]).

Let us finally point out that θ actually is an SHA on A if we allow that a homo-
morphism and an antihomomorphism from this decomposition have their ranges in
an algebra containing A. Specifically, let A1 = K(H)1 ×K(H)1 where K(H)1 is
the unitization of K(H). We may consider A as a subalgebra of A1 via the embed-
ding (S, T ) + λ 7→ (S + λ, T + λ). In this setting θ is the sum of a homomorphism
ϕ : A → A1, ((S, T ) + λ)ϕ = (S + λ, 0), and an antihomomorphism ψ : A → A1,
((S, T ) + λ)ψ = (0, T t + λ).

Example 5.1 justifies the restriction to the commutator ideal in the next theorem.

Theorem 5.2. Let θ be a Jordan homomorphism from a C∗-algebra A into a C∗-
algebra B. If either (i) θ is surjective or (ii) θ is a Jordan ∗-homomorphism, then
the restriction of θ to the commutator ideal K of A is an SHA.

Proof. First we note that each of the assumptions (i) or (ii) implies that θ is con-
tinuous. If (i) holds, this follows from [9, Theorem 5.8]; in case of (ii) this is more
elementary, see e. g. [18, p. 439].
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We claim that if (i) holds, then we may assume without loss of generality that
θ is bijective. Indeed, J = ker θ is a closed Jordan ideal of A and as such it is
an ideal [9, Theorem 5.3] (see also [7] for an alternative proof). Thus A/J is a
C∗-algebra, and θ induces a Jordan isomorphism θ̄ from A/J onto B. Now if the
restriction of θ̄ to K̄, the commutator ideal of A/J , was the sum of a homomorphism
ϕ̄ : K̄ → B and an antihomomorphism ψ̄ : K̄ → B, then the restriction of θ to K,
the commutator ideal of A, would be the sum of a homomorphism ϕ : k 7→ (k+J)ϕ̄

and an antihomomorphism ψ : k 7→ (k + J)ψ̄. This establishes our claim.
Suppose that the center of Alg(Aθ) contains an element u such that u2 = 0. If θ is

bijective then u = tθ for some t ∈ A, and we have (tt∗t)θ = tθ(t∗)θtθ = u(t∗)θu = 0,
hence tt∗t = 0 and so t = 0, yielding u = 0. If θ is a Jordan ∗-homomorphism, then
u∗ ∈ Alg(Aθ), so that u commutes with u∗; therefore uu∗u = 0 which forces u = 0.
Thus, in any case, the center of Alg(Aθ) does not contain nonzero central nilpotent
elements.

Since θ is continuous we may consider θ∗∗ : A∗∗ → B∗∗. One can check that
θ∗∗ is also a Jordan homomorphism (cf. [18, Lemma 3.1]). Moreover, θ∗∗ is either

bijective or a Jordan ∗-homomorphism. Therefore, as above we see that Alg(A∗∗
θ∗∗

)
does not have nonzero central nilpotent elements. Since A∗∗ is a W ∗-algebra, it is
equal to the closed linear span of its idempotents. Corollary 3.7 therefore tells us
that θ∗∗ is a reversal homomorphism. But then θ is also a reversal homomorphism.
Therefore the desired conclusion follows from Theorem 4.2. �

One can view Theorem 5.2 (ii) as a supplement to the aforementioned results by
Kadison and Størmer. Let us also mention that if θ is a Jordan ∗-homomorhism,
then the corresponding homomorphism and an antihomomorphism also preserve
adjoints (see Remark 4.3).

Corollary 5.3. Let A be a unital C∗-algebra having no nonzero multiplicative
functionals, and let θ be a Jordan homomorphism from A into a C∗-algebra B. If
either (i) θ is surjective or (ii) θ is a Jordan ∗-homomorphism, then θ is an SHA.

Proof. Since A is unital and has no nonzero multiplicative functionals, it is easy to
see that A coincides with its commutator ideal [7, Lemma 2.5]. �

The assumption about the non-existence of nonzero multiplicative functionals is
really necessary, as Example 5.1 shows.

In our last corollary we show that Kadison’s theorem [13, Theorem 10] holds
without assuming that a Jordan homomorphism θ preserves adjoints.

Corollary 5.4. Let θ be a Jordan homomorphism from a W ∗-algebra A onto a
C∗-algebra B. Then θ is an SHA.

Proof. Let e be a central projection in A such that eA is a commutative algebra and
(1 − e)A has no abelian central summands. By Lemma 3.1 we have (fx)θ = fθxθ

for every idempotent f ∈ eA. Since the linear span of idempotents in eA is dense
in eA and since θ is continuous (cf. the proof of Theorem 5.2) it follows that
the restriction of θ to eA is a homomorphism. We have 1θ = 1′, the identity
element of B, e′ = eθ is a central idempotent in B, and moreover (ex)θ = e′xθ,
((1 − e)x)θ = (1 − e′)xθ for every x ∈ A (see Lemma 3.1 and the comment after
its proof). Therefore ((1 − e)A)θ = (1′ − e′)B is an algebra. Since the algebra
(1− e)A is equal to its commutator ideal (see e.g. [5, Lemma 2.6]) it follows from
Theorem 5.2 that the restriction of θ to (1 − e)A is the sum of a homomorphism
ϕ0 : (1 − e)A → (1 − e′)B and an antihomomorphism ψ0 : (1 − e)A → (1 − e′)B.
But then θ is the sum of the homomorphism ϕ : x 7→ (ex)θ + ((1− e)x)ϕ0 and the
antihomomorphism ψ : x 7→ ((1− e)x)ψ0 . �
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Incidentally we mention that the same conclusion holds for a Jordan homomor-
phism from any algebra onto a W ∗-algebra. This follows from [4, Theorem 1]. The
proof, however, is entirely different.

Acknowledgment. The author is grateful to Victor Shulman for very helpful
discussions on the subject of this paper.
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[4] M. Brešar, Jordan mappings of semiprime rings II, Bull. Austral. Math. Soc. 44 (1991),
233-238.
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