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Abstract

Let A be an algebra and let X be an A-bimodule. We call a linear subspace Y of X a Jordan
A-submodule of X if Ay+ yA ∈ Y for all A ∈ A and y ∈ Y (if X = A, then this coincides with
the classical concept of a Jordan ideal). When is a Jordan A-submodule a submodule? We give
a thorough analysis of this question in both algebraic and analytic context. In the first part
of the paper we consider general algebras and general Banach algebras. In the second part we
treat some more specific topics, such as symmetrically normed Jordan A-submodules. Some of
our results are of interest also in the classical situation; in particular, we show that there exist
C*-algebras having Jordan ideals that are not ideals.

1 Introduction

Let A be an associative algebra over a field F with char(F ) 6= 2. A linear subspace J of A is called
a Jordan ideal of A if

A ◦B := AB +BA ∈ J, for all A ∈ A and B ∈ J. (1.1)

Under which conditions on A is each Jordan ideal of A in fact a two-sided ideal? This question
was discussed in pure algebra and in functional analysis in a number of publications for more than
fifty years. The mixture of algebra and analysis is also an essential feature of the present paper.

One of our main motivations for this work has been the aforementioned question for C*-algebras,
that is, is every Jordan ideal J of a C*-algebra an ideal? For a long time it was known that the
answer is “yes” if J is closed, and recently the positive answer was also obtained for W*-algebras
(see below). The general case, however, was to the best of our knowledge so far unsettled. In the
last section of this paper we give an example showing that the answer is in general “no”. This is
one of the main results of this paper, which has an advantage that it can be easily formulated. In
order to explain the other principal results we have to introduce some additional terminology and
notation, and also to give some more historical details.

Let us call an algebra A Jordan ideal free if each Jordan ideal of A is a two-sided ideal. So
we are searching for conditions under which an algebra is Jordan ideal free. Fundamental results
in this area are due to Jacobson and Rickart [15] and Herstein [14]; in [15] it was proved that the
matrix algebra Mn(B), where n ≥ 2 and B is a unital algebra, is Jordan ideal free, and in [14] it was
proved that simple algebras are Jordan ideal free. Later Fong, Miers and Sourour [11] gave a simple
proof of the fact that the algebra B(H) of all bounded operators on a separable Hilbert space H
is Jordan ideal free (B(H) is isomorphic to Mn(C), if dim H = n < ∞, and to M2(B), if dim
H =∞). Fong and Murphy in [10] showed that all properly infinite W*-algebras are Jordan ideal
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free. Civin and Yood established in [6] that each closed Jordan ideal of a C*-algebra is a two-sided
ideal. Recently Brešar, A. Fošner and M. Fošner proved in [4] that every algebra generated by its
commutators is Jordan ideal free. Using this they showed that all W*-algebras are Jordan ideal
free (this result was also obtained by L. J. Bunce (a private communication)).

Apart from an algebraic motivation for our work provided by the papers mentioned above,
another stimulus came from the question about the structure of non-closed, symmetrically normed
(s. n.) Jordan ideals of C*-algebras. This question arose in the study by Kissin and Shulman [16]
of B-Lipschitz functions on semisimple Hermitian Banach *-algebras B that continued an analytic
investigation initiated by Daletskii and Krein [7] and Birman and Solomyak [1]. It was shown there
that the class of non-unital algebras B, for which all polynomials are B-Lipschitz functions, consists
of all s. n. Jordan ideals of C*-algebras. This means that B is a subalgebra of some C*-algebra A,
that (1.1) holds and ‖A ◦ B‖B ≤ D‖A‖‖B‖B for some D > 0. It was conjectured in [16] that s. n.
Jordan ideals of C*-algebras are two-sided s. n. ideals and was proved to be true for B(H) and for
the ideal C(H) of all compact operators on H.

We will now extend the concept of a Jordan ideal as follows. Let X be an A-bimodule. A
subspace Y of X is called a Jordan A-submodule of X if

A ◦ y = Ay + yA ∈ Y, for all A ∈ A and y ∈ Y.

A Jordan A-submodule of A itself is, clearly, a Jordan ideal of A.
The bimodule approach is more flexible and has wide and fruitful applications. For example,

information about the structure of Jordan A-submodules can be used to consider Jordan ideals
of a larger algebra C that contains A: C is an A-bimodule and its Jordan ideals are Jordan A-
submodules. Also, from the technical point of view the bimodule setting is more challenging. Let
us mention an analogy: the question whether a Jordan derivation is a derivation is much more
entangled if one considers Jordan derivations from an algebra into its bimodule than just those
from an algebra into itself (see, for example, [3] and [20]).

Definition 1.1 We say that an algebra A is Jordan free, if every Jordan A-submodule of each
A-bimodule is an A-bimodule.

In Section 2 we consider the following general question: When are algebras Jordan free? This
problem lends itself to a fuller investigation than the more “narrow” problem of finding conditions
under which algebras are Jordan ideal free. Clearly, all Jordan free algebras are also Jordan ideal
free. However, while all commutative algebras are Jordan ideal free, they are the main “culprits”
as far as Jordan freeness is concerned (see Proposition 2.2).

The main result of Section 2 is Theorem 2.7 which states, in particular, that a unital algebra
A is Jordan free if and only if it has no two-sided ideals I such that A/I is commutative. Another
necessary and sufficient condition is the equality

A = Alg([A,A]), (1.2)

where Alg([A,A]) is the subalgebra of A generated by all commutators [A,B] = AB − BA, for
A,B ∈ A. Condition (1.2) is still sufficient for non-unital algebras to be Jordan free but we do
not know if it is necessary. On the other hand, the condition that a non-unital algebra A has
no commutative quotients is not, in general, sufficient for A even to be Jordan ideal free (see
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Proposition 2.10). Using condition (1.2), we show that all non-commutative simple algebras and
all W*-algebras without non-zero commutative ideals are Jordan free.

Using (1.2), we also prove that the algebra Mn(B), n ≥ 2, is Jordan free for each algebra B with
B2 = B and, in particular, for each C*-algebra B. This gives rise to many examples of Jordan free
algebras: the algebra C(H) of all compact operators on H and the Calkin algebra B(H)/C(H) are
Jordan free; the algebras of all bounded operators on Schatten ideals Cp, 1 ≤ p < ∞, are Jordan
free; the algebras B(C(H)), B(lp) and B(c0) of all bounded operators on C(H), lp and c0 are
Jordan free. (Förster and Nagy in [12] proved earlier that B(lp) and B(c0) are Jordan ideal free.)
On the other hand, all Schatten ideals Cp, 1 ≤ p <∞, and all quotient algebras Cp/Cq, 1 ≤ q < p,
are not Jordan free.

Starting with Section 3 we study Jordan A-submodules for Banach algebras A. We say that
a Banach algebra A is topologically Jordan free if each closed Jordan A-submodule of a Banach
A-bimodule is an A-bimodule. The class of topologically Jordan free Banach algebras contains
the class of Jordan free Banach algebras and does not coincide with it: all Schatten ideals Cp,
for example, are topologically Jordan free algebras while, as it was mentioned above, they are not
Jordan free. The conditions in Theorem 3.8 for a Banach algebra to be topologically Jordan free
are identical to the conditions in Theorem 2.7 for an algebra to be Jordan free, except for the
additional requirement of the closure. In particular, one of the sufficient conditions for a Banach
algebra A to be topologically Jordan free is an analogue of condition (1.2):

A = Alg([A,A]). (1.3)

If A is unital or an arbitrary C*-algebra, then condition (1.3) is necessary and sufficient for A to be
topologically Jordan free. It is also equivalent to the condition that A has no non-zero multiplicative
functionals. In general, however, non-unital Banach algebras without multiplicative functionals may
be not topologically Jordan free. The equivalence of these two properties is especially interesting
in the class of all non-unital Banach algebras in which every closed ideal is contained in a maximal
ideal. It is strongly related to the well-known problem whether all topologically simple commutative
Banach algebras are one-dimensional (see Proposition 3.10).

In Section 4 we study a more subtle problem of finding conditions on Banach algebras A under
which all symmetrically normed (s. n.) Jordan A-submodules Y of Banach A-bimodules X (Y are
not necessarily closed in ‖ · ‖X but are complete in some norm ‖ · ‖Y ) are Banach A-bimodules
in ‖ · ‖Y . We call such algebras s. n. Jordan free. They constitute a proper subset in the class of
topologically Jordan free Banach algebras, so the sufficient condition for a Banach algebra A to be
s. n. Jordan free must be stronger than (1.3). The condition we obtain is a quantative version of
condition (1.3). Let b1(A) be the unit ball of A, let K = [b1(A),b1(A)] and let G(tK), for t > 0,
be the absolutely convex semigroup in A generated by tK. We show that A is s. n. Jordan free if,
for each t, the closure G(tK) contains a ball of A.

Using this result, we establish in Theorem 4.19 that the classes of topologically Jordan free
C*-algebras and s. n. Jordan free C*-algebras coincide and consist of all C*-algebras that have
no non-zero multiplicative functionals. Among other results of Section 4 we mention the following
analogue of Jacobson-Rickart theorem obtained in [15]: all algebras Mn(B), where n ≥ 2 and B is
a unital Banach algebra, are s. n. Jordan free.

In Section 5 we consider the problems of the existence of Jordan and s. n. Jordan ideals in
C*-algebras. The fact that all commutative algebras and all C*-algebras without commutative
quotients are Jordan ideal free, the results of [6] that all closed Jordan ideals of C*-algebras are
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two-sided ideals and of [4] that all W*-algebras are Jordan ideal free gave rise to the question
whether all C*-algebras are Jordan ideal free. As already mentioned above, in Section 5 we give
a negative answer: there exists a non-closed Jordan ideal J of a unital C*-algebra (which is a
commutative extension of the algebra C(H)) that is not a two-sided ideal. Moreover, this Jordan
ideal turns out to be an s. n. Jordan ideal that, in turn, gives a negative answer to the conjecture
made in [16] that all s. n. Jordan ideals of C*-algebras are two-sided s. n. ideals. On the other
hand, we show in Section 5 that all s. n. Jordan ideals of W*-algebras and all reflexive s. n. Jordan
ideals of C*-algebras are two-sided s. n. ideals.

Another algebraic concept that extends the notion of Jordan ideals is the notion of inner ideals.
A linear subspace U of an algebra A is an inner ideal if uAu ⊆ U for all u ∈ U. One-sided ideals
and Jordan ideals are inner ideals and aAb is an inner ideal for all a, b ∈ A. The structure of weak
*-closed ideals in W*-algebras and norm closed ideals in C*-algebras was studied by Edwards and
Rüttimann in [8],[9] and by Bunce in [5]. In particular, it was established that each norm closed
inner ideal U in a C*-algebra A satisfies U = AU ∩UA. For any Jordan ideal J of a unital algebra
A, AJ = JA is a two-sided ideal, so it does not coincide with J, if J is not an ideal. The example
of a non-closed Jordan ideal J of a unital C*-algebra constructed in Section 5 shows that unital
C*-algebras may have non-closed inner ideals U such that U $ AU = UA.

The authors are very grateful to the referee for the careful reading of the paper and for numerous
perceptive and helpful comments.

2 Jordan free algebras

In this section we consider some necessary and sufficient conditions for an algebra A to be Jordan
free. We also consider various classes of Jordan free algebras.

Lemma 2.1 (i) If Jordan free subalgebras A, B of an algebra C generate C, then C is Jordan free.
(ii) For each two-sided ideal I of a Jordan free algebra A, the quotient algebra Â = A/I is

Jordan free.

Proof. Let Y be a Jordan C-submodule of an C-bimodule X. Then X is an A- and B-bimodule
and Y is a Jordan A- and B-submodule of X. Hence Y is an A- and B-bimodule, so it is an
C-bimodule. Part (i) is proved.

Let Y be a Jordan Â-submodule of an Â-bimodule X. Then X is an A-bimodule with multipli-
cations Ax = Âx, xA = xÂ, for A ∈ A and x ∈ X, and Y is a Jordan A-submodule. If A is Jordan
free then Y is an A-bimodule. Hence it is an Â-bimodule.

For any subset S of A, denote by Alg(S) the subalgebra and by Id(S) the ideal of A generated
by S. Clearly,

A2 :=

{
n∑
i=1

AiBi : Ai, Bi ∈ A, n ∈ N

}
= Id(A2). (2.1)

Let A be unital. An A-bimodule X is called unital if 1x = x1 = x, for each x ∈ X.

Proposition 2.2 Let A have a proper two-sided ideal I such that the quotient algebra A/I is
commutative (in particular, this holds if A2 6= A). Then

(i) A is not Jordan free.
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(ii) If A is unital and dim A ≥ 2, then there is a unital A-bimodule containing a Jordan A-
submodule that is not an A-bimodule.

Proof. First assume that A2 = {0}. Let f be a non-zero linear functional on A and let Z be a
linear space. It is easy to check that the direct sum Z u Z is an A-bimodule with multiplications

A(xu y) = f(A)y u 0 and (xu y)A = −f(A)y u 0, for all A ∈ A and x, y ∈ Z.

The subspace Y = {xu x : x ∈ Z} is a Jordan A-submodule of Z u Z but not an A-bimodule, so
A is not Jordan free.

Assume now that A2 6= {0}. The direct sum X = AuA is an A-bimodule with multiplications

A(B u C) = AB u 0 and (B u C)A = 0u CA, for A,B,C ∈ A.

If A is commutative, the subspace Y = {B uB : B ∈ A} of X is a Jordan A-submodule, since

A ◦ (B uB) = AB uBA = AB uAB ∈ Y, for A,B ∈ A,

and it is not an A-bimodule, since A(BuB) = ABu 0 /∈ Y, if AB 6= 0. Thus A is not Jordan free.
If A has an ideal I such that A/I is commutative then, combining the above with Lemma

2.1(ii), we complete the proof of (i).
Let A be commutative and unital. The A-bimodule X = AuA in the proof of (i) is not unital.

The algebraic tensor product X1 = A⊗A with multiplication generated by

C(A⊗B) = CA⊗B and (A⊗B)C = A⊗BC, for A,B,C ∈ A,

is a unital A-bimodule. Let j be a linear operator on X1 such that j(A ⊗ B) = B ⊗ A and let
Y = {x ∈ X1 : j(x) = x}. Since j(C ◦ (A ⊗ B)) = C ◦ j(A ⊗ B), for all A,B,C ∈ A, we have
j(C ◦ x) = C ◦ j(x) for x ∈ X1. Hence Y is a Jordan A-submodule of X1.

If Y is an A-bimodule, C(1 ⊗ 1) = C ⊗ 1 ∈ Y for all C ∈ A. Hence C = λ1 and A is
one-dimensional. Thus Y is not an A-bimodule.

If A is not commutative, but has an ideal I such that A/I is commutative, then, using the
above argument and the argument in the proof of Lemma 2.1(ii), we construct a unital A-bimodule
that contains a Jordan A-submodule which is not an A-bimodule.

The recent papers [4] and [16] use an elementary argument which is also applicable in the present
more general context. For A,B ∈ A and x ∈ X, let

[A,B] = AB −BA and [A, x] = Ax− xA

be their commutators. The following easily checked identity connects the Jordan and Lie products:

[[A,B], x] = A ◦ (B ◦ x)−B ◦ (A ◦ x). (2.2)

Therefore

[A,B]x =
1
2

([A,B] ◦ x+ [[A,B], x]) =
1
2

([A,B] ◦ x+A ◦ (B ◦ x)−B ◦ (A ◦ x)) ,

x[A,B] =
1
2

([A,B] ◦ x− [[A,B], x]) =
1
2

([A,B] ◦ x−A ◦ (B ◦ x) +B ◦ (A ◦ x)) . (2.3)
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It is also easy to check that, for all F,G,B,C,D ∈ A,

F [[B,C], D]G = [F [[B,C], D], G] + [GF [B,C], D]− [GF,D][B,C]. (2.4)

For subsets S,R of A, let [S,R] = {[A,B]: A ∈ S, B ∈ R}. It follows from (2.4) that

Id([[A,A],A]) ⊆ Alg([A,A]) ⊆ Id([A,A]) ⊆ A. (2.5)

¿From (2.3) we obtain immediately the following analogue of Theorem 2.1 [4].

Lemma 2.3 If Y is a Jordan A-submodule of X, then Y is an Alg([A,A])-bimodule. In particular,
if A = Alg([A,A]) then A is Jordan free.

The condition

A = Alg([A,A]). (2.6)

plays an important role in this paper. Making use of Lemma 2.3 and the Zorn’s Lemma, we have

Corollary 2.4 (i) If an ideal I of A and the quotient algebra A/I satisfy (2.6), then A also satisfies
(2.6), so A is Jordan free.

(ii) Every algebra A has an ideal I satisfying (2.6) such that A/I has no non-zero ideals satis-
fying (2.6).

Denote by Z(A) the center of A. The following result was proved in [4, Lemma 2.4].

Lemma 2.5 (i) If C ∈ A satisfies [A, C] ∈ Z(A), then [A,C]2 = 0 for each A ∈ A.
(ii) Let Z(A) have no non-zero nilpotent elements. If [A, C] ∈ Z(A) then C ∈ Z(A).

Proof. If [A,C] ∈ Z(A), for each A ∈ A, then also [AC,C] ∈ Z(A). Hence

[A,C]2 = [A, [A,C]C] = [A, [AC,C]] = 0.

Part (i) is proved. Part (ii) follows immediately from (i).

We say that A has max-property if every proper ideal of A is contained in a maximal proper
ideal of A. If, for example, A has a finite subset which is not contained in any proper ideal of A,
then it follows from the Zorn’s lemma that A has max-property. Thus all unital algebras, simple
algebras and finitely generated algebras have max-property.

The class of all algebras with max-property is closed under extension.

Proposition 2.6 If an ideal I of A and the quotient A/I have max-property, then A has max-
property.

Proof. Denote by π the canonical map from A onto A/I and let J be a proper ideal of A. If
the ideal π(J ) of A/I is proper, there is a maximal ideal M of A/I containing π(J ). Then the
ideal L = π−1(M) is proper, since π(L) =M 6= A/I. It is also maximal. Indeed, if an ideal L′ of
A is larger than L, then π(L′) % π(L) =M. Hence π(L′) = A/I, therefore L′ = A, as I ⊆ L′.
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Assume now that π(J ) = A/I whence A = I + J . Let K be a maximal proper ideal of I
containing J ∩ I. Then K + J is a maximal proper ideal of A containing J . Indeed, K + J 6= A
because (K + J ) ∩ I = K + (J ∩ I) = K 6= I. On the other hand, if an ideal N of A contains
K + J , then N = J + (N ∩ I), because for any A ∈ M, there is B ∈ J with π(A) = π(B). As
N ∩ I ⊇ K, either N ∩ I = K and N = K + J , or N ∩ I = I and N = A.

We shall now prove the main theorem of this section.

Theorem 2.7 Consider the following conditions for an algebra A :

(i) A is Jordan free.

(ii) Id([A,A]) = A.

(iii) Alg([A,A]) = A.

(iv) Id([[A,A],A]) = A.

(v) A has no proper two-sided ideals I such that the quotient algebra A/I is commutative.

(vi) A has no non-zero multiplicative linear functionals.

Then
(iv)⇐⇒ (iii) =⇒ (i) =⇒ (v)⇐⇒ (ii) =⇒ (vi). (2.7)

If A has max-property, then conditions (i)-(v) are equivalent.

Proof. (iv) ⇒ (iii) follows from (2.5).
(iii) ⇒ (iv). Assume that I = Id([[A,A],A]) 6= A. Since [[A,B], C] ∈ I, for all A,B,C ∈ A, the

quotient algebra B = A/I satisfies [[B,B],B] = {0}. Hence [B,B] ⊆ Z(B). If (iii) holds, we have

{0} 6= B = Alg([B,B]) ⊆ Z(B).

Therefore [B,B] = {0}, so that B = {0}, a contradiction.
(iii) ⇒ (i) follows from Lemma 2.3, and (i) ⇒ (v) follows from Proposition 2.2(i).
(v) ⇐⇒ (ii) follows from the fact that Id([A,A]) is the smallest out of all the ideals I of A such

that A/I is commutative.
(ii)⇒ (vi) follows from the fact that Id([A,A]) lies in the kernel of any multiplicative functional

on A.
Suppose now that A has max-property. To show that conditions (i)-(v) are equivalent we only

need to prove (ii) =⇒ (iv). Assume that Id([[A,A],A]) 6= A and let I be a maximal ideal of A
containing Id([[A,A],A]). Then B = A/I 6= {0} has only one proper ideal {0} and, as in the proof
of (iii) =⇒ (iv), satisfies [[B,B],B] = {0}. Hence [B,B] ⊆ Z(B) and, by Lemma 2.5(i),

R2 = 0 for each R ∈ [B,B]. (2.8)

We have from (ii) that Id([B,B]) = B 6= {0}, so there is 0 6= C ∈ [B,B]. Then BC is a two-sided
ideal in B. Hence either BC = B or BC = {0}. If BC = B then, by (2.8), {0} = BC2 = BC = B.
Thus BC = {0}. Hence the one-dimensional space L generated by C is an ideal of B. Since B has
only one proper ideal {0}, B = L. Therefore B = Id([B,B]) = {0}. This contradiction shows that
Id([[A,A],A]) = A, so (ii) =⇒ (iv).

Since for non-commutative simple algebras condition (v) holds, Theorem 2.7 yields the following
generalization of Herstein’s result.
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Corollary 2.8 All non-commutative simple algebras are Jordan free.

If I is a proper ideal of a unital Banach algebra A over C, its closure is also a proper ideal
of A. Taking this into account and the fact that every unital commutative Banach algebra has a
non-zero multiplicative linear functional, we obtain

Corollary 2.9 For unital Banach algebras, all conditions (i)-(vi) of Theorem 2.7 are equivalent.

For unital C*-algebras, the equivalence of conditions (ii), (iii), (vi) of Theorem 2.7 was estab-
lished in [4]. As the example below shows, for non-unital algebras, conditions (i)-(v) of Theorem
2.7 are not, in general, equivalent.

Let G be the Grassman algebra (without an identity element) on the set {x1, x2, . . .} over a field
F . Thus all generators xi of G satisfy the following relations:

xixj + xjxi = 0 and x2
i = 0 for all i and j.

A typical element of G is therefore a linear combination of monomials xi1xi2 . . . xin with i1 < i2 <
. . . < in. Let us point out a few elementary properties of G:

1) monomials of even degree lie in the center of G;
2) any two monomials of odd degree anti-commute;
3) the commutator of any two elements is of even degree;
4) [[G,G],G] = 0.
Let Ii, for i ∈ N\0, be the ideal of G generated by the element

xi − x3i−1x3ix3i+1 = xi −
1
2

[x3i−1, x3i]x3i+1,

and let I be the ideal of G generated by all elements of the form xi− x3i−1x3ix3i+1, for i = 1, 2, ...,
that is, G is the linear span of

{
∪i∈N\0Ii

}
. Let us show that I 6= G. We claim that x1 /∈ I. Suppose

this was not true. Then x1 ∈ I1 + . . . + In, for some n. Using the properties stated above, it is
easily seen that all I2

i = 0. Accordingly,

(I1 + . . .+ In)(x1 − x2x3x4)(x2 − x5x6x7) . . . (xn − x3n−1x3nx3n+1) = 0.

If x1 ∈ I1 + . . .+ In, then

(−1)nx1x2x3x4 . . . x3nx3n+1

= x1(x1 − x2x3x4)(x2 − x5x6x7) . . . (xn − x3n−1x3nx3n+1) = 0,

a contradiction. Thus I 6= G, so the quotient algebra A = G/I 6= {0}.

Proposition 2.10 The algebra A = G/I has no proper ideals J such that A/J is commutative
and

0 = [[A,A],A]  Alg([A,A])  Id([A,A]) = A.

The algebra A has a Jordan ideal which is not a two-sided ideal, so A is not Jordan ideal free.
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Proof. The algebra A is generated (as an algebra) by elements x̂i = xi + I that satisfy
x̂i = 1

2 [x̂3i−1, x̂3i]x̂3i+1 ∈ Id([A,A]). Hence Id([A,A]) = A. By (2.7), this implies that A has no
proper ideals J such that A/J is commutative.

Clearly, A inherits the property 4): [[A,A],A] = 0.
Since Id([A,A]) = A, we have that A is not commutative. As [A,A] ⊆ Z(A), we have

{0} 6= [A,A] ⊆ Alg([A,A]) ⊆ Z(A) 6= A.

Finally, consider a linear subspace J of A generated by all odd monomials. By property 1),

x̂j1 ...x̂j2m ◦ x̂i1 ...x̂i2n+1 = x̂j1 ...x̂j2m x̂i1 ...x̂i2n+1 + x̂i1 ...x̂i2n+1 x̂j1 ...x̂j2m

= 2x̂i1 ...x̂i2n+1 x̂j1 ...x̂j2m ∈ J.

By property 2),

x̂j1 ...x̂j2m+1 ◦ x̂i1 ...x̂i2n+1 = x̂j1 ...x̂j2m+1 x̂i1 ...x̂i2n+1 + x̂i1 ...x̂i2n+1 x̂j1 ...x̂j2m+1 = 0 ∈ J.

Hence J is a Jordan ideal of A. Since the product of odd monomials is an even monomial, J is not
a two-sided ideal.

The above proposition shows that, in general, the equivalent properties (ii) and (v) of Theorem
2.7 do not imply (i). We do not know if (i) implies (iii).

Problem 2.11 Does the equality Alg([A,A]) = A hold for all Jordan free algebras?

We will consider now some special classes of Jordan free algebras.

Corollary 2.12 The algebra F of all finite rank operators on a linear space X, dim X 6= 1, is
Jordan free.

Proof. As F is simple and non-commutative, the proof follows from Corollary 2.8.

Corollary 2.13 Every W∗-algebra A without commutative weakly closed ideals is Jordan free.

Proof. It follows from the proof of Corollary 2.6 of [4] that A = Alg([A,A]). By Lemma 2.3,
A is Jordan free.

Proposition 2.14 (i) If A, B are unital and Jordan free, the tensor product A⊗B is Jordan free.

(ii) Let A = Alg([A,A]) and let B coincide with the linear span of squares of its elements. Set
C = A⊗ B. Then C = Alg([C,C]), so C is Jordan free.

(iii) If B2 6= B then, for each algebra A, A⊗ B is not Jordan free.
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Proof. The algebra A⊗1B is isomorphic to A, the algebra 1A⊗B is isomorphic to B and they
generate A⊗ B. Hence (i) follows from Lemma 2.1(i).

For D ∈ B and A,B ∈ A,

[A,B]⊗D2 = [A⊗D,B ⊗D] ∈ Alg([C,C]).

If B is the linear span of squares of all D ∈ B, [A,B]⊗ T ∈ Alg([C,C]), for A,B ∈ A, T ∈ B. Set

F = {A ∈ A : A⊗D ∈ Alg([C,C]) for all D ∈ B}.

Then [A,A] ⊆ F . If A,B ∈ F , then A+B ∈ F and, for each D ∈ B,

AB ⊗D2 = (A⊗D)(B ⊗D) ∈ Alg([C,C]).

Since B is the linear span of squares of all D ∈ B, we have AB ∈ F . Hence F is an algebra
containing [A,A]. Therefore A = Alg([A,A]) = F . Thus C = Alg([C,C]). Part (ii) is proved.

By (2.1), (A⊗ B)2 = A2 ⊗ B2 ⊆ A⊗ B2 6= A⊗ B, so (iii) follows from Proposition 2.2(i).

Corollary 2.15 Let B be an algebra over a field F . For each n ≥ 2, the algebra A = Mn(B) is
Jordan free if and only if B2 = B. In particular, Mn(B) is Jordan free if B is unital.

Proof. We have A = Mn(F )⊗B. If B2 6= B, by Proposition 2.14(iii), A is not Jordan free.
Let now B2 = B. Denote by {eij} the matrix identity in Mn(F ). Let i 6= j. For all A,B ∈ B,

we have eij ⊗ AB = [eii ⊗ A, eij ⊗ B] ∈ [A,A]. Since B2 = B, it follows from (2.1) that eij ⊗ C ∈
Alg([A,A]) for all C ∈ B.

For A,B ∈ B, eii ⊗AB = (eij ⊗A)(eji ⊗B) ∈ Alg([A,A]). As B2 = B, we have from (2.1) that
eii ⊗ C ∈ Alg([A,A]), for all C ∈ B. Hence A = Alg([A,A]). By Lemma 2.3, A is Jordan free.

The above result is a generalization of the theorem about Jordan ideals of the algebras Mn(B)
established by Jacobson and Rickart in [15, Theorem 11].

If B is a C*-algebra then each 0 < A ∈ B is represented as A = B2 with 0 < B ∈ B. Since each
G ∈ B is represented as G = G1 −G2 + i(G3 −G4) with 0 ≤ Gi ∈ B, we have B2 = B.

Corollary 2.16 Let B be a C∗-algebra. For any n ≥ 2, the matrix algebra Mn(B) is Jordan free.

Corollary 2.17 Let H be a Hilbert space with n = dim H > 1.

(i) The algebra B(H) and the ideal C(H) of all compact operators on H are Jordan free.

(ii) The Calkin algebra B(H)/C(H) is Jordan free.

Proof. If n <∞, then B(H) = C(H) = Mn(C), so B(H) and C(H) are Jordan free.
If dim H =∞, then H = K⊕K, so B(H) = M2(B(K)) and C(H) = M2(C(K)). By Corollary

2.16, B(H) and C(H) are Jordan free. Part (ii) follows from Lemma 2.1.

Corollary 2.17(i) generalizes the result of Fong, Miers and Sourour [11, Theorem 3] that B(H)
is Jordan ideal free. For Schatten ideals Cp, 1 ≤ p <∞, (see the definition of the ideals Cp in the
next section) the situation is different.
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Corollary 2.18 (i) All Schatten ideals Cp, 1 ≤ p <∞, are not Jordan free.

(ii) The quotient algebras B(H)/Cp and C(H)/Cp are Jordan free.

(iii) The quotient algebras Cp/Cq, for 1 ≤ q < p, are not Jordan free.

Proof. It is well known that {0} 6= (Cp)2 ⊆ C p
2
6= Cp for 1 ≤ p < ∞. Therefore {0} 6=

(Cp/Cq)2 ⊆ C p
2
/Cq 6= Cp/Cq for q < p. Hence, by Proposition 2.2(i), Cp and Cp/Cq are not Jordan

free. This proves parts (i) and (iii). Part (ii) follows Lemma 2.1(ii) and Corollary 2.17.

We saw above that, for Hilbert spaces H with dim H 6= 1, the algebra B(H) is Jordan free. We
will consider now the algebra B(X) of all bounded operators on a Banach space X.

Proposition 2.19 The algebra B(X) is Jordan free, if there are Eij ∈ B(X) such that

EijEkm = δjkEim and E11 + ...+ Enn = 1, n ≥ 2. (2.9)

Proof. Since B(X) is isomorphic to Mn(E11B(X)E11), apply Corollary 2.15.

Corollary 2.20 If X = Cp or X = lp, for 1 ≤ p < ∞, or if X = C(H) or X = c0, then
B(X) ≈M2(B) for some unital algebra B, so B(X) is Jordan free.

Proof. Let H = K⊕K and let Uij be the matrix identity in B(H) ≈M2(B(K)). Let X = Cp.
For A ∈ X, set Eij(A) = UijA. Then Eij satisfy (2.9) and Eij ∈ B(X), since Eij(A) ∈ X and

‖Eij(A)‖p = ‖UijA‖p ≤ ‖Uij‖‖A‖p = ‖A‖p.

Hence all B(Cp) are Jordan free. Similarly, B(C(H)) is Jordan free.
Let X = lp, 1 ≤ p ≤ ∞, or X = c0. Let E11 be the operator of multiplication on X by

(1, 0, 1, 0, ...) and E22 = 1 − E11. Let E12(λ1, λ2, ...) = (λ2, 0, λ4, 0, λ6, 0, ...) and E21(λ1, λ2, ...) =
(0, λ1, 0, λ3, 0, λ5, ...). Then Eij satisfy (2.9), so B(lp) and B(c0) are Jordan free.

Corollary 2.20(ii) extends the result of Förster and Nagy in [12] (see also [4]) where it was shown
that the algebras B(lp) and B(c0) are Jordan ideal free.

3 Topologically Jordan free Banach algebras

In this section we always assume that A is a Banach algebra over C. The natural class of A-
bimodules to consider is the class of Banach A-bimodules, that is, Banach spaces X which are
A-bimodules and

‖Ax‖X ≤ ‖A‖‖x‖X and ‖xA‖X ≤ ‖A‖‖x‖X , for all A ∈ A and x ∈ X. (3.1)

Let Ã = C1 + A be the unitization of A with norm ‖λ1+A‖ = |λ| + ‖A‖, for A ∈ A. Setting
1x = x1 = x, for all x ∈ X, we have that X is a Banach Ã-bimodule.

Lemma 3.1 Let (X, ‖ · ‖X) be a Banach space and an A-bimodule. Then X has an equivalent
norm ‖ · ‖′X with respect to which it is a Banach A-bimodule, if and only if, for some C > 0,

‖Ax‖X ≤ C‖A‖‖x‖X and ‖xA‖X ≤ C‖A‖‖x‖X for all A ∈ A and x ∈ X. (3.2)
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Proof. We only need to prove “if” part. Set K = max(1, C, C2). Then

‖AxB‖X ≤ K‖A‖‖B‖‖x‖X , for all A,B ∈ Ã and x ∈ X.

The norm ‖x‖′X = sup{‖UxV ‖X : U, V ∈ Ã, ‖U‖Ã ≤ 1, ‖V ‖Ã ≤ 1} on X is equivalent to ‖·‖X , as

‖x‖X = ‖1x1‖X ≤ ‖x‖′X = sup{‖UxV ‖X : U, V ∈ Ã, ‖U‖Ã ≤ 1, ‖V ‖Ã ≤ 1}

≤ K sup{‖U‖‖x‖X‖V ‖: U, V ∈ Ã, ‖U‖Ã ≤ 1, ‖V ‖Ã ≤ 1} = K‖x‖X ,

and ‖AxB‖′X ≤ ‖A‖‖B‖‖x‖′X for A,B ∈ Ã and x ∈ X. Thus (X, ‖·‖′X) is a Banach Ã-bimodule.

Definition 3.2 We say that a Banach algebra A is topologically Jordan free if each closed Jordan
A-submodule of a Banach A-bimodule is an A-bimodule.

All Jordan free Banach algebras are topologically Jordan free. The opposite inclusion is not
true (this follows from Corollaries 2.18 and 3.7), so the class of topologically Jordan free Banach
algebras is larger than the class of Jordan free Banach algebras.

For a subalgebra B of a Banach algebra A, denote by B its norm closure in A. The following
result is an analogue of Lemma 2.3 for Banach algebras.

Lemma 3.3 If Y is a closed Jordan A-submodule of a Banach A-bimodule, then Y is a Banach
Alg([A,A])-bimodule. In particular, if A = Alg([A,A]) then A is topologically Jordan free.

Recall that a Banach algebra A is topologically simple if it has no closed two-sided ideals except
{0} and itself. Topologically simple Banach algebras are often not simple algebras. For example, the
Schatten ideals Cp, 1 ≤ p <∞, are topologically simple Banach algebras but not simple algebras.

Proposition 3.4 Each topologically simple non-commutative Banach algebra A is topologically
Jordan free.

Proof. First let us show that the center Z(A) of any topologically simple Banach algebra A,
dim A 6= 1, has no non-zero nilpotent elements. Let C ∈ Z(A) be such that Cn = 0 and Cn−1 6= 0,
n > 1. If ACn−1 = {0}, the one-dimensional space generated by Cn−1 is a closed ideal of A. Hence
ACn−1 6= {0}. Since A is topologically simple and ACn−1 is a closed ideal in A, ACn−1 = A. Then
AC = ACn = {0}. Therefore the one-dimensional space generated by C is a closed ideal of A.
Thus Z(A) has no non-zero nilpotent elements.

By Lemma 2.5, [[A, C],A] = 0 implies that C ∈ Z(A). Hence, since A is simple and non-
commutative, there are B,C,D ∈ A such that [[B,C], D] 6= 0. It follows from (2.4) that the
two-sided ideal I = A[[B,C], D]A is contained in Alg([A,A]).

Let Y be a closed Jordan A-submodule of X. By Lemma 2.3, Y is an I-bimodule. Since A is
simple, I = A. Since Y is a closed subspace of X, it is a Banach A-bimodule.

The next result is an analogue of Lemma 2.1(ii) for Banach algebras.

Proposition 3.5 Let a Banach algebra A be topologically Jordan free. Then, for each closed two-
sided ideal I, the quotient Banach algebra Â = A/I is topologically Jordan free.
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Proof. Let Y be a closed Jordan Â-submodule of a Banach Â-bimodule X. Then X is an
A-bimodule with multiplications Ax = Âx, xA = xÂ, for A ∈ A and x ∈ X, and Y is a Jordan
A-submodule. Moreover,

‖Ax‖X = ‖Âx‖X ≤ ‖Â‖‖x‖X ≤ ‖A‖‖x‖X ,

Thus X is a Banach A-bimodule. Since A is topologically Jordan free, Y is an A-bimodule. Since
Ax = Âx, xA = xÂ, it is an Â-bimodule.

Making use of Proposition 3.5 and replacing in the beginning of the proof of Proposition 2.2(i)
the linear space Z by a Banach space and the linear functional f on A by a bounded functional f
with ‖f‖ = 1, we obtain the following analogue of Proposition 2.2(i).

Proposition 3.6 If a Banach algebra A has a closed two-sided ideal I such that the quotient
algebra A/I is commutative, then A is not topologically Jordan free.

Let H be a separable Hilbert space. A two-sided ideal J of B(H) is a symmetrically normed
(s. n.) ideal if it is a Banach space with respect to a norm ‖ · ‖J and

‖AXB‖J ≤ ‖A‖‖X‖J ‖B‖, for all A,B ∈ B(H) and X ∈ J .

S. n. ideals of B(H) are related to symmetric norming functions on the space of all sequences
ξ = {ξi} of real numbers converging to 0. Denote by Φ the set of all such functions. Each φ ∈ Φ
defines an s. n. ideal (Jφ, ‖ · ‖φ) of B(H) (for the detailed discussion, see [13]). For example, the
functions

φp(ξ) =

( ∞∑
i=1

|ξi|p
)1/p

, for 1 ≤ p <∞, and φ∞(ξ) = sup |ξi|

define, respectively, the Schatten ideals Cp and the ideal C(H) = Jφ∞ of all compact operators on
H. Let F be the set of all finite rank operators on H. Then F ⊆ Jφ, the closure of F in ‖ · ‖φ is a
separable s. n. ideal Jφ0 and Jφ0 ⊆ Jφ. Each separable s. n. ideal of B(H) is isomorphic to Jφ0 for
some φ ∈ Φ. In many cases (for example, for all φp above) the ideals Jφ0 and Jφ coincide. For each
s. n. ideal J of B(H), there is φ ∈ Φ such that Jφ0 ⊆ J ⊆ Jφ; the first inclusion is isometric and
the second one is continuous.

Theorem 3.7 (i) All separable s. n. ideals of B(H) (in particular, C(H) and all Schatten ideals
Cp, 1 ≤ p <∞) are topologically Jordan free.

(ii) All non-separable s. n. ideals of B(H) are not topologically Jordan free.

Proof. If I is a closed ideal of a separable ideal Jφ0 , it follows easily that F ⊆ I. As Jφ0 is the
closure of F , I = Jφ0 . Thus Jφ0 is topologically simple and part (i) follows from Proposition 3.4.

If J is a non-separable s. n. ideal of B(H), then Jφ0 $ J ⊆ Jφ for some φ ∈ Φ (see [17,
Proposition 2.1]). Hence (Jφ0 )2 ⊆ J 2 ⊆ JφC(H). From Theorem III.6.3 [13] we obtain that

Jφ0 = (Jφ0 )2, so Jφ0 ⊆ J 2 ⊆ JφC(H). Let finite rank projections Pn strongly converge to 1H .
By Theorem III.6.3 [13], for A ∈ Jφ, B ∈ C(H),

‖ABPn −AB‖φ ≤ ‖A‖φ‖BPn −B‖ = ‖A‖φ‖PnB∗ −B∗‖ → 0, as n→∞.
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Since ABPn ∈ F , it follows from the definition of Jφ0 that AB ∈ Jφ0 . Thus

JφC(H) ⊆ Jφ0 . (3.3)

Hence J 2 = Jφ0 6= J , so the quotient algebra J /Jφ0 is commutative. By Proposition 3.6, J is not
topologically Jordan free.

Note that it was shown in Corollary 2.18 that all Cp are not Jordan free.
We say that a Banach algebra A has property (max-t), if every closed proper two-sided ideal of

A lies in a maximal closed proper two-sided ideal of A. For example, all topologically simple and
all unital algebras have property (max-t).

In Section 2 we considered some conditions for algebras to be Jordan free. Below we consider
similar conditions for Banach algebras to be topologically Jordan free. They are weaker than the
conditions of Section 2.

Theorem 3.8 Consider the following conditions for a Banach algebra A.

(i) A is topologically Jordan free.

(ii) Id([A,A]) = A.

(iii) Alg([A,A]) = A.

(iv) Id([[A,A],A]) = A.

(v) A has no closed two-sided ideals I such that A/I is commutative.

(vi) A has no non-zero multiplicative linear functionals.

Then (iv)⇐⇒ (iii) =⇒ (i) =⇒ (v)⇐⇒ (ii) =⇒ (vi).
If A has property (max-t) then conditions (i)-(v) are equivalent.
If A is a unital algebra or a C∗-algebra then condition (i)-(vi) are equivalent.

Proof. The proof of (iv) ⇐⇒ (iii) for Banach algebras is the same as in Theorem 2.7.
(iii) ⇒ (i) follows from Lemma 3.3 and (i) ⇒ (v) follows from Proposition 3.6.
(v) ⇐⇒ (ii) follows from the fact that Id([A,A]) is the smallest out of all closed ideals I of A

such that A/I is commutative and it lies in all of them.
(ii)⇒ (vi) follows from the fact that Id([A,A]) lies in the kernel of every multiplicative functional

on A, since multiplicative functionals on Banach algebras are automatically continuous.
Equivalence of conditions (i)-(v) for algebras with property (max-t). We only need to prove (ii)

=⇒ (iv). Assume that (ii) holds and I = Id([[A,A],A]) 6= A. Since every closed proper ideal of A
lies in a maximal closed proper ideal of A, there is a maximal closed proper ideal J of A containing
I. The quotient Banach algebra B = A/J 6= {0} is topologically simple and non-commutative,
since Id([B,B]) = B. Since [[A,B], C] ∈ I ⊆ J , for all A,B,C ∈ A, [[B,B],B] = {0}. Therefore
[B,B] ⊆ Z(B). It follows from the proof of Proposition 3.4 that Z(B) does not have non-zero
nilpotent elements. Hence, by Lemma 2.5, B ⊆ Z(B), so B is commutative. This contradiction
proves (iv).

Equivalence of conditions (i)-(vi) for unital and for C ∗-algebras. Since unital Banach algebras
have property (max-t), conditions (i)-(v) are equivalent for them. To show that they are equivalent
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for all C*-algebrasA, we only need to prove (ii) =⇒ (iv). Assume that I = Id([[A,A],A]) 6= A. Then
the quotient C*-algebra B = A/I 6= {0} satisfies Id([[B,B],B]) = {0}. Therefore [B,B] ⊆ Z(B).
Hence, by Lemma 2.5, [A,B]2 = 0 for all A,B ∈ B. If A,B are selfadjoint, T = i[A,B] is selfadjoint
and T 2 = 0. Hence T = 0. Thus B is commutative. Therefore, by (ii), B = Id([B,B]) = {0}. This
contradiction proves (iv).

Finally, let us prove (vi) ⇒ (v) for a unital Banach algebra or a C*-algebra A. If I is a closed
ideal of A such that A/I is commutative, then A/I is a unital algebra or a C*-algebra. Hence it
has a non-zero multiplicative functional. Its ”extension” to A is a multiplicative functional.

We showed above that, for Banach algebras with property (max-t), condition (ii) implies (iv)
and, therefore, implies (i). For Banach algebras without property (max-t), we will prove below that
an algebraic analogue of condition (ii) implies (iv) and, hence, implies (i).

Corollary 3.9 If Id([A,A]) = A, for a Banach algebra A, then A is topologically Jordan free.

Proof. Let I = Id([[A,A],A]) 6= A. Then B = A/I 6= {0} and [[B,B],B] = {0}, since
[[A,B], C] ∈ I for A,B,C ∈ A. Hence [B,B] ⊆ Z(B). Since Id([B,B]) = B, each R ∈ B can
be written as

R =
m∑
i=1

[Di, Fi] +
n∑
i=1

Ci[Ai, Bi] for some n,m ∈ N and some Ai, Bi, Ci, Di, Fi ∈ B.

By Lemma 2.5, [A,B]2 = 0 for all A,B ∈ B. Therefore Rn+m+1 = 0, so that B consists of nilpotent
elements. It follows from the Grabiner theorem [2, Theorem 46.3] that B is nilpotent: Bk = {0}
for some k ∈ N. Since B2 = B implies Bk = B, we have B2 6= B. Hence Id([B,B]) ⊆ B2 6= B. This
contradiction shows that Id([[A,A],A]) = A. By Theorem 3.8, A is topologically Jordan free.

For Banach algebras without identity, (vi) does not necessary implies (v). For example, any
nilpotent Banach algebra A has no non-zero multiplicative functionals, while the algebra A/A2 6=
{0} is commutative.

Denote by A the class of all Banach algebras A with property (max-t) satisfying A2 = A. The
implication (vi) =⇒ (v) of Theorem 3.8 for such algebras appears to be a difficult problem: it is
equivalent to the classical problem whether all topologically simple commutative Banach algebras
are one-dimensional.

Proposition 3.10 The following statements are equivalent.

(i) The implication (vi) =⇒ (v) of Theorem 3.8 holds for all A ∈ A.

(ii) Each topologically simple commutative Banach algebra is one-dimensional.

Proof. (i) =⇒ (ii). Let A be a topologically simple commutative Banach algebra. Then either
A2 = {0} or A2 = A. If A2 = {0}, A has no non-zero multiplicative functionals. For 0 6= R ∈ A,
L = CR is a closed ideal of A. As part (vi) of Theorem 3.8 implies (v), A = L, so dim A = 1.

Let now A2 = A. Since A is topologically simple, it has property (max-t), so A ∈ A and part
(vi) of Theorem 3.8 implies (v). If dim A 6= 1 then, since A is commutative, condition (v) does not
hold, so condition (vi) does not hold either and A has a non-zero bounded multiplicative functional
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f . Its kernel Ker(f) 6= {0} is a closed ideal of A of codimension 1 which contradicts the assumpion
that A is topologically simple. Hence dim A = 1.

(ii) =⇒ (i). Assume that the property of Theorem 3.8(v) does not hold for some A ∈ A. Then
A has a closed ideal I such that A/I is commutative. Let J be a maximal closed ideal of A that
contains I. Then B = A/J is commutative and topologically simple. By (ii), dim B = 1. Hence
either B2 = {0} or B2 = B. If B2 = {0} then A2 ⊆ J , so A /∈ A. Therefore B2 = B and J is the
kernel of a non-zero bounded multiplicative functional on A. Thus the property of Theorem 3.8(vi)
does not hold for A.

The Grassman algebra G over C considered in Section 2 can be turned into a normed algebra.
For distinct monomials {wi}ni=1 in G and complex numbers {αi}ni=1, set

‖
n∑
i=1

αiwi‖ =
n∑
i=1

|αi| .

Then G is a normed algebra. Denote by G its completion.

Proposition 3.11 (i) [[G,G],G] = {0}.
(ii) The Banach algebra G has a closed Jordan ideal which is not a two-sided ideal, so it is not

topologically Jordan free.

Proof. Part (i) follows from property 4) of G.
Let J be the linear space of G generated by all odd monomials. It follows from properties 1)

and 2) of G that J is a Jordan but not a two-sided ideal of G. Its closure J is a closed Jordan ideal
and the distance from each even monomial in G to J and, hence, to J equals 1. Therefore x1 ∈ J
and x1x2 /∈ J. Thus J is not a two-sided ideal of G.

Let I be the ideal of G considered in Proposition 2.10. The question arises as to whether the
closure of I coincides with G.

4 Symmetrically normed Jordan free Banach algebras

In this section we consider Banach algebras A and Banach A-bimodules but widen the class of
Jordan A-submodules. Let Y be a Jordan A-submodule of an Banach A-bimodule (X, ‖·‖X). It is
called symmetrically normed (s. n.), if it is a Banach space in a norm ‖ · ‖Y ,

‖y‖X ≤ ‖y‖Y for all y ∈ Y, (4.1)

and there exists D = D(Y ) > 0 such that

‖A ◦ y‖Y ≤ D‖A‖‖y‖Y , for all A ∈ A and y ∈ Y, (4.2)

Clearly, all Jordan A-submodules of X closed in ‖·‖X are s. n. Jordan A-submodules. However, the
converse is not true. For example, B(H) as a Banach B(H)-bimodule has only one non-trivial closed
ideal C(H), while it has a huge variety of s. n. ideals with rich analytic and algebraic structure.

In this section we study conditions on A under which each s. n. Jordan A-submodule (Y, ‖ · ‖Y )
of every A-bimodule is a Banach A-bimodule in an equivalent norm. By Lemma 3.1, Y is a Banach
A-bimodule if and only if Y is an A-bimodule and (3.2) holds.
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Definition 4.1 We say that a Banach algebra A is s. n. Jordan free if each s. n. Jordan A-
submodule (Y, ‖ · ‖Y ) of every Banach A-bimodule is a Banach A-bimodule in a norm equivalent to
‖ · ‖Y .

Clearly, all s. n. Jordan free Banach algebras and all Jordan free Banach algebras are topolog-
ically Jordan free. All Schatten ideals Cp, 1 ≤ p < ∞, are not Jordan free (see Corollary 2.18),
while they are topologically Jordan free (see Theorem 3.7). The Schatten ideal C1 is s. n. Jordan
free (see Theorem 4.13), while it is not Jordan free. Thus we have the following relations for these
sets:

{Jordan free Banach algebras} $ {topologically Jordan free Banach algebras},
{s. n. Jordan free algebras} ⊆ {topologically Jordan free Banach algebras},

{s. n. Jordan free Banach algebras} * {Jordan free Banach algebras}.

Problem 4.2 (i) Do there exist Jordan free Banach algebras that are not s. n. Jordan free?
(ii) Do there exist topologically Jordan free Banach algebras that are not s. n. Jordan free?

The next result is an analogue of Lemma 2.1.

Proposition 4.3 (i) Let a Banach algebra C be the sum of closed subalgebras A and B. If A and
B are s. n. Jordan free then C is s. n. Jordan free.

(ii) Let a Banach algebra A be s. n. Jordan free. Then, for each closed two-sided ideal I, the
quotient algebra Â = A/I is s. n. Jordan free.

Proof. Let Y be an s. n. Jordan C-submodule of a Banach C-bimodule X. Then X is a Banach
A- and B-bimodule and Y is an s. n. Jordan A- and B-submodule of X. Since A and B are s. n.
Jordan free, Y is a Banach A- and B-bimodule, so Y is a C-bimodule.

Let Au B be the direct sum of A and B with norm ‖A+B‖ = ‖A‖+ ‖B‖ for A ∈ A, B ∈ B.
Since the map AuB → A+B from AuB onto C is continuous, it follows from the open mapping
theorem that there is K > 0 such that, for each R ∈ C, there are A ∈ A and B ∈ B with

R = A+B, ‖A‖ ≤ K‖R‖ and ‖B‖ ≤ K‖R‖.

Hence, by (3.2), for all y ∈ Y,

‖Ry‖Y ≤ ‖Ay‖Y + ‖By‖Y ≤ CA‖A‖‖y‖Y + CB‖B‖‖y‖Y
≤ K(CA + CB)‖R‖‖y‖Y .

Similarly, ‖yR‖Y ≤ K(CA+CB)‖R‖‖y‖Y . By (3.2), Y is a Banach C-bimodule. Part (i) is proved.
Let Y be an s. n. Jordan Â-submodule of a Banach Â-bimodule X. Then X is an A-bimodule

with multiplication Ax = Âx, xA = xÂ, for A ∈ A and x ∈ X, and Y is a Jordan A-submodule.
Moreover,

‖Ax‖X = ‖Âx‖X ≤ ‖Â‖‖x‖X ≤ ‖A‖‖x‖X ,

‖A ◦ y‖Y = ‖Â ◦ y‖Y ≤ D‖Â‖‖y‖Y ≤ D‖A‖‖y‖Y .

Thus Y is an s. n. Jordan A-submodule of the Banach A-bimodule X. Since A is s. n. Jordan free,
Y is a Banach A-bimodule and there is C > 0 such that (3.2) holds.
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Since Ax = Âx and xA = xÂ, Y is an Â-bimodule. For all T ∈ I, we have from (3.2)

‖Ây‖Y = ‖ ̂(A+ T )y‖Y = ‖(A+ T )y‖Y ≤ C‖A+ T‖‖y‖Y .

Hence ‖Ây‖Y ≤ C inf
T∈I
‖A + T‖‖y‖Y = C‖Â‖‖y‖Y . Similarly, ‖yÂ‖Y ≤ C‖Â‖‖y‖Y . Thus Y is a

Banach Â-bimodule.

Since s. n. Jordan free algebras are topologically Jordan free, Proposition 3.6 yields

Proposition 4.4 Any s. n. Jordan free Banach algebra A has no closed two-sided ideal I such
that A/I is commutative.

For a Banach space X, denote by br(X) the ball of radius r: br(X) = {x ∈ X: ‖x‖X ≤ r}.
For a subset S of A, denote by Sm, m ≥ 1, the set of all products A1...An, 1 ≤ n ≤ m, of

elements from S. Denote by co(Sm) the closure in A of the absolutely convex set co(Sm) of all
linear combinations

∑p
k=1 λkBk with Bk ∈ Sm, λk ∈ C and

∑p
k=1 |λk| ≤ 1.

Denote by G(S) the closure in A of the absolutely convex semigroup G(S) generated by S.
Then S1 ⊆ S2 ⊆ .... and G(S) = ∪ co(Sm). We also have

tmco(Sm) ⊆ co(tS)m ⊆ G(tS), for 0 < t ≤ 1,
co(Sm) ⊆ co(tS)m ⊆ G(tS) and G(S) ⊆ G(tS), for 1 < t. (4.3)

Consider the set K = K(A) = [b1(A),b1(A)] = {[A,B]: A,B ∈ b1(A)}.

Definition 4.5 (i) We say that a Banach algebra A belongs to the class Lm,r, for some m ∈ N
and r > 0, if co(Km) contains br(A).

(ii) We say that a Banach algebra A belongs to the class L if, for each t > 0, the closed semigroup
G(tK) contains some ball br(A). We write r(t,A) for the maximal r with this property.

It follows from (4.3) that Lm,r ⊆ Lm+1,r ⊆ L and Lm,r ⊆ Lm,ρ, for all m, r, ρ such that ρ < r.
We have K(A) ⊆ A2, so G(K(A)) ⊆ A2. If

A2 6= A then G(K(A)) ⊆ A2 6= A. Thus A /∈ L. (4.4)

Lemma 4.6 Let A be the linear span of closed subalgebras {Ai}ni=1 and let all Ai ∈ Lm,r (respectively,
all Ai ∈ L). Then there is K > 0 such that A ∈ Lm, r

nK
(respectively, A ∈ L). If A is the direct sum

of Ai ∈ Lm,r and ‖A‖ = sup ‖Ai‖, for A = A1 u ...uAn, then A ∈ Lm,r.

Proof. Let B = A1 u ... u An be the direct sum of {Ai}ni=1 with norm ‖A1 u ... u An‖B =∑n
i=1 ‖Ai‖ for Ai ∈ Ai. Then ψ: A1 u ... u An →

∑n
i=1Ai is a linear map from B onto A and

‖ψ‖ = 1. It follows from the open mapping theorem that there is K > 0 such that, for each A ∈ A,
there is B ∈ ψ−1(A) satisfying ‖B‖B ≤ K ‖A‖ .Therefore, for each A ∈ A, there are Ai ∈ Ai with

A =
n∑
i=1

Ai and ‖Ai‖ ≤ K‖A‖.
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We will consider the case Ai ∈ Lm,r. For all i and m, Km(Ai) ⊆ Km(A), so co(Km(Ai)) ⊆
co(Km(A)). Let A ∈ b r

nK
(A). Then A = A1 + ...+An and all Ai ∈ b r

n
(Ai). Hence

nAi ∈ br(Ai) ⊆ co(Km(Ai)) ⊆ co(Km(A)).

As co(Km(A)) is absolutely convex, A = 1
n(nA1) + ... + 1

n(nAn) ∈ co(Km(A)), so b r
nK

(A) ⊆
co(Km(A)).

If A is the direct sum of Ai and ‖A‖ = sup ‖Ai‖, then br(A) is the direct sum of br(Ai), Km(A)
is the direct sum of Km(Ai) and co(Km(A)) is the direct sum of co(Km(Ai)). Hence A ∈ Lm,r.

Lemma 4.7 Let {Aλ} be an increasing net of closed unital subalgebras of a Banach unital algebra
A, let A = ∪ Aλ and let all Aλ ∈ Lm,r. Then A ∈ Lm,r.

Proof. Since the ball br(Aλ) of radius r of Aλ lies in co(Km(Aλ)) ⊆ co(Km(A)),

br(A) = ∪ br(Aλ) ⊆ co(Km(A)). �

Theorem 4.8 Let A ∈ Lm,r (respectively, A ∈ L). Then, for every unital Banach algebra B, the
projective tensor product C = A⊗̂B belongs to Lm,r (respectively, C ∈ L).

Proof. For subsets U ⊆ A and V ⊆ B, set U ⊗ V = {A ⊗ B : A ∈ U and B ∈ V }. For all
A,C ∈ b1(A) and B ∈ b1(B),

[A,C]⊗B = [A⊗B,C ⊗ 1B] ∈ [b1(C),b1(C)] = K(C).

Hence K(A)⊗ b1(B) ⊆ K(C). For all A1, ..., Am ∈ K(A) and B ∈ b1(B),

A1....Am ⊗B = (A1 ⊗B)(A2 ⊗ 1B)...(Am ⊗ 1B) ∈ Km(C).

Therefore Km(A)⊗ b1(B) ⊆ Km(C). Thus co(Km(A))⊗ b1(B) ⊆ co(Km(C)). Hence

co(Km(A))⊗ b1(B) ⊆ co(Km(C)).

If A ∈ Lm,r, br(A) lies in co(Km(A)), so br(A)⊗ b1(B) ⊆ co(Km(C)). Hence

co(br(A)⊗ b1(B)) ⊆ co(Km(C)).

By the definition of the projective tensor product, co(br(A)⊗ b1(B)) = br(C). Thus C ∈ Lm,r.
Let A ∈ L. As above, co(tK(A))m ⊗ b1(B) ⊆ co(tK(C))m for each m and t > 0. Hence

G(tK(A))⊗ b1(B) = (∪ co(tK(A))m)⊗ b1(B) ⊆ (∪ co(tK(C))m) = G(tK(A)).

Since br(A) ⊆ G(tK(A)) for some r, br(A) ⊗ b1(B) ⊆ G(tK(A)). Hence co(br(A)⊗ b1(B)) ⊆
G(tK(A)). As co(br(A)⊗ b1(B)) = br(C), for projective tensor products, we have C ∈ L.

Lemma 4.9 Let A ∈ L, let X be a Banach A-module and let Y be a Jordan A-submodule of X
and a Banach space in ‖·‖Y . If b1(Y ) is closed in ‖ · ‖X , then

(i) Y is an A-bimodule and

‖Ay‖Y ≤ C‖A‖‖y‖Y and ‖yA‖Y ≤ C‖A‖‖y‖Y , for all A ∈ A and y ∈ Y, (4.5)

with C = 1
r(t,A) , for t = (D +D2)−1,where r(t,A) is defined in Definition 4.5 and D in (4.2);

(ii) Y is a Banach A-bimodule in some equivalent norm ‖·‖′Y .
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Proof. For A,B ∈ b1(A) and y ∈ b1(Y ), we have from (2.3)

[A,B]y =
1
2

([A,B] ◦ y +A ◦ (B ◦ y)−B ◦ (A ◦ y)) ∈ Y,

so that ‖[A,B]y‖Y ≤ D +D2 = t−1. Similarly y[A,B] ∈ Y and ‖y[A,B]‖Y ≤ t−1. Hence

Ty, yT ∈ Y, ‖Ty‖Y ≤ t−1 and ‖yT‖Y ≤ t−1, for all T ∈ K = K(A).

Then ‖Ty‖Y ≤ 1, ‖yT‖Y ≤ 1 for all T ∈ tK. Therefore ‖Ty‖Y ≤ 1, ‖yT‖Y ≤ 1 for all T ∈ G(tK)
and y ∈ b1(Y ).

Let Tn ∈ G(tK) and Tn → T ∈ G(tK). All Tny belong to b1(Y ) and converge to Ty in ‖ · ‖X .
As b1(Y ) is closed in ‖ · ‖X , Ty ∈ b1(Y ). Similarly, yT ∈ b1(Y ). Since the ball br(A), with
r = r(t,A), lies in G(tK) (see Definition 4.5), we have that Ty, yT ∈ b1(Y ), for all y ∈ b1(Y ) and
T ∈ br(A). Hence Y is an A-bimodule and (4.5) holds with C = 1

r . Part (i) is proved. Part (ii)
follows from (i) and Lemma 3.1.

Sometimes the proof of the fact that b1(Y ) is closed in X requires substantial efforts and
techniques, as in the case when X = B(H) and Y = Jφ is a symmetrically normed ideal of B(H)
(see Theorem III.5.1 [13]). In other cases it can be comparatively easily checked. For example,
b1(Y ) is closed in X when the norms ‖ · ‖X and ‖ · ‖Y coincide on Y. Another class of examples is
given by the following result.

Proposition 4.10 Let Y be a linear subspace of a Banach space X and a Banach space in a norm
‖ · ‖Y and let (4.1) hold. If Y is a reflexive Banach space then b1(Y ) is closed in X.

Proof. Since Y is reflexive, the ball b1(Y ) is compact in the σ(Y, Y ∗)-topology. By (4.1),
for each functional f ∈ X∗, its restriction f |Y belongs to Y ∗. Hence b1(Y ) is compact in the
σ(X,X∗)-topology. Hence it is closed in this topology, so it is closed in ‖ · ‖X .

For every s. n. Jordan A-submodule of a Banach A-bimodule X, we shall now construct a
special s. n. Jordan A-submodule of X with closed unit ball larger than Y .

Lemma 4.11 Let X be an A-module and a Banach space that satisfies (4.5). Let Y 6= X, be an
s. n. Jordan A-submodule of X, that is, (4.1) and (4.2) hold. If b1(Y ) is not closed in ‖·‖X , there
exists an s. n. Jordan A-submodule Ỹ of X such that Y $ Ỹ 6= X and ‖y‖

Ỹ
≤ ‖y‖Y for y ∈ Y,

that b1(Ỹ ) is closed in ‖·‖X and inequality (4.2) for Ỹ holds with the same constant D, as for Y.

Proof. We will use the following construction considered in [18]. Let b1(Y ) be not closed in
‖·‖X and let br(Y ) be the closure of br(Y ) in ‖ · ‖X . Set

Ỹ = ∪r>0br(Y ) with ‖y‖
Ỹ

= inf{r: y ∈ br(Y )}.

Then (see Section I.1.2 of [18]) (Ỹ , ‖ · ‖
Ỹ

) is a Banach space, Y $ Ỹ 6= X,

‖y‖
Ỹ
≤ ‖y‖Y for y ∈ Y, ‖x‖X ≤ ‖x‖Ỹ for x ∈ Ỹ ,

and br(Ỹ ) = br(Y ). Hence all balls br(Ỹ ) are closed in ‖·‖X .
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It is only left to show that Ỹ is a Jordan A-submodule of X and that the inequality (4.2) for
Ỹ holds with the same constant D, as for Y . Let y ∈ Ỹ and r = ‖y‖

Ỹ
. Then there are yn ∈ br(Y )

such that ‖y − yn‖X → 0. For each A ∈ A,

‖A ◦ y −A ◦ yn‖X ≤ ‖Ay −Ayn‖X + ‖yA− ynA‖X ≤ 2C‖A‖‖y − yn‖X → 0,
and ‖A ◦ yn‖Y ≤ D‖A‖‖yn‖Y ≤ D‖A‖r.

Set R = D‖A‖r. Then A ◦ yn ∈ bR(Y ). Therefore A ◦ y ∈ bR(Y ) = bR(Ỹ ). Hence ‖A ◦ y‖
Ỹ
≤ R =

D‖A‖r = D‖A‖‖y‖
Ỹ
. The proof is complete.

Now we will show that the class L consists of s. n. Jordan free algebras.

Theorem 4.12 Every Banach algebra A in L is s. n. Jordan free.

Proof. Let (Y, ‖·‖Y ) be an s. n. Jordan A-submodule of a Banach A-bimodule X and let (4.2)
hold for Y with constant D. Set t = (D +D2)−1. As A ∈ L, consider r(t,A) defined in Definition
4.5 and set C = 1

r(t,A) . Denote by W the set of all A-subbimodules Z of X containing Y such that
each of them is a Banach space in norm ‖ · ‖Z ,

‖z‖X ≤ ‖z‖Z for all z ∈ Z, and ‖y‖Z ≤ ‖y‖Y for all y ∈ Y, (4.6)

and (4.5) is satisfied with constant C:

‖Az‖Z ≤ C‖A‖‖z‖Z and ‖zA‖Z ≤ C‖A‖‖z‖Z for all A ∈ A and z ∈ Z. (4.7)

We say that Z1 < Z2, for Z1, Z2 ∈ W, if Z2 ⊂ Z1 and ‖z‖Z1 ≤ ‖z‖Z2 for all z ∈ Z2. Then W is
a partially ordered set. Let {Zλ}λ∈Λ be a linearly ordered subset of W. Set

Z = {z ∈ ∩λ∈ΛZλ : ‖z‖Z = sup
λ
‖z‖Zλ <∞}.

Then Y ⊆ Z, ‖y‖Z ≤ ‖y‖Y for all y ∈ Y, ‖z‖X ≤ ‖z‖Z for all z ∈ Z, and (see [18, Section I.3.4]) Z
is a Banach space.

For each z ∈ Z, we have Az, zA ∈ ∩λ∈ΛZλ and, by (4.7),

‖Az‖Z = sup
λ
‖Az‖Zλ ≤ Csup

λ
‖A‖‖z‖Zλ = C‖A‖‖z‖Z .

Similarly, ‖zA‖Z ≤ C‖A‖‖z‖Z . Hence Z is an A-bimodule and it belongs to the set W. Clearly,
Zλ ≤ Z for all λ ∈ Λ. It is easy to check that Z ≤ Z ′ for each majorant Z ′ of {Zλ}λ∈Λ in W. Thus
each linearly ordered subset of W has a supremum in W. By Zorn’s Lemma, W has a maximal
element - a minimal A-bimodule Z0 in X containing Y such that Z0 is a Banach space in ‖ · ‖Z0

that satisfies
‖y‖Z0 ≤ ‖y‖Y for all y ∈ Y, ‖z‖X ≤ ‖z‖Z0 for all z ∈ Z0,

‖Az‖Z0 ≤ C‖A‖‖z‖Z0 and ‖zA‖Z0 ≤ C‖A‖‖z‖Z0 for all A ∈ A and z ∈ Z0.

Let us show that b1(Y ) is closed in Z0 in ‖ · ‖Z0 . If not, then, by Lemma 4.11, there is an
s. n. Jordan A-submodule (Ỹ , ‖·‖

Ỹ
) of Z0, Y $ Ỹ 6= Z0, such that b1(Ỹ ) is closed in Z0 in ‖ · ‖Z0 ,

inequality (4.2) for Ỹ holds with the same constant D and

‖y‖
Ỹ
≤ ‖y‖Y for y ∈ Y, and ‖z‖Z0 ≤ ‖z‖Ỹ for z ∈ Ỹ ,
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Hence
‖z‖X ≤ ‖z‖Z0 ≤ ‖z‖Ỹ for z ∈ Ỹ .

Thus (4.6) holds for Ỹ . Moreover, by Lemma 3.1, Z0 is a Banach A-bimodule in some equivalent
norm ‖·‖′Z0

. Hence b1(Ỹ ) is closed in Z0 in ‖ · ‖′Z0
. As A ∈ L, it follows from Lemma 4.9(i) that Ỹ

is an A-bimodule and inequalities (4.5) hold for A and Ỹ with C = 1
r(t,A) where t = (D +D2)−1.

Therefore inequalities (4.7) hold for Ỹ . Hence Ỹ ∈ W and Z0 < Ỹ (Ỹ $ Z0) which contradicts the
fact that Z0 is a maximal element in W. This contradiction shows that b1(Y ) is closed in Z0 in
‖ · ‖Z0 and, therefore, in ‖ · ‖′Z0

.
As (Z0, ‖ ·‖′Z0

) is a Banach A-bimodule and since A ∈ L and b1(Y ) is closed in ‖ ·‖′Z0
, it follows

from Lemma 4.9(ii) that Y is a Banach A-bimodule in some equivalent norm ‖·‖′Y .

Let A be a Banach *-algebra. Denote by P(A) the set of all selfadjoint projections in A such
that, for each P ∈ P(A), there is U ∈ b1(A) satisfying

P = UU∗, Q = U∗U is a projection and PQ = 0.

If P ∈ P(A), P −Q = [U,U∗] ∈ K(A) and P +Q = (P −Q)2 ∈ K2(A). Hence P ∈ co(K2(A)).
Using Theorem 4.12, we will show that C(H) and the Schatten ideal C1 are s. n. Jordan free.

Theorem 4.13 The Schatten ideal C1 belongs to L2, 1
2
, the ideal C(H) belongs to L2, 1

4
, every full

matrix algebra Mn(C) belongs to L2, 1
8
, for even n, and to L2, 1

12
, for odd n ≥ 3. Thus they are all

s. n. Jordan free.

Proof. All one-dimensional projections belong to P(C1). Indeed, let x ∈ H and P be the
projection on Cx. For some y in H such that y⊥x, let Q be the projection on Cy. Then there is a
partial isometry U such that P = UU∗ and Q = U∗U. By definition of ‖ · ‖1, ‖U‖1 = ‖(U∗U)

1
2 ‖1 =

‖Q‖1 = 1. Hence P ∈ P(C1).
For A = A∗ ∈ b1(C1), let {λn} be all eigenvalues of A repeated according to their multiplicity,

|λ1| ≥ .. ≥ |λn| ..., and let Pn be the one-dimensional mutually orthogonal projections on the
corresponding eigenspaces. Then all Pn ∈ b1(C1) and

‖A‖1 =
∑
n

|λn| ≤ 1. (4.8)

All Pn ∈ co(K2(C1)) and, by (4.8),
∑N

n=1 |λn| ≤ 1, for each N ∈ N, so

AN =
N∑
n=1

λnPn ∈ co(K2(C1)).

Since ‖A−AN‖1 → 0, as N →∞, A ∈ co(K2(C1)).
Each B in b1(C1) is represented as B = B1 + iB2, with Bi = B∗i ∈ b1(C1). Hence B ∈

2co(K2(C1)), so that b 1
2
(C1) lies in co(K2(C1)). Thus C1 ∈ L2, 1

2
.

Let Pk be finite-dimensional mutually orthogonal projections and let A =
∑m

k=1 λkPk be a finite
rank positive operator in b1(C(H)), where 1 ≥ λ1 > .. > λm > 0. Set Rk = P1 + ...+Pk. Then Rk
are finite-dimensional orthogonal projections and

A = (λ1 − λ2)R1 + (λ2 − λ3)R2 + ..+ (λm−1 − λm)Rm−1 + λmRm. (4.9)
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Each projection in C(H) lies in P(C(H)), so all Rk ∈ co(K2(C(H))). Hence A ∈ co(K2(C(H))).
Since all positive operators in b1(C(H)) are norm limits of the above type operators, they lie in
co(K2(C(H))). Each A ∈ b1(C(H)) has form A = A1−A2+i(A3−A4), where all Ai are positive and
lie in b1(C(H)). Hence A ∈ 4co(K2(C(H))), so b 1

4
(C(H)) ⊆ co(K2(C(H))). Thus C(H) ∈ L2, 1

4
.

Let [n2 ] be the integral part of n
2 . Each orthogonal projection P in Mn(C) with dim P ≤ [n2 ]

lies in P(Mn(C)), so P ∈ co(K2(Mn(C))). If [n2 ] < dim P ≤ 2[n2 ], then P = Q+ T, where Q,T are
mutually orthogonal projections and max(dim Q,dim T ) ≤ [n2 ]. Hence P ∈ 2co(K2(Mn(C))). If n is
odd, then 1 = P +Q+ T, where P,Q, T are mutually orthogonal projections and max(dim P,dim
Q,dim T ) ≤ [n2 ]. Hence 1 ∈ 3co(K2(Mn(C))).

Each positive operator A in b1(Mn(C)) has form A =
∑m

k=1 λkPk, where 1 ≥ λ1 > .. > λm > 0
and Pk are mutually orthogonal projections. Hence A has form (4.9), where Rk = P1 + ... +
Pk are orthogonal projections. If n is even, then all Rk lie in 2co(K2(Mn(C))), so that A ∈
2co(K2(Mn(C))). If n is odd, then all Rk lie in 3co(K2(Mn(C))), so that A ∈ 3co(K2(Mn(C))).

Each B ∈ b1(Mn(C)) has form B = B1 − B2 + i(B3 − B4), where all Bi are positive and lie
in b1(Mn(C)). If n is even, then B ∈ 8co(K2(Mn(C))). Thus b 1

8
(Mn(C)) ⊆ co(K2(Mn(C))). Hence

Mn(C) ∈ L2, 1
8
. If n is odd, then B ∈ 12co(K2(Mn(C))). Thus b 1

12
(Mn(C)) ⊆ co(K2(Mn(C))). Hence

Mn(C) ∈ L2, 1
12

.

By Theorem 3.7, all non-separable s. n. ideals are not topologically Jordan free and, therefore,
not s. n. Jordan free. On the other hand, all separable s. n. ideals are topologically Jordan free
and, by Theorem 4.13, their ”extreme” points - the smallest s. n. ideal C1 and the largest s. n. ideal
C(H) - are s. n. Jordan free.

Problem 4.14 Are all separable s. n. ideals (in particular, all Schatten ideals Cp, for 1 < p <∞)
s. n. Jordan free?

Corollary 4.15 Let A = ∪ An be an AF-algebra, where {An} is an increasing by inclusion se-
quence of finite-dimensional C∗-algebras:

An = Mn(1)(C)⊕Mn(2)(C)⊕ ...⊕Mn(mn)(C).

If some algebras Anj , with nj → ∞, have no one-dimensional summands (nj(k) 6= 1, for all
k = 1, ...,mnj ), then A ∈ L2, 1

12
. Thus A is s. n. Jordan free.

Proof. By Lemma 4.6 and Theorem 4.13, all Anj ∈ L2, 1
12
. Applying Lemma 4.7 and Theorem

4.12, we conclude the proof.

In Theorem 4.19 we will obtain necessary and sufficient conditions for C*-algebras to be s. n.
Jordan free. They imply that C(H) and all AF-algebras satisfying the conditions of Corollary 4.15
are s. n. Jordan free.

Let B be a unital Banach algebra and let {Eij} be the matrix identity in Mn(B), for n ≥ 2. For
B ∈ B, denote by BEij the matrix in Mn(B) with (i, j)-entry B and all other entries 0. We always
assume that the norm in Mn(B) is a cross-norm of the tensor product Mn ⊗ B. Hence ‖Eij‖ = 1
and ‖BEij‖ = ‖B‖, for all B ∈ B.

Theorem 4.16 Let A = Mn(B). If n is even then A ∈ L3, 1
4
, if n is odd then A ∈ L3, 1

300
. Thus in

both cases A is s. n. Jordan free.
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Proof. Let B ∈ B and ‖B‖ ≤ 1. Then, for i 6= j,

BEij = [Eii, BEij ] ∈ [b1(A),b1(A)] = K1, (4.10)
BEii −BEjj = [Eij , BEji] ∈ [b1(A),b1(A)] = K1,

Tij = [Eij , Eji] = Eii − Ejj ∈ [b1(A),b1(A)] = K1.

Hence Eii = 1
2Tij + 1

2T
2
ij ∈ co(K2) and

BEii = Eii(BEii −BEjj) =
1
2
Tij [Eij , BEji] +

1
2
T 2
ij [Eij , BEji] ∈ co(K3). (4.11)

Let n = 2. For A = (Bij) ∈ b 1
4
(A), we have

‖BijEij‖ = ‖EiiAEjj‖ ≤ ‖Eii‖‖A‖‖Ejj‖ ≤
1
4
, for all i, j,

Hence ‖Bij‖ ≤ 1
4 . By (4.10) and (4.11), 4BijEij ∈ co(K3). Since co(K3) is absolutely convex,

A =
2∑

i,j=1

1
4

(4BijEij) ∈ co(K3).

Thus the ball b 1
4
(A) lies in co(K3). Therefore M2(B) ∈ L3, 1

4
.

Since M2k(B) = M2(Mk(B)), we also have that A =M2k(B) ∈ L3, 1
4
.

Let now n = 2p+1 ≥ 3. Consider the projections P = 1−Enn, Q = 1−E11 and R = E11 +Enn.
Then ‖P‖ ≤ 2, ‖Q‖ ≤ 2, ‖R‖ ≤ 2. The subalgebras PAP and QAQ of A are isomorphic to M2p(B).
Hence they belong to L3, 1

4
. The subalgebra RAR of A is isomorphic M2(B). Hence it also lies in

L3, 1
4
. It is easy to check that, for each A ∈ A,

A1 = PAP ∈ PAP and ‖A1‖ = ‖PAP‖ ≤ 4‖A‖,
A2 = Q(A−A1)Q ∈ QAQ and ‖A2‖ = ‖Q(A−A1)Q‖ ≤ 4‖A−A1‖ ≤ 20‖A‖,
A3 = A−A1 −A2 ∈ RAR and ‖A3‖ = ‖A−A1 −A2‖ ≤ 25‖A‖,
A = A1 +A2 +A3.

We have from Lemma 4.6(i) that A ∈ L
3,

1
4

3×25

= L3, 1
300
.

It follows from Theorem 4.16 that B(H) is s. n. Jordan free. This extends the result of [16,
Corollary 4.9] that every s. n. Jordan ideal of B(H) is an s. n. two-sided ideal of B(H).

The Cuntz C*-algebra On is generated by isometries {Ui}ni=1 on an infinite dimensional Hilbert
space H such that Pi = UiU

∗
i are mutually orthogonal projections,

U∗1U1 = U∗2U2 = ... = U∗nUn = 1 and P1 + P2 + ...+ Pn = 1.

The operators Eij = UiU
∗
j satisfy EijE∗ij = Pi and E∗ijEij = Pj , so all Pi are equivalent. Hence On

is isomorphic to Mn(B), where B = P1OnP1|P1H .

Corollary 4.17 All Cuntz algebra On, n ≥ 2, are s. n. Jordan free.
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Theorem 4.18 A W∗-algebra A is s. n. Jordan free if and only if it has no commutative weakly
closed ideals. In this case it belongs to the class L3, 1

300
.

Proof. If A is s. n. Jordan free, it follows from Proposition 4.4 that A does not have commu-
tative weakly closed ideals.

Conversely, A has decomposition A = AI ⊕ AII ⊕ AIII where AI,AII,AIII are W*-algebras of
type I,II,III respectively. The algebra B = AII ⊕ AIII has no abelian projections. By Proposition
2.2.13 [19], there are orthogonal equivalent projections P and Q such that 1B = P +Q. Hence B is
isomorphic to M2(PBP ) and, by Theorem 4.16, B ∈ L3, 1

4
. Thus B is s. n. Jordan free.

The W*-algebra AI decomposes uniquely into the direct sum of W*-algebras An of type In:

AI = ⊕n≥1An,

where n is the number of mutually orthogonal abelian equivalent projections Pα in An such that
1An =

∑
Pα. Since A has no commutative weakly closed ideals, the commutative component A1

in the above decomposition vanishes. If n is even or infinite, then there are orthogonal equivalent
projections P and Q such that 1An = P + Q. Hence An is isomorphic to M2(PAnP ) and, by
Theorem 4.16, An ∈ L3, 1

4
. If n is odd, then An is isomorphic to Mn(B), where B is a W*-algebra,

and, by Theorem 4.16, An ∈ L3, 1
300
. Since L3, 1

4
⊆ L3, 1

300
, all components An belong to L3, 1

300
. By

Lemma 4.6(ii), AI ∈ L3, 1
300

and, therefore, A = AI ⊕ B ∈ L3, 1
300
. Hence A is s. n. Jordan free.

Now we will give a description of s. n. Jordan free C*-algebras.

Theorem 4.19 Let A be a C∗-algebra. The following conditions are equivalent.
(i) A is s. n. Jordan free.
(ii) A is topologically Jordan free.
(iii) A has no non-zero multiplicative functionals.

Proof. (i) =⇒ (ii) is evident. (ii) ⇐⇒ (iii) follows from Theorem 3.8.
(iii) =⇒ (i). Suppose that A has no multiplicative functionals. Then A has no commutative

*-representations. The second dual A∗∗ of A is the *-weak closure of π(A) where π is the universal
representation π of A. If A∗∗ has a weakly closed commutative ideal J 6= {0}, then there is a
projection P in the centre of A∗∗ such that J = PA∗∗ and J is the weak closure of the commutative
C*-algebra Pπ(A). Thus Pπ(A) 6= {0}, so A ∈ A → Pπ(A) is a commutative *-representation of
A. This contradiction shows that A∗∗ has no weakly closed commutative ideals. By Theorem 4.18,
b 1

300
(A∗∗) ⊆ co(K3(A∗∗)).

As before, for a subset S of A and m ∈ N, let Sm be the set of all products A1...An, n ≤ m,
with Ai ∈ S. Let Sσ be the closure of S in σ(A∗∗,A∗)-topology. Then(

S
σ)
m
⊆ Sm

σ
. (4.12)

By the bipolar theorem, br(A∗∗) = br(A)
σ

for each r. Hence

K(A∗∗) = [b1(A∗∗),b1(A∗∗)] = [b1(A)
σ
,b1(A)

σ
] ⊆ [b1(A),b1(A)]

σ
= K(A)

σ

whence, by (4.12), K3(A∗∗) ⊆ (K(A)
σ
)3 ⊆ K3(A)

σ
. Therefore co(K3(A∗∗)) ⊆ co

(
K3(A)

σ
)
⊆

co(K3(A))
σ
. Thus

b 1
300

(A∗∗) ⊆ co(K3(A∗∗)) ⊆ co(K3(A))
σ
. (4.13)
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Let us show that b 1
300

(A) ⊆ co(K3(A)). Suppose that there is B ∈ b 1
300

(A) such that B /∈
co(K3(A)). By Hahn-Banach theorem, there is f ∈ A∗ such that |f(A)| ≤ 1, for all A ∈ co(K3(A)),
and f(B) > 1. Hence B does not belong to the closure of co(K3(A)) in σ(A∗∗,A∗)-topology which
contradicts (4.13). Therefore b 1

300
(A) ⊆ co(K3(A)), so A ∈ L3, 1

300
. Thus A is s. n. Jordan free.

It follows from Theorem 4.19 that all simple C*-algebras (in particular, C(H) and Cuntz alge-
bras On) and all AF-algebras satisfying the conditions of Corollary 4.15 are s. n. Jordan free.

5 Jordan ideals of C∗-algebras

Recall that an algebra is called Jordan ideal free if it does not have proper Jordan ideals, that is,
Jordan ideals that are not two-sided ideals. Since each Jordan free algebra is Jordan ideal free,
our Theorem 2.7, for C*-algebras with max-property, and Lemma 2.5 of [4], for the unital case,
show that they are Jordan ideal free if they have no commutative quotients. Since all commutative
algebras (the opposite case) are also Jordan ideal free, and since there are many other results which
establish that under some restrictions Jordan ideals of C*-algebras are two-sided ideals (see, for
example, [6, 4] and the bibliography there), it is natural to conjecture that all C*-algebras are
Jordan ideal free. We will produce below an example which shows that this conjecture is false:
there are C*-algebras which are not Jordan ideal free. Moreover, the same example also shows that
C*-algebras can have s. n. Jordan ideals that are not two-sided s. n. ideals.

We will start this section by constructing Jordan ideals in some unital algebras. Let B be a
non-unital algebra and let B̃ = C1+B be its unitization. By Corollary 2.15, the algebra Mn(B̃) =
Mn(C) ⊗ B̃, for n ≥ 2, has no Jordan ideals that are not two-sided ideals. Let Dn = {D = (Dij):
Dij = 0 if i 6= j, Dii = λi1 with λi ∈ C} be the subalgebra of all diagonal scalar matrices in
Mn(B̃). We will show that under some condition on B the subalgebra A = Mn(B) +Dn of Mn(B̃)
has non-trivial Jordan ideals. Denote by {eij} the matrix identity in Mn(C).

Theorem 5.1 Let J be a two-sided ideal of a non-unital algebra B. For n ≥ 2, let Λ be a set of
pairs (i, j) with i < j ≤ n. Suppose that there is a set X = {Xij}(i,j)∈Λ of elements in B\J such
that

BXij ⊆ J and XijB ⊆ J for all (i, j) ∈ Λ. (5.1)

Then
IΛ(X ) = Mn(J ) +

∑
(i,j)∈Λ

C(eij + eji)⊗Xij

is a Jordan ideal of the unital algebra A = Mn(B) +Dn and not a two-sided ideal of A.
If B is a ∗-algebra, J is a selfadjoint ideal of B and all X∗ij = Xij , then IΛ(X ) is a selfadjoint

Jordan ideal of the ∗-algebra A.

Proof. Clearly, Mn(J ) is a two-sided ideal of A. Set Cij = C(eij+eji)⊗Xij . If D = (Dkm) ∈ Dn
with Dkk = λk1, then ((eij +eji)⊗Xij)◦D = (λi+λj)(eij +eji)⊗Xij ∈ Cij . Hence Cij ◦Dn ⊆ Cij .
It follows from (5.1) that Cij ◦Mn(B) ⊆Mn(J ). Therefore Cij ◦A ⊆ Mn(J ) +Cij ⊆ IΛ(X ). Hence
IΛ(X ) is a Jordan ideal.

However, IΛ(X ) is not a two-sided ideal of A. Indeed, let (i, j) ∈ Λ. Let D = (Dkm) ∈Dn with
Dkk = λk1, be such that λi = 1 and λk = 0 for all k 6= i. Then DCij = C(eij ⊗Xij) /∈ IΛ(X ).
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Let H be a separable Hilbert space and let B = C(H) be the algebra of all compact operators
on H. Let Jφ be a non-separable s. n. ideal of compact operators in B(H), that is, Jφ0 6= Jφ (see
Section 3). Set J = Jφ0 . Then J ⊆ B. It follows from (3.3) that XB ⊆ J , for each selfadjoint
X ∈ Jφ�Jφ0 . As X∗ = X and J ,B are selfadjoint algebras, BX ⊆ J . For n ≥ 2, let Dn be the
algebra of all diagonal operators on H⊕ ...⊕H (repeated n times) such that all their entries belong
to C1H . Theorem 5.1 yields

Corollary 5.2 Let Jφ be a non-separable s. n. ideal of B(H). For n ≥ 2, let Λ be a set of pairs
(i, j) with i < j ≤ n, and X = {Xij}(i,j)∈Λ be a set of selfadjoint elements in Jφ�Jφ0 . Then

IΛ(X ) = Mn(Jφ0 ) +
∑

(i,j)∈Λ

C(eij + eji)⊗Xij

is a selfadjoint Jordan ideal, but not a two-sided ideal of the unital C∗-algebra A = Mn(C(H))+Dn.
In particular, for each selfadjoint X ∈ Jφ�Jφ0 ,

I(X) =
{(

A B + λX
C + λX D

)
: A,B,C,D ∈ Jφ0 , λ ∈ C

}
(5.2)

is a selfadjoint Jordan ideal, but not a two-sided ideal of the unital C∗-algebra M2(C(H)) +D2.

As stated in the introduction, a linear subspace U of an algebra A is an inner ideal if uAu ⊆ U
for all u ∈ U. The structure of weakly *-closed inner ideals in W*-algebras and norm closed inner
ideals in C*-algebras was studied in [8], [9], [5]. In particular, it was established that each norm
closed inner ideal U in a C*-algebra A satisfies U = AU ∩ UA.

Jordan ideals J are inner ideals, as j2 = 1
2j ◦ j ∈ J, for j ∈ J, so jaj = 1

2(j ◦ (j ◦ a)− j2 ◦ a) ∈ J
for all a ∈ A. If A is unital then J ⊆ AJ ∩ JA, so that, for all j ∈ J and a ∈ A, we have
aj = a ◦ j − ja ∈ JA. Thus AJ ⊆ JA. Similarly, JA ⊆ AJ, so AJ = JA is a two-sided ideal that
does not coincide with J, if J is not an ideal. The example of a non-closed Jordan ideal of a unital
C*-algebra considered in Corollary 5.2 shows that unital C*-algebras may have non-closed inner
ideals U such that U $ AU = UA.

Although all closed Jordan ideals of C*-algebras are two-sided ideals (see [6]), the approach of
Theorem 5.2 can be used to construct Hermitian semisimple Banach *-algebras that have closed
proper selfadjoint Jordan ideals.

Example 5.3 Let Jφ0 6= Jφ. The ideal M2(Jφ) of B(H ⊕H) is isometrically isomorphic to Jφ. It
is easy to see that for each selfadjoint X ∈ Jφ�Jφ0 , I(X) given in (5.2) is a selfadjoint Jordan ideal,
but not a two-sided ideal of the unital Banach *-algebra

A1 = M2(Jφ) +D2 =
{
T = A+D: A ∈M2(Jφ), D =

(
λ1 0
0 µ1

)
, λ, µ ∈ C

}
with norm ‖A+D‖A1

= ‖A‖Jφ + |λ|+ |µ| . As the separable s. n. ideal Jφ0 is closed in Jφ in ‖·‖Jφ ,
I(X) is closed in A1.

To show that A1 is Hermitian, that is, SpA1(T ) ⊆ R for each T = T ∗ ∈ A1, we only need to
prove that T is invertible in A1 if it is invertible in B(H⊕H). The inverseS of T = A+D ∈ A1 in
B(H ⊕H) belongs to C*-algebra C(H ⊕H) +D2, so that it must be of the form S = X +D1 with
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X ∈ C(H⊕H) and D1 ∈ D2. We only have to prove that X ∈M2(Jφ). The condition ST = 1H⊕H
gives

XA+D1A+XD +D1D = 1H⊕H .

As A and X are compact, D1D = 1H⊕H . Hence D and D1 are invertible and

X = −XAD−1 −D1AD
−1 ∈M2(Jφ),

as A ∈M2(Jφ). �

Another example of a semisimple Banach (but non-Hermitian) *-algebra with a proper closed
Jordan ideal can be obtained by modifying the example from [4] of a proper Jordan ideal in the free
algebra F2 with two generates x and y. Denote by W the set {x, y, x2, xy, yx, y2, x3, x2y, xyx, ...}
of all monomials in F2. Set

A =

{
u =

∑
w∈W

λw(u)w : λw(u) ∈ C and ‖u‖ =
∑
w∈W

|λw(u)| <∞

}
.

Then A is a Banach algebra. It is easy to show that it does not contain non-zero quasinilpotents
(see [2, p. 254]), so, in particular, it is semisimple. Further, A has an involution which is uniquely
determined by x∗ = x and y∗ = y. Let

B = {u ∈ A : λxy(u) = λyx(u)}.

It is easy to see that B is a closed selfadjoint Jordan ideal of A, but not a two-sided ideal.
We have already mentioned that W*-algebras have no proper Jordan ideals (see [4]). We shall

prove now that in W*-algebras all s. n. Jordan ideals are two-sided s. n. ideals.

Corollary 5.4 Each s. n. Jordan ideal of a W∗-algebra A is a two-sided s. n. ideal of A.

Proof. Let J be an s. n. Jordan ideal of A. By Theorem 4.18, A = B ⊕ C, where B is an s. n.
Jordan free W*-algebra and C is a commutative W*-algebra. Hence J is a Banach B-bimodule:
RB,BR ∈ J, for all R ∈ J and B ∈ B, and there is K > 0 such that

‖RB‖J ≤ K‖B‖‖R‖J and ‖BR‖J ≤ K‖B‖‖R‖J .

Let R = RB +RC ∈ J where RB ∈ B and RC ∈ C. Then RC = 1CR = 1
2(1C ◦R) ∈ J. By (4.2),

‖RC‖J =
1
2
‖1C ◦R‖J ≤

1
2
D‖1C‖‖R‖J =

1
2
D‖R‖J .

Hence, for all C ∈ C and B ∈ B,

R(B + C) = RB + (RB +RC)C = RB +RCC = RB +
1
2
C ◦RC ∈ J

Therefore we have from (4.2) and the above inequalities

‖R(B + C)‖J ≤ ‖RB‖J +
1
2
‖C ◦RC‖J ≤ K‖B‖‖R‖J +

1
2
D‖C‖‖RC‖J

≤ K‖B‖‖R‖J +
1
4
D2‖C‖‖R‖J ≤ (K +

1
4
D2)‖B + C‖‖R‖J .
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Similarly, ‖(B + C)R‖J ≤ (K + 1
4D

2)‖B + C‖‖R‖J . It follows from Lemma 3.1 that J has an
equivalent norm ‖ · ‖′J with respect to which it is an A-bimodule:

‖AR‖′J ≤ ‖A‖‖R‖′J and ‖RA‖′J ≤ ‖A‖‖R‖′J , for all A ∈ A and R ∈ J,

that is J is an s. n. two-sided ideal of A.

An s. n. Jordan ideals J of a Banach algebra is reflexive if its second dual space J∗∗ = J. As the
example of s. n. ideals of B(H) shows, reflexive s. n. ideals constitute a wide class of s. n. ideals.

Theorem 5.5 Every reflexive s. n. Jordan ideal of a C∗-algebra is a two-sided s. n. ideal.

Proof. Let J be a reflexive s. n. Jordan ideal of a C*-algebra A and let π be the universal
representation of A on Hπ. Identify A with π(A) and J with π(J). Then the second dual A∗∗ is
isomorphic to the closure of A in the weak operator topology (wot) on Hπ. We will show that J is
a s. n. Jordan ideal of A∗∗.

For B ∈ J, the operator PB(A) = B ◦A from A into J is bounded and

‖PB(A)‖J = ‖B ◦A‖J ≤ D‖B‖J‖A‖, so ‖PB‖ ≤ D‖B‖J .

Let P ∗B be the adjoint operator from J∗ into A∗. Then P ∗∗B is a bounded operator from A∗∗ into
J∗∗ = J and ‖P ∗∗B ‖ = ‖PB‖ ≤ D‖B‖J .

Let A ∈ A∗∗ and let Aλ ∈ A, λ ∈ Λ, be such that Aλ
wot→ A. Since P ∗∗B (A) ∈ J∗∗ = J, we have

for each g ∈ J∗,
g(P ∗∗B (A)) = P ∗∗B (A)(g) = A(P ∗B(g)) = P ∗B(g)(A),

where P ∗B(g) ∈ A∗. Since all functionals from A∗ are continuous on A∗∗ in wot on Hπ,

P ∗B(g)(A) = lim
λ
P ∗B(g)(Aλ) = lim

λ
g(PB(Aλ)) = lim

λ
g(B ◦Aλ).

Hence g(P ∗∗B (A)) = lim
λ

g(B ◦ Aλ), for all g ∈ J∗, so B ◦ Aλ → P ∗∗B (A) in the σ(J, J∗)-topology.

Hence, for each µ ∈ Λ, there are linear convex combinations of B ◦Aλ, with λ ≥ µ, that converge to
P ∗∗B (A) in ‖ · ‖J . As ‖C‖ ≤ ‖C‖J , for all C ∈ J, they also converge to P ∗∗B (A) in ‖ · ‖ and, therefore,
in wot on Hπ.

As Aλ
wot→ A, we have B ◦ Aλ

wot→ B ◦ A. For x, y ∈ Hπ and ε > 0, let λε ∈ Λ be such that, for
λ > λε, |((B ◦A−B ◦Aλ)x, y)| < ε. By the above argument,∣∣∣∣∣((P ∗∗B (A)−

∑
i

τi(B ◦Aλi))x, y)

∣∣∣∣∣ < ε,

for some λi > λε with τi > 0 and
∑

i τi = 1. Hence

|((B ◦A− P ∗∗B (A))x, y)| ≤

∣∣∣∣∣((B ◦A−∑
i

τi(B ◦Aλi))x, y)

∣∣∣∣∣+

∣∣∣∣∣((∑
i

τi(B ◦Aλi)− P
∗∗
B (A))x, y)

∣∣∣∣∣
<

∑
i

τi |((B ◦A−B ◦Aλi)x, y)|+ ε < 2ε.

Therefore P ∗∗B (A) = B ◦A, so B ◦A ∈ J and

‖B ◦A‖J = ‖P ∗∗B (A)‖J ≤ ‖P ∗∗B ‖‖A‖ ≤ D‖B‖J‖A‖.

Thus J is an s. n. Jordan ideal of A∗∗. By Corollary 5.4, J is a two-sided s. n. ideal of A∗∗. Hence
it is a two-sided s. n. ideal of A.
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