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Abstract. Herstein’s theorem on Jordan homomorphisms onto prime
associative algebras is extended to prime associative superalgebras.

1. Introduction

Throughout the paper, by an algebra we shall mean an algebra over a fixed
unital commutative ring Φ, and we assume (without further mentioning)
that 1

2 ∈ Φ. However, Φ will play an insignificant role in this paper, and
our arguments also work in rings of characteristic not 2. Nevertheless, we
decided to follow several recent related papers and work in the setting of
algebras.

Let A be an associative algebra. Introducing a new product in A, the
so-called Jordan product, by x ◦ y = 1

2(xy + yx), A becomes a Jordan
algebra. Similarly we can make ofA a Lie algebra by defining the Lie product
[x, y] = 1

2(xy − yx). The study of the relationship between the associative
and the Jordan and Lie structure of an associative algebra was initiated in
the 1950’s by Herstein, who, together with some of his students, obtained
most of the classical results of this theory (see e.g. [12, 13]). Its considerable
part, the one which concerns the structure of Jordan and Lie ideals, has been
recently extended to superalgebras by several authors [6, 7, 8, 9, 10, 16, 17].
However, as far as we know such extensions have not yet been done for
results on Jordan and Lie homomorphisms. In this paper we make the first
step in this direction, proving a superalgebra version of Herstein’s theorem
on Jordan homomorphisms. Recall that a Jordan homomorphism between
associative algebras B and A is a Φ-module homomorphism ϕ : B → A such
that ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y) for all x, y ∈ B.

Herstein’s theorem. A Jordan homomorphism from an arbitrary asso-
ciative algebra onto a prime associative algebra is either a homomorphism
or an antihomomorphism.

Actually, Herstein proved this result under the additional assumption that
the characteristic of algebras is different from 3. Smiley [19] removed this
assumption and also simplified the proof. In fact, his proof is very short
and involves only elementary combinatorial argument, while this can not be
said for other related results on Jordan and Lie homomorphisms. Only very
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recently all Herstein’s conjectures [12] on Lie homomorpisms of associative
rings (with and without involution) were solved (see e.g. [1, 2, 3]), and their
proofs depend heavily on the theory of functional identities (see e.g. [5]).
It is our goal, in the future, to apply functional identities also to the study
of Lie and Jordan maps of superalgebras. The present paper, however, is
entirely self-contained and the arguments are elementary.

2. Superalgebra preliminaries

An associative superalgebra A is a Z2-graded associative algebra; that
is, A is an associative algebra and there exist Φ-submodules A0 and A1

of A such that A = A0 ⊕ A1 and A0A0 ⊆ A0 (i.e. A0 is a subalgebra),
A0A1 ⊆ A1, A1A0 ⊆ A1, and A1A1 ⊆ A0. We say that A0 is the even,
and A1 is the odd part of A. If x ∈ Ai, i = 0, 1, then we say that x is
homogeneous of degree i and we write |x| = i. We now list a few illustrative
examples (cf. [9, 10, 16]). For simplicity we assume that in these examples
Φ is a field.

Examples. 1. A trivial superalgebra: A1 = 0 and A0 = A.
2.. Let A be a unital associative algebra containing an element t such

that t2 = 1. Setting A0 = {x ∈ A | [x, t] = 0} and A1 = {x ∈ A |x ◦ t = 0},
A becomes an associative superalgebra. Indeed, every element x ∈ A can be
written as x = 1

2(x+ txt)+ 1
2(x− txt), and 1

2(x+ txt) ∈ A0, 1
2(x− txt) ∈ A1.

In the special case, when A = Mr+s (the (r + s) × (r + s) matrices over

Φ with r, s ≥ 1) and t =

[
Ir 0
0 −Is

]
(here, Ip is the identity in Mp),

the corresponding superalgebra is denoted by M(r|s). Note that M(r|s)0

consists of matrices of the form

[
R 0
0 S

]
, R ∈ Mr, S ∈ Ms, and M(r|s)1

consists of matrices of the form

[
0 U
V 0

]
, where U is an r × s matrix and

V is an s× r matrix. When r = s we write M(r) = M(r|r).
3. Given an associative algebra R, the algebra A = R×R then becomes

an associative superalgebra by setting A0 = {(x, x) |x ∈ R} and A1 =
{(x,−x) |x ∈ R}. In the case when R = Mn, this superalgebra is denoted
by Q(n).

4. Let A = Q(α, β) be the quaternion algebra, i.e. A is a 4-dimensional
algebra with Φ-basis 1, u, v, uv and multiplication given by uv = −vu, u2 =
α ∈ Φ, v2 = β ∈ Φ. Letting A0 = Φ1 + Φuv, A1 = Φu + Φv, A becomes
an associative superalgebra, called a quaternion superalgebra. Note that the
superalgebra M(1) is in fact the quaternion superalgebra Q(1,−1).

Superalgebras of types M(r|s), Q(n), and trivial superalgebras are the
only examples of finite-dimensional simple associative superalgebras over an
algebraically closed field [20] (see also [14]). By simplicitly of an associative
superalgebra A we mean that A2 6= 0 and A has no proper graded ideals,
i.e. ideals I of an algebra A such that I = I ∩ A0 + I ∩ A1.
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An associative superalgebra A is said to be prime if the product of any
two nonzero graded ideals in A is nonzero. It is well-known and easy to see
that the primeness of an algebra (not superalgebra!) A can be characterized
by the condition that aAb = 0, where a, b ∈ A, implies a = 0 or b = 0.
Making some obvious modifications in the argument one gets an analogous
result for superalgebras:

Lemma 2.1. An associative superalgebra A = A0⊕A1 is prime if and only
if for any homogeneous elements a and b (i.e. a, b ∈ A0 ∪ A1) aAb = 0
implies a = 0 or b = 0.

If A is prime as a superalgebra, this does not necessarily mean that A is
prime as an algebra (consider Q(n)) nor that its even part A0 is a prime
algebra (consider M(r|s)). However, at least one of the algebras A and
A0 must be prime [16, Lemma 1.3], and both are semiprime [16, Lemma
1.2]. Let us just show that A0 must be semiprime since this is the only
among these facts that shall be needed. Noting that for each a0 ∈ A0

we have a0Aa0Aa0 ⊆ (a0A0a0)Aa0 + a0A(a0A0a0) + a0A0a0, we see that
a0A0a0 = 0 implies a0Aa0Aa0 = 0 and hence a0 = 0. We continue with an
observation of a similar nature:

Lemma 2.2. Let A = A0 ⊕ A1 be a prime associative superalgebra. If
a0 ∈ A0 and a1 ∈ A1 are such that a0A1a1 = a1A1a0 = 0, then either
a0 = 0 or a1 = 0.

Proof. Note that (a0A0a1A1)A0(a0A0a1A1) ⊆ a0A0(a1A1a0)A0a1A1 =
0, and so a0A0a1A1 = 0 by the semiprimeness ofA0. SinceAa1 ⊆ A1a1+A1,
this yields (a0A0a1)Aa1 = 0 which in turn implies a0A0a1 = 0 by Lemma
2.1. Since, according to our assumption, also a0A1a1 = 0, we have a0Aa1 =
0 and so a0 = 0 or a1 = 0 by Lemma 2.1.

We remark that assuming only one relation, say a1A1a0 = 0, is not enough
for concluding a0 = 0 or a1 = 0. Consider, for example, A = M(r|s) and

note that a0 =

[
0 0
0 S

]
∈ A0, a1 =

[
0 U
0 0

]
∈ A1 satisfy a1A1a0 = 0.

Now let A = A0⊕A1 be any associative superalgebra. Introducing a new
product in A by

x ◦s y =
1

2
(xy + (−1)|x||y|yx),

where x, y are any homogeneous elements, A becomes a Jordan superalgebra.
Jordan superalgebras of this kind also appear in Kac’s classification [15] of
finite-dimensional simple Jordan superalgebras over an algebraically closed
field (see also [18] for a concise survey). Given homogeneous elements x, y ∈
A, note that

(1) x ◦s y = x ◦ y whenever |x| = 0 or |y| = 0,
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and also

x ◦s y = [x, y] whenever |x| = 1 and |y| = 1.

Let B = B0 ⊕ B1 be another associative superalgebra. We shall say that a
Φ-module homomorphism ϕ : B → A is a Jordan superhomomorphism if it
preserves the Z2-gradation (that is, ϕ(Bi) ⊆ Ai, i = 0, 1) and satisfies

ϕ(x ◦s y) = ϕ(x) ◦s ϕ(y)

for all homogeneous elements x, y ∈ B. A Jordan superhomomorphism is,
of course, the analogue of a Jordan homomorphism in the superalgebra set-
ting (moreover, in trivial superalgebras these two concepts coincide). Let
us now define analogues of homomorphisms and antihomomorphisms. A
Z2-gradation preserving Φ-module homomorphism ϕ : B → A will be called
a superhomomorphism (resp. superantihomomorphism) if ϕ(xy) = ϕ(x)ϕ(y)

(resp. ϕ(xy) = (−1)|x||y|ϕ(y)ϕ(x)) for all homogeneous elements x, y ∈ B.
Of course, a superhomomorphism is nothing but a homomorphism of su-
peralgebras. Clearly, superhomomorphisms and superantihomomorphisms
are examples of Jordan superhomomorphisms. The natural question that
appears is under which conditions these are also the only possible examples.

It seems rather obvious how to find concrete examples of superhomo-
morphisms. Let us list a few examples of superantihomomorphisms and
nontrivial Jordan superhomomorphisms, i.e. those that are different from
superhomomorphisms and superantihomomorphisms.

Examples. 1. Of course, a superantihomomorphism between associative
superalgebras B and A is not, in general, an antihomomorphism between
algebras B and A. However, the following is true: If Φ contains an element i
such that i2 = −1 and we define ι : A → A by ι(x0 +x1) = x0 +ix1, xi ∈ Ai,
then a Z2-gradation preserving Φ-module homomorphism ϕ : B → A is a
superantihomomorphism between superalgebras if and only if ι ◦ ϕ is an
antihomomorphism between algebras.

2. Let ψ : Mr →Mr be an antihomomorphism. Then ϕ : M(r)→M(r),

ϕ

([
A B
C D

])
=

[
ψ(D) −ψ(B)
ψ(C) ψ(A)

]
is a superantihomomorphism.

3. Superinvolutions are examples of superantiautomorphisms (see e.g.
[10, Section 3] and examples therein). In particular, if ψ in example above
is the matrix transposition, then ϕ is the so-called transposition superinvo-
lution.

4. Let A = A0 ⊕ A1 be a superalgebra which is commutative as an
algebra (for example, A = Q(1)). Pick a0 ∈ A0 and define ϕ : A → A by
ϕ(x0 + x1) = x0 + a0x1. Then ϕ is a Jordan superhomomorphism which is
not necessarily a superhomomorphism nor a superantihomomorphism.
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5. Pick an invertible γ ∈ Φ such that γ 6= ±1 and define ϕ : Q(α, β) →
Q(α, β) by

ϕ(λ0 + λ1uv + λ2u+ λ3v) = λ0 + λ1uv + λ2γu+ λ3γ
−1v

Then ϕ is a Jordan superhomomorphism which is neither a superhomomor-
phism nor a superantihomomorphism.

The last two examples show that nontrivial Jordan superhomomorphisms
exist even in some basic examples of associative superalgebras. However,
both algebras appearing in Examples 4 and 5 are examples of associative
superalgebras whose even part is commutative (and in fact, they are rather
general examples of such algebras, cf. [16, Lemma 1.9]). Such algebras have
turned out to be rather exceptional in the study of Jordan and Lie ideals
(see e.g. [9, 10, 16]) so it is not so surprising that they also admit nontrivial
examples in the study of homomorphisms. We shall see that these are the
only prime associative superalgebras where nontrivial examples can exist.

Finally we fix the notation that will be used in the next sections. For a
map ϕ between (super)algebras B and A, we set

τ(x, y) = ϕ(xy)− ϕ(x)ϕ(y),

ω(x, y) = ϕ(xy)− ϕ(y)ϕ(x),

ρ(x, y) = ϕ(xy) + ϕ(y)ϕ(x) for all x, y ∈ B.

3. Jordan homomorphisms

In this section we make the first step towards the proof of the main re-
sult. The auxiliary result which we are going to prove is already a slight
generalization of Herstein’s theorem, and we shall state in the setting of
algebras (rather than superalgebras). Basically we will just follow the ar-
gument given in [4], but nevertheless we shall give a complete proof for the
sake of completness.

Proposition 3.1. Let ϕ be a Φ-module homomorphism from an algebra B
onto an algebra A. Suppose there exist subalgebras B0 of B and A0 of A
such that the following conditions are fulfilled:

(i) ϕ(x ◦ x0) = ϕ(x) ◦ ϕ(x0) for all x ∈ B, x0 ∈ B0;
(ii) ϕ(B0) ⊆ A0;
(iii) a0Ab0Aa0 = 0, where a0, b0 ∈ A0, implies a0 = 0 or b0 = 0.
Then ϕ|B0, the restriction of ϕ to B0, is either a homomorphism or an

antihomomorphism.

Proof. Using x0xx0 = 2x0 ◦ (x0 ◦ x)− x2
0 ◦ x it follows at once that

(2) ϕ(x0xx0) = ϕ(x0)ϕ(x)ϕ(x0) for all x ∈ B, x0 ∈ B0.

Linearizing (2) we get

(3) ϕ(x0xy0 + y0xx0) = ϕ(x0)ϕ(x)ϕ(y0) + ϕ(y0)ϕ(x)ϕ(x0)
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for all x ∈ B, x0, y0 ∈ B0. Now pick any x ∈ B, x0, y0 ∈ B0 and set
W = ϕ(x0y0xy0x0 + y0x0xx0y0). Using (2) we get

W = ϕ(x0(y0xy0)x0) + ϕ(y0(x0xx0)y0)

= ϕ(x0)ϕ(y0xy0)ϕ(x0) + ϕ(y0)ϕ(x0xx0)ϕ(y0)

= ϕ(x0)ϕ(y0)ϕ(x)ϕ(y0)ϕ(x0) + ϕ(y0)ϕ(x0)ϕ(x)ϕ(x0)ϕ(y0).

On the other hand, making use of (3) we get

W = ϕ((x0y0)x(y0x0) + (y0x0)x(x0y0))

= ϕ(x0y0)ϕ(x)ϕ(y0x0) + ϕ(y0x0)ϕ(x)ϕ(x0y0).

Comparing both expressions and using ϕ(x0y0) + ϕ(y0x0) = ϕ(x0)ϕ(y0) +
ϕ(y0)ϕ(x0) we arrive at

(4) τ(x0, y0)ϕ(x)ω(x0, y0) + ω(x0, y0)ϕ(x)τ(x0, y0) = 0

for all x ∈ B, x0, y0 ∈ B0 (cf. [19, p. 427], [4, Lemma 2.1]). We have to
show that either τ(B0,B0) = 0 or ω(B0,B0) = 0.

Pick x0, y0 ∈ B0 and write τ = τ(x0, y0), ω = ω(x0, y0) for brevity. Since
ϕ is onto, (4) can be written as τaω + ωaτ = 0 for all a ∈ A. Accord-
ingly, τa(ωbτ) = −τ(aτb)ω = (ωaτ)bτ = −τaωbτ for all a, b ∈ A, so that
τAωAτ = 0. Since τ, ω ∈ A0, it follows from our assumption that τ = 0
or ω = 0. That is, for each pair x0, y0 ∈ B0 we have either τ(x0, y0) = 0
or ω(x0, y0) = 0. It remains to show (in a standard way) that one of these
two conditions is fulfilled for all x0, y0 ∈ B0. For any fixed x0 ∈ B0, the
sets {y0 ∈ B0 | τ(x0, y0) = 0} and {y0 ∈ B0 |ω(x0, y0) = 0} are additive sub-
groups of B0 whose union is, by what we proved, equal to B0. However, a
group cannot be the union of its proper subgroups, so it follows that either
τ(x0,B0) = 0 or ω(x0,B0) = 0. But this means that B0 is the union of its
additive subgroups {x0 ∈ B0 | τ(x0,B0) = 0} and {x0 ∈ B0 |ω(x0,B0) = 0},
and so one of them equals B0. This completes the proof.

4. The main result

We first fix the notation for this last section. By ϕ we denote a Jordan
superhomomorphism from an arbitrary associative superalgebra B = B0⊕B1

onto a prime associative superalgebra A = A0 ⊕A1. Further, by Z and C0

we denote the center of the algebra A and A0, respectively. We assume that
the algebra A0 is noncommutative, that is, C0 6= A0.

Let us record a few useful identities. First of all, it is clear that

τ(x, x0) = −τ(x0, x), ω(x, x0) = −ω(x0, x) for all x ∈ B, x0 ∈ B0,(5)

τ(x1, y1) = τ(y1, x1), ρ(x1, y1) = ρ(y1, x1) for all x1, y1 ∈ B1.(6)

Let y = y0 + y1 ∈ B0 ⊕ B1 and x1 ∈ B1. Using

[x2
1, y] = 2[x1, x1 ◦ y0] + 2x1 ◦ [x1, y1]
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it follows immediately from the definition of a Jordan superhomomorphism
together with (1) that

(7) ϕ([x2
1, y]) = [ϕ(x1)2, ϕ(y)] for all x1 ∈ B1, y ∈ B.

Using both Lemma 2.1 and (1) we see that ϕ satisfies all conditions of
Proposition 3.1. Thus we have

Lemma 4.1. ϕ|B0 is either a homomorphism or an antihomomorphism of
B0 onto A0.

Lemma 4.2. If ϕ|B0 is a homomorphism, then ϕ is a superhomomorphism.

Proof. Our assumption implies that ϕ([x2
1, x0]) = [ϕ(x2

1), ϕ(x0)] for
all x0 ∈ B0, x1 ∈ B1. Comparing this relation with (7) it follows that
[τ(x1, x1), ϕ(x0)] = 0. That is to say, τ(x1, x1) ∈ C0 for all x1 ∈ B1. Lin-
earizing and using (6) we get

(8) τ(B1,B1) ⊆ C0.

Now consider the expression ϕ(x0x1y1) with x0 ∈ B0, x1, y1 ∈ B1. On the
one hand,

ϕ(x0(x1y1)) = ϕ(x0)ϕ(x1y1) = ϕ(x0)ϕ(x1)ϕ(y1) + ϕ(x0)τ(x1, y1),

and on the other hand,

ϕ((x0x1)y1) = ϕ(x0x1)ϕ(y1) + τ(x0x1, y1)

= ϕ(x0)ϕ(x1)ϕ(y1) + τ(x0, x1)ϕ(y1) + τ(x0x1, y1).

Comparing we obtain

(9) τ(x0, x1)ϕ(y1) = ϕ(x0)τ(x1, y1)− τ(x0x1, y1)

for all x0 ∈ B0, x1, y1 ∈ B1. In a similar fashion, by computing ϕ(y1x1x0) in
two different ways and then using (5) and (6), we get

(10) ϕ(y1)τ(x0, x1) = −τ(x1, y1)ϕ(x0) + τ(x1x0, y1)

for all x0 ∈ B0, x1, y1 ∈ B1.
From (8) and (9) it follows that τ(x0, x1)ϕ(y1) commutes with ϕ(x0), so

that [τ(x0,B1)A1, ϕ(x0)] = 0 for all x0 ∈ B0. Accordingly, for any a0 ∈ A0,
a1 ∈ A1 we have a1a0 ∈ A1 and so

τ(x0, x1)a1[a0, ϕ(x0)] = [τ(x0, x1)a1a0, ϕ(x0)]− [τ(x0, x1)a1, ϕ(x0)]a0 = 0,

that is,

(11) τ(x0,B1)A1[A0, ϕ(x0)] = 0 for all x0 ∈ B0.

Analogously, (8) and (10) imply [A1τ(x0,B1), ϕ(x0)] = 0 and considering an
element a0a1 ∈ A1 we arrive at

(12) [A0, ϕ(x0)]A1τ(x0,B1) = 0 for all x0 ∈ B0.

Now compare (11) and (12) and note that Lemma 2.2 can be used. Hence
it follows that for each x0 ∈ B0, either τ(x0,B1) = 0 or ϕ(x0) ∈ C0. Again
using the fact a group cannot be the union of its proper subgroups, as well
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as our assumption that C0 6= A0, it follows that τ(B0,B1) = 0. Whence also
τ(B1,B0) = 0 by (5).

Therefore, given x1, y1 ∈ B1 we have x2
1 ∈ B0 and hence ϕ([x2

1, y1]) =
[ϕ(x2

1), ϕ(y1)]. On the other hand, ϕ([x2
1, y1]) = [ϕ(x1)2, ϕ(y1)] by (7), so

that [τ(x1, x1), ϕ(y1)] = 0. That is, [τ(x1, x1),A1] = 0 which together with
(8) gives τ(x1, x1) ∈ Z for every x1 ∈ B1. Linearizing and using (6) we get
τ(B1,B1) ⊆ Z. Consequently, (10) shows that τ(B1,B1)A0 ⊆ Z which in
turn implies τ(B1,B1)[A0,A0] = 0. However, since τ(B1,B1) ⊆ A0 ∩ Z and
[A0,A0] 6= 0, we infer from Lemma 2.1 that τ(B1,B1) = 0.

Combining all our conclusions together with our assumption (which can
be written as τ(B0,B0) = 0) it follows that τ(B,B) = 0. That is, ϕ is a
superhomomorphism.

Lemma 4.3. If ϕ|B0 is an antihomomorphism, then ϕ is a superantihomo-
morphism.

The proof of Lemma 4.3 is a simple modification of that of Lemma 4.2,
so we give only an outline. First we observe using (7) that ρ(B1,B1) ⊆ C0.
Then we compute ϕ(x0x1y1) and ϕ(y1x1x0) in two different ways to obtain

ϕ(y1)ω(x0, x1) = −ρ(x1, y1)ϕ(x0) + ρ(x0x1, y1),

ω(x0, x1)ϕ(y1) = ϕ(x0)ρ(x1, y1)− ρ(x1x0, y1).

Using these relations we derive

ω(x0,B1)A1[A0, ϕ(x0)] = [A0, ϕ(x0)]A1ω(x0,B1) = 0

from which ω(B0,B1) = ω(B1,B0) = 0 follows. Finally, using this together
with (7) we show that ρ(B1,B1) ⊆ Z from which it can be deduced that
ρ(B1,B1) = 0, completing the proof.

From Lemmas 4.1, 4.2 and 4.3 we infer the main result.

Theorem 4.4. A Jordan superhomomorphism from an arbitrary associative
superalgebra onto a prime associative superalgebra whose even part is non-
commutative is either a superhomomorphism or a superantihomomorphism.

References
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[4] Brešar, M. Jordan mappings of semiprime rings. J. Algebra 1989, 127, 218-228.
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