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Abstract. The results on Lie homomorphisms of associative algebras are ex-
tended to certain associative superalgebras. It is shown that under appropriate

conditions a Lie superautomorphism of A = A0 ⊕A1 is a sum of a superauto-

morphism or the negative of a superantiautomorphism and a central map. In
particular we consider the situation when A is a central simple algebra and its

Z2-grading is induced by an idempotent.

1. Introduction

Let A = A0 ⊕ A1 be an associative superalgebra. Then A becomes a Lie super-
algebra if we replace the associative product by the superbracket [a, b]s. There has
been a considerable interest in the relationship between the associative and the Lie
structure of A, see for example [3, 4, 7, 10, 11, 13, 15, 16, 18]. However, to the best
of our knowledge the natural problem to find the connections of homomorphisms
with respect to these two structures has not been yet considered in the literature.
The purpose of this paper is to initiate this topic.

In the classical ungraded case, the results on Lie homomorphisms in associa-
tive rings and algebras were also obtained with some “delay” comparing to other
Lie structure results. The latter were obtained already in the 1950’s and 1960’ by
Herstein and some of his students; see [12]. Martindale [14] has solved various Lie
map problems somewhat later (see e.g. [14]), however, under the assumption that
rings in question contain nontrivial idempotents. The first result avoiding idempo-
tents was obtained in 1993 by the second author [8]. The methods from [8] and
related papers have been later generalized in various directions and eventually this
resulted in the creation of the theory of functional identities; see [9]. Among differ-
ent applications of functional identities, solutions of several Lie map problems are
particularly notable. Functional identities will be used, indirectly but essentially,
also in this paper.

We shall say that a bijective linear map ϕ : A→ A is a Lie superautomorphism of
A if ϕ(Ai) = Ai, i = 0, 1, and ϕ([a, b]s) = [ϕ(a), ϕ(b)]s for all a, b ∈ A0∪A1. We will
show that under favorable conditions ϕ can be expressed through superautomor-
phisms or superantiautomorphisms and central maps. The main result (Theorem
3.1) describes some abstract conditions, which are then applied to the case when A
is a central simple algebra and the Z2-grading is induced by an idempotent (Corol-
lary 3.2). The main idea of the proof is to introduce a usual Lie automorphisms of
the Grassmann envelope of A, and then apply the theory from [9]. Here we were
influenced by our recent works [1, 2] where we noticed that some results from [9] are

The first author was partially supported by NSERC grant # 227060-04 and URP grant, Memo-

rial University of Newfoundland. The second author was partially supported by ARRS grant #
P1-0288.

1



2 BAHTURIN AND BREŠAR

applicable to tensor products of “nice” algebras with “almost arbitrary” algebras.
This has encouraged us to consider Lie automorphisms of the Grassmann envelope.

We remark that an analogous concept of a Jordan superhomomorphism was
treated in [6], but using a more straightforward and elementary approach.

We do not try to push the results in their utmost generality in this short paper.
Our main goal is to present the method which, as we hope, could be extended to
more general contexts. We plan to continue the investigation of Lie superhomo-
morphisms in a more technical work in the future.

After preparing a draft of this paper, we received a preprint of Wang [17] in which
Lie superhomomorphisms are also considered. While there is some overlap between
his and our paper, there are also essential differences. Wang does not reduce the
problem to usual Lie maps in associative algebras (as we do using the Grassmann
envelope), but studies functional identities directly in associative superalgebras.
Also, he imposes the conditions on the odd part A1, while our restrictions concern
the even part A0.

2. Preliminaries

By an algebra we shall always mean an algebra over a fixed field with char(F ) 6=
2. Mostly we will consider associative algebras, but not exclusively. So the term
“algebra” can mean a nonassociative algebra. For convenience we assume that all
our associative algebras have an identity element.

2.1. Superalgebras. Recall that a superalgebra is a Z2-graded algebra A = A0 ⊕
A1, AiAj ⊆ Ai+j where i, j ∈ Z2. Elements from Ai are said to be homogeneous of
degree i, i = 0, 1. For x ∈ Ai we shall write |x| = i.

An important example of a superalgebra is the Grassman superalgebra G. As
an algebra G is just an associative algebra generated by elements 1, e1, e2, . . . that
satisfy e2

i = eiej + ejei = 0 for all i, j; as a superalgebra it is determined by
the following rule: 1 ∈ G0, ei1ei2 . . . eik ∈ G0 if k is even and ei1ei2 . . . eik ∈ G1

if k is odd. Now let A = A0 ⊕ A1 be an arbitrary superalgebra. The algebra
G(A) = G0 ⊗ A0 +G1 ⊗ A1, which we view as a subalgebra of the tensor product
A ⊗ G, is called the Grassman envelope of A. If G(A) is a Lie algebra, then we
say that A is a Lie superalgebra. Similar definitions make sense for other varietes
of algebras. In particular, if G(A) is an associative algebra, then we say that A
is an associative superalgebra. But actually it is easy to see that an associative
superalgebra is nothing but a Z2-graded associative algebra. On the other hand, a
Lie superalgebra is not a Lie algebra if its grading is nontrivial. Lie superalgebras
can be equivalently defined through the super-anticommutativity of the product
and the super-Jacobi identity. But we shall not need them in this paper.

Let A = A0 ⊕ A1 be an associative superalgebra. The superbracket of two
homogeneous elements a, b ∈ A is defined as [a, b]s = ab − (−1)|a||b|ba. We extend
[ . , . ]s by bilinearity to A × A. Then A, endowed with the superbracket together
with the original grading and the original vector space structure, becomes a Lie
superalgebra. The supercenter of A is defined as the set of all a ∈ A such that
[a,A]s = 0. Note that a Lie superautomorphism ϕ : A → A satisfies ϕ([a0, b]) =
[ϕ(a0), ϕ(b)] for all a0 ∈ A0, b ∈ A, and ϕ(a1 ◦b1) = ϕ(a1)◦ϕ(b1) for all a1, b1 ∈ A1.
Here of course, [u, v] = uv − vu and u ◦ v = uv + vu.
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Let A be an associative algebra and let e be an idempotent in A. Note that by
setting

(1) A0 = eAe+ (1− e)A(1− e) and A1 = eA(1− e) + (1− e)Ae,

A becomes an associative superalgebra. This is the basic example of a superalge-
bra structure on an associative algebra, and often this is in fact the only possible
example. Indeed, let A = A0 ⊕ A1 be an arbitrary associative superalgebra. Then
σ(a0 + a1) = a0 − a1 defines an automorphism of A such that σ2 = id. If σ is
inner, then there exists an invertible u ∈ A such that u2 lies in the center of A
and A0 = {x ∈ A | [u, x] = 0}, A1 = {x ∈ A |u ◦ x = 0}. Assume further that u2

can be written as a square of some central element, u2 = c2. Then we may replace
u by c−1u and therefore assume without loss of generality that u2 = 1. Hence
e = 1

2 (1 − u) is an idempotent, and one can easily show that A0 and A1 can be
described through (1). Thus, for instance, if an associative algebra A is such that it
has only inner automorphisms, its center is just F , and F is an algebraically closed
field, then every superalgebra structure of A arises from an idempotent.

The prototype example of (1) is M(p | q), the algebra of square matrices of order
p+ q equipped with the following Z2-grading: M(p | q)0 consists of matrices of the

form

[
A 0
0 D

]
, A ∈ Mp(F ), D ∈ Mq(F ), and M(p | q)1 consists of matrices of the

form

[
0 B
C 0

]
, B ∈Mp,q(F ), C ∈Mq,p(F ).

2.2. The strong degree. The concept of the strong degree was introduced in [5],
and is also exposed in [9, Chapter 2]. We will now give a very brief survey which
is sufficient for our purposes.

Let A be a associative algebra. By M(A) we denote the multiplication algebra
of A, that is, the algebra of linear operators on A generated by all left and all right
multiplications La and Rb, a, b ∈ A. Thus a typical element in M(A) is an operator
on A of the form x 7→

∑n
i=1 aixbi, ai, bi ∈ A.

Let t ∈ A be a nonzero element, and let n ≥ 0 be an integer. We say that the
strong degree of t is greater than n, s-deg(t) > n, if for every 0 ≤ i ≤ n there exists
Ei ∈M(A) such that Ei(tj) = δij for each j = 0, 1, . . . , n (here δij is the “Kronecker
delta”, and t0 = 1). Clearly, in this case 1, t, . . . , tn are linearly independent. If
s-deg(t) > n − 1 but s-deg(t) 6> n, then we say that the strong degree of t is n
(s-deg(t) = n). If s-deg(t) > n for every positive integer n, then s-deg(t) = ∞.
Finally, the strong degree of A is s-deg(A) = sup{s-deg(t) | t ∈ A}. Trivially,
s-deg(A) ≥ 1 for every algebra A.

Let us record three simple lemmas. The first two can be very easily checked and
we omit the proofs.

Lemma 2.1. If A′ is a subalgebra of A such that A′ contains the identity element
of A, then s-deg(A) ≥ s-deg(A′).

Lemma 2.2. If A1 and A2 are algebras, then

s-deg(A1 ⊕A2) = min{s-deg(A1), s-deg(A2)}.

Lemma 2.3. If A1 and A2 are algebras, then

s-deg(A1 ⊗A2) ≥ max{s-deg(A1), s-deg(A2)}.
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Proof. If the strong degree of t1 ∈ A1 is > n, then the strong degree of t1 ⊗ 1 ∈
A1 ⊗A2 is also > n. Using this one easily completes the proof. �

By a central simple algebra we mean a simple algebra such that its center coin-
cides with F . The next lemma follows from [9, Lemma 2.3 and Corollary C.3].

Lemma 2.4. If A is a central simple algebra, then s-deg(A) =
√

dimA.

Let us point out that the case when A is infinite dimensional is not excluded
here; in this case we have s-deg(A) =∞.

For other examples of algebras whose strong degree can be computed we refer
the reader to [5] and [9].

2.3. Lie (super)automorphisms. Let B be an associative algebra. Recall that
a bijective linear map Φ : B → B is said to be a Lie automorphism if Φ([a, b]) =
[Φ(a),Φ(b)] for all a, b ∈ B. Clearly, the restriction of a Lie superautomorphism of
A = A0 ⊕A1 on A0 is a Lie automorphism of A0. The next result is an immediate
corollary to [9, Theorem 2.19 and Theorem 6.1]. Its proof is a typical application
of the general theory of functional identities.

Theorem 2.5. Let B be an associative algebra such that s-deg(B) ≥ 3. Assume
that the center Z of B does not contain idempotents different from 0 and 1. If Φ
is a Lie automorphism of B, then Φ = Θ + Ω, where Θ is either a homomorphism
of B or the negative of an antihomomorphism of B, and Ω is a map from B into
Z which vanishes on commutators.

Note that this is the optimal description of a Lie automorphism through asso-
ciative maps. Namely, a map of the form Θ + Ω, where Θ and Ω are as in the
theorem, preserves the Lie bracket [ . , . ]. It is easy to guess what are the counter-
parts of these maps in the superalgebra setting. Let A = A0⊕A1 be an associative
superalgebra. A linear map θ : A → A is called a superhomomorphism if it is a
homomorphism of the algebra A (i.e., it satisfies θ(ab) = θ(a)θ(b)) and if it pre-
serves the Z2-grading (i.e., θ(Ai) ⊆ Ai, i = 0, 1). Of course, superhomomorphisms
also preserve the superbracket [ . , . ]s. Next, a linear Z2-grading preserving map
θ : A → A is called a superantihomomorphism if θ(ab) = (−1)|a||b|θ(b)θ(a) for all
homogeneous elements a, b ∈ A. Note that the negative of a superantihomomor-
phism preserves the superbracket. Finally, if θ is either a superhomomorphism
or a superantihomomorphism and τ is a map from A into its center such that
τ([A0, A0]) = τ(A1 ◦ A1) = τ(A1) = 0, then θ + τ also preserves the superbracket
(here by the center we mean the usual center, not supercenter). Moreover, if the
range of τ lies in A0, then θ + τ also preserves the Z2-grading.

3. Main results

Let us first reveal the main idea on which this paper is based. Let A = A0 ⊕A1

be an associative superalgebra, and let ϕ : A → A be a Lie superautomorphism.
We “extend” ϕ to Φ : G(A) → G(A) in an obvious way, i.e. as the restriction of
ϕ⊗ id to G(A). Thus

Φ(ai ⊗ gi) = φ(ai)⊗ gi, ai ∈ Ai, gi ∈ Gi, i = 0, 1.
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One easily checks that Φ is a Lie automorphism of G(A). For example, if a1, b1 ∈ A1

and g1, g
′
1 ∈ G1, then g1g

′
1 + g′1g1 = 0 and hence

Φ([a1 ⊗ g1, b1 ⊗ g′1]) = Φ(a1 ◦ b1 ⊗ g1g
′
1) = ϕ(a1 ◦ b1)⊗ g1g

′
1

=
(
ϕ(a1) ◦ ϕ(b1)

)
⊗ g1g

′
1 = [ϕ(a1)⊗ g1, ϕ(b1)⊗ g′1] = [Φ(a1 ⊗ g1),Φ(b1 ⊗ g′1)].

Similarly one considers the action of Φ on other commutators.
Now assume that the algebra B = G(A) satisfies the conditions of Theorem 2.5.

Then Φ = Θ + Ω where Θ and Ω are as in this theorem. We now have to use this
information to describe ϕ. This is the idea of our proof.

Let us simplify our task by assuming slightly more than required in Theorem
2.5. The assumptions that we impose are:

(a) s-deg(A0) ≥ 3,
(b) the supercenter of A is equal to F .

Note that (a) yields that s-deg(A0 ⊗ G0) ≥ 3 (by Lemma 2.3) and therefore
s-deg(G(A)) ≥ 3 (by Lemma 2.1). Further, it is easy to see that (b) implies that
the center Z of G(A) is equal to 1 ⊗ G0. Since G0 does not contain nontrivial
idempotents, the same holds for Z. Therefore (a) and (b) indeed imply all as-
sumptions of Theorem 2.5. We thus have Φ = Θ + Ω. Note also that we can write
Ω(r) = 1 ⊗ ω(r), r ∈ G(A), where ω : G(A) → G0. Finally we remark that (b)
implies that elements from F are the only elements that lie in both A0 and the
center of the algebra A.

We now have to treat two cases, the one that Θ is a homomorphism and the
one that Θ is the negative of an antihomomorphism. Let us consider in detail the
second (and apparently the less favorable) one.

We begin by considering ϕ(a0b0)⊗ 1 with a0, b0 ∈ A0. We have

ϕ(a0b0)⊗ 1 = Φ(a0b0 ⊗ 1)

=Θ((a0 ⊗ 1)(b0 ⊗ 1)) + 1⊗ ω(a0b0 ⊗ 1)

=−Θ(b0 ⊗ 1)Θ(a0 ⊗ 1) + 1⊗ ω(a0b0 ⊗ 1)

=−
(
ϕ(b0)⊗ 1− 1⊗ ω(b0 ⊗ 1)

)(
ϕ(a0)⊗ 1− 1⊗ ω(a0 ⊗ 1)

)
+ 1⊗ ω(a0b0 ⊗ 1)

=− ϕ(b0)ϕ(a0)⊗ 1 + ϕ(b0)⊗ ω(a0 ⊗ 1) + ϕ(a0)⊗ ω(b0 ⊗ 1)

+ 1⊗
(
ω(a0b0 ⊗ 1)− ω(b0 ⊗ 1)ω(a0 ⊗ 1)

)
.

Thus, (
ϕ(a0b0) + ϕ(b0)ϕ(a0)

)
⊗ 1 = ϕ(b0)⊗ ω(a0 ⊗ 1)

+ ϕ(a0)⊗ ω(b0 ⊗ 1) + 1⊗
(
ω(a0b0 ⊗ 1)− ω(b0 ⊗ 1)ω(a0 ⊗ 1)

)
.

(2)

For every a0 ∈ A0 we write ω(a0 ⊗ 1) = τ(a0) + ε(a0) where τ(a0) ∈ F and ε(a0)
lies in the linear span of the products of ei’s. Suppose there exists a0 ∈ A0 such
that ε(a0) 6= 0. Then it follows readily from (2) that every ϕ(b0) lies in the linear
span of ϕ(a0) and 1. But this is impossible since (a) in particular implies that A0

contains elements that are not algebrais of degree ≤ 2. Consequently ε(a0) = 0 for
every a0 ∈ A0, and so ω(a0 ⊗ 1) = τ(a0) ∈ F . Therefore (2) reduces to

ϕ(a0b0) + ϕ(b0)ϕ(a0) = τ(a0)ϕ(b0) + τ(b0)ϕ(a0) + τ(a0b0)− τ(b0)τ(a0).(3)

We now define θ : A0 → A0 by

θ(a0) = ϕ(a0)− τ(a0),
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so that Θ(a0 ⊗ 1) = θ(a0)⊗ 1. Note that (3) can now be written as

θ(a0b0) = −θ(b0)θ(a0).(4)

In a similar fashion we consider ϕ(a0b0)⊗ e1e2 with a0, b0 ∈ A0:

ϕ(a0b0)⊗ e1e2 = Φ(a0b0 ⊗ e1e2)

=Θ((a0 ⊗ 1)(b0 ⊗ e1e2)) + 1⊗ ω(a0b0 ⊗ e1e2)

=−Θ(b0 ⊗ e1e2)Θ(a0 ⊗ 1) + 1⊗ ω(a0b0 ⊗ e1e2)

=−
(
ϕ(b0)⊗ e1e2 − 1⊗ ω(b0 ⊗ e1e2)

)(
θ(a0)⊗ 1

)
+ 1⊗ ω(a0b0 ⊗ e1e2)

=− ϕ(b0)θ(a0)⊗ e1e2 + θ(a0)⊗ ω(b0 ⊗ e1e2) + 1⊗ ω(a0b0 ⊗ e1e2).

Thus

(ϕ(a0b0) + ϕ(b0)θ(a0))⊗ e1e2 = θ(a0)⊗ ω(b0 ⊗ e1e2) + 1⊗ ω(a0b0 ⊗ e1e2).

Using (4) we see that ϕ(a0b0) + ϕ(b0)θ(a0) = τ(b0)θ(a0) + τ(a0b0), and so we get

θ(a0)⊗
(
ω(b0 ⊗ e1e2)− τ(b0)e1e2

)
+ 1⊗

(
ω(a0b0 ⊗ e1e2)− τ(a0b0)e1e2

)
= 0.

Chosing a0 so that θ(a0) /∈ F (its existence is a trivial consequence of (a)) it follows
that for every b0 ∈ A0 we have

(5) ω(b0 ⊗ e1e2) = τ(b0)e1e2

Next we consider ϕ(a0b1)⊗ e1 with a0 ∈ A0, b1 ∈ A1. We have

ϕ(a0b1)⊗ e1 = Φ(a0b1 ⊗ e1)

=Θ((a0 ⊗ 1)(b1 ⊗ e1)) + 1⊗ ω(a0b1 ⊗ e1)

=−Θ(b1 ⊗ e1)Θ(a0 ⊗ 1) + 1⊗ ω(a0b1 ⊗ e1)

=−
(
ϕ(b1)⊗ e1 − 1⊗ ω(b1 ⊗ e1)

)(
θ(a0)⊗ 1

)
+ 1⊗ ω(a0b1 ⊗ e1)

=− ϕ(b1)θ(a0)⊗ e1 + θ(a0)⊗ ω(b1 ⊗ e1) + 1⊗ ω(a0b1 ⊗ e1),

and hence(
ϕ(a0b1) + ϕ(b1)θ(a0)

)
⊗ e1 = θ(a0)⊗ ω(b1 ⊗ e1) + 1⊗ ω(a0b1 ⊗ e1).

Since ω(b1 ⊗ e1), ω(a0b1 ⊗ e1) ∈ G0 it follows that ϕ(a0b1) + ϕ(b1)θ(a0) = 0. Con-
sequently, chosing a0 so that θ(a0) /∈ F we obtain ω(b1⊗ e1) = 0 for every b1 ∈ A1.

We now extend θ to A by setting

θ(a1) = ϕ(a1)

for every a1 ∈ A1. Note that we have

θ(a0b1) = −θ(b1)θ(a0)(6)

and Θ(b1 ⊗ e1) = θ(b1) ⊗ e1. Of course, similarly we have Θ(b1 ⊗ ei) = θ(b1) ⊗ ei
for every i.

Considering θ(b1a0)⊗e1 = ϕ(b1a0)⊗e1 in a similar (although now more straight-
forward) way as we considered ϕ(a0b1)⊗ e1, one obtains

θ(b1a0) = −θ(a0)θ(b1)(7)

for all a0 ∈ A0, b1 ∈ A1.
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Finally we consider ϕ(a1b1)⊗ e1e2 with a1, b1 ∈ A1. Using (5) we obtain

ϕ(a1b1)⊗ e1e2 = Φ(a1b1 ⊗ e1e2)

=Θ((a1 ⊗ e1)(b1 ⊗ e2)) + 1⊗ ω(a1b1 ⊗ e1e2)

=−Θ(b1 ⊗ e2)Θ(a1 ⊗ e1) + 1⊗ τ(a1b1)e1e2

=− (θ(b1)⊗ e2)(θ(a1)⊗ e1) + 1⊗ τ(a1b1)e1e2

=
(
θ(b1)θ(a1) + τ(a1b1)

)
⊗ e1e2.

Therefore ϕ(a1b1) = θ(b1)θ(a1) + τ(a1b1), which yields

θ(a1b1) = θ(b1)θ(a1).(8)

From (4), (6), (7) and (8) we now see that θ is the negative of a superantihomo-
morphism.

Extending τ to A by simply setting τ(A1) = 0 we thus have

ϕ(a) = θ(a) + τ(a)

for every a ∈ A. Let us finally make use of the condition that Ω vanishes on
commutators (see Theorem 2.5). Considering commutators in [A0 ⊗ 1, A0 ⊗ 1] we
obtain τ([A0, A0]) = 0. Similarly, considering commutators in [A1 ⊗ e1, A1 ⊗ e2]
and also applying (5) we get τ(A1 ◦A1) = 0.

As θ is the negative of a superantihomomorphism, we have θ(1)θ(a) = θ(a)θ(1) =
−θ(a) for every a ∈ A. In particular, θ(1) thus commutes with all elements from
ϕ(A) = A, which implies that θ(1) ∈ F (see the paragraph following (b)). But
then θ(1) = −1.

Suppose that a = a0 + a1 is such that θ(a) = 0. Then ϕ(a0) + τ(a0) = 0 and
ϕ(a1) = 0. The second identity yields a1 = 0. The first identity implies that
ϕ([a0, A]) = [ϕ(a0), ϕ(A)] = −[τ(a0), A] = 0. Thus [a0, A] = 0 and so a = a0 ∈ F .
However, since θ(1) = −1, this is possible only if a = 0. This proves that θ is
injective. From θ(a − τ(a)) = θ(a) − τ(a)θ(1) = θ(a) + τ(a) = ϕ(a) we see that θ
is also surjective. Thus θ is the negative of a superantiautomorphism.

Recall that we have derived all these conclusions under the assumption that Θ is
the negative of an antihomomorphism. It Θ was a homomorphism, then following
the same procedure we would arrive at analogous conclusions, just that θ is then a
superautomorphism.

To summarize, we have obtained the desired conclusion ϕ = θ+ τ under the as-
sumption that the conditions (a) and (b) are fulfilled. More precisely, the following
theorem was proved.

Theorem 3.1. Let A = A0 ⊕ A1 be an associative superalgebra such that its su-
percenter is F and s-deg(A0) ≥ 3. Then every Lie superautomorphism ϕ of A is
of the form ϕ = θ + τ where θ is either a superautomorphism of A or the nega-
tive of a superantiautomorphism of A, and τ is a map from A into F satisfying
τ([A0, A0]) = τ(A1 ◦A1) = τ(A1) = 0.

In our final result we apply Theorem 3.1 to a more concrete situation.

Corollary 3.2. Let A be a central simple associative algebra. Let e be an idem-
potent in A and consider A as an associative superalgebra with respect to (1). If
dim eAe > 4 and dim(1 − e)A(1 − e) > 4, then every Lie superautomorphism ϕ
of A is of the form ϕ = θ + τ where θ is either a superautomorphism of A or the
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negative of a superantiautomorphism of A, and τ is a map from A into F satisfying
τ([A0, A0]) = τ(A1 ◦A1) = τ(A1) = 0.

Proof. Both algebras eAe and (1−e)A(1−e) are also central simple. The simplicity
can be easily checked. Let us show that they are central. This is undoubtedly
known, but let us give a short proof for completness. We want to show that the
center of eAe is equal to Fe. Let eae be a nonzero element from the center of eAe.
In view of the simplicity of A there exists xi, yi ∈ A such that

∑
i xieaeyi = 1. For

every x ∈ A we thus have xe =
∑

i xieaeyixe. Since eae commutes with eyixe this
implies xe =

∑
i xieyixeae. Thus xe = bxeae for every x ∈ A where b =

∑
i xieyi.

Accordingly, ybxeae = yxe = byxeae for all x, y ∈ A. That is, [b, A]Aeae = 0.
Since A is simple it follows that [b, A] = 0, and hence, since A is central, we have
b = λ ∈ F . Returning to xe = bxeae it now follows eae = λe, as desired.

Lemma 2.4 implies that the strong degree of both eAe and (1 − e)A(1 − e) is
≥ 3. But then the strong degree of A0 is also ≥ 3 by Lemma 2.2.

Using the fact that the center of eAe is Fe one can easily show that the super-
center of A is just F . All conditions of Theorem 3.1 are thus fulfilled and the result
follows. �

For example, Corollary 3.2 is applicable to the algebra M(p | q) as long as p > 2
and q > 2. It is easy to see that in this situation the identities that τ satisfies
imply that τ is necessarily a scalar multiple of the supertrace, i.e. the map given

by

[
A B
C D

]
7→ tr(A)− tr(D), where tr denotes the trace.

Corollary 3.2 shows both the power and the limitations of our approach based on
the strong degree and functional identities. While it covers a rather large class of
associative superalgebras (which are possibly infinite dimensional), it fails in some
specific situations related to low dimensional algebras.
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