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1 Introduction

Throughout this paper A will be an algebra over a field F. We shall tacitly assume that char(F) 6= 2,
although this is not always necessary. It is well-known that A becomes a Lie algebra if we replace
the original product by the new product, the so-called Lie product, given by the commutator

[x, y] = xy − yx for x, y ∈ A.

Ideals of A with respect to the Lie product are called Lie ideals of A. Thus, a Lie ideal of A is a
linear subspace L of A such that

[a, x] ∈ L for all a ∈ A and x ∈ L.

How does the associative structure of the algebra A effect the Lie structure of A? In particular, is
it possible to describe Lie ideals of A through associative ideals of A? This and related questions
such as the link between Lie ideals and conjugate-invariant subspace of unital algebras, have been
an active area of research for more than 50 years. They have been studied in pure algebra (see
e. g. [A, BFM, H1, H2, H3, JR, LM, MM1, MM2, Mu]) and, more or less independently, also in
functional analysis, particularly in operator algebras (see e. g. [BM, CY, FM, FR, FMS, FN, HMS,
HP, Ma, MaMu, MS, Mi, To]). One of the goals of this paper is to “glue” these two areas; that
is, we will apply purely algebraic results, derived in the first part of the paper, to the second part
dealing with Banach algebras, especially with W*-algebras and C*-algebras.

By ZA we denote the center of A. For linear subspaces K and M of A, we denote

KM = linear span{ab: a ∈ K, b ∈M} and [K,M ] = linear span{[a, b]: a ∈ K, b ∈M}.

Ideals of A are obvious, but rather special examples of Lie ideals. Another and, as we shall see, a
more important example of a Lie ideal that arises from an ideal J is [J,A]. But even this is not
sufficiently general, more complicated examples related to this one can be easily constructed. So
what could be a satisfactory description of Lie ideals in terms of ideals? Before giving what we
believe is an adequate answer to this question, we mention two rather old and well-known results.

The first one is a classical theorem by Herstein [H1]:

T0.0 Theorem 1.1 If A is a simple algebra, then a linear subspace L of A is a Lie ideal of A if and
only if either L ⊇ [A,A], or L ⊆ ZA.

The second result is due to Fong, Miers and Sourour [FMS]:
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T0.1 Theorem 1.2 A linear subspace L of the algebra A = B(H) of all bounded linear operators on a
separable Hilbert space H is a Lie ideal of A if and only if there exists an ideal J of A such that

[J,A] ⊆ L ⊆ J + C1H . (1.1) 0.3

These two characterizations of Lie ideals might appear rather different, but they can be viewed
inside the same framework, as we shall now see. For any subspace K of A, we set

N(K) = {x ∈ A: [x,A] ⊆ K}.

For example, N({0}) = ZA and N([A,A]) = A. The condition that K is a Lie ideal of A can be
expressed as that K ⊆ N(K). Further, note that in this case every linear space lying between K
and N(K) is a Lie ideal. In particular, if J is an ideal of A, then every subspace L such that

[J,A] ⊆ L ⊆ N([J,A]) (1.2) ena

is a Lie ideal. We will say that such a Lie ideal L is embraced by an ideal J . We regard Lie ideals
that are embraced by ideals as “trivial” ones in the sense that they arise from associative ideals,
so they reflect just the structure of A and are not concerned with some peculiar properties of A−.
Note that the aforementioned results imply the following:

T1.1 Theorem 1.3 (Herstein) Every Lie ideal of a simple algebra is embraced by an ideal.

T1.2 Theorem 1.4 (Fong-Miers-Sourour) Every Lie ideal of B(H) is embraced by an ideal.

Theorem 1.3 is clearly equivalent to Theorem 1.1, while Theorem 1.4 seemingly tells us less
than Theorem 1.2. Nevertheless, it is equivalent to Theorem 1.2 due to Calkin’s result [C] saying
that N(J) = J + C1, for each ideal J of A = B(H), so that J + C1 ⊆ N([J,A]) ⊆ N(J) = J + C1
and, therefore, N([J,A]) = J + C1.

Motivated by Theorems 1.3 and 1.4, we now propose the following general problem. Given an
algebra A, is every Lie ideal of A embraced by an ideal? If the answer is “yes”, then all Lie ideals
of A arise from ideals of A, that is, they are completely determined by associative ideals of A.
In general this is the optimal description of Lie ideals one can hope for; in a particular algebra,
one can of course also try to determine [J,A] and N([J,A]) for all ideals J , and hence obtain a
more accurate description. But in the present paper this problem will not be in the center of our
attention. Nevertheless, as a consequence of special properties of algebras that we shall consider,
we will usually obtain a sharper conclusion than just (1.2).

To the best of our knowledge, the idea of considering condition (1.2) is new. There is, however,
a similar condition that has gained some interest in the past. We shall say that a subspace L of A
is related to an ideal J of A if

[J,A] ⊆ L ⊆ N(J). (1.3) dva

As N([J,A]) ⊆ N(J), (1.2) implies (1.3), so if L is embraced by J , then it is also related to J . The
converse is not true in general. Moreover, unlike (1.2), (1.3) does not imply that L is a Lie ideal.
So the condition of being related to an ideal is not entirely satisfactory for describing Lie ideals.
Anyhow, this condition naturally appears in the study of Lie ideals. If A = Mn(B), the algebra
of all n× n matrices over an arbitrary unital algebra B, then every Lie ideal of A is related to an
ideal. This was proved by Murphy [Mu] for n = 2, and later extended to an arbitrary n by Marcoux
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[Ma]. The condition (1.3) will be of some importance also in the present paper, in particular as an
intermediate step towards (1.2). Another condition considered in this paper is the following one.
We shall say that a subspace L of A is commutator equal to an ideal J of A if

[L,A] = [J,A]. (1.4) tri

This condition does not guarantee that L is a Lie ideal, and so it is not entirely appropriate for
characterizing Lie ideals. However, if we do know that L is a Lie ideal, then (1.4) implies (1.2).
Summarizing the notions introduced above, we have

D1 Definition 1.5 Let L be a Lie ideal and J be an ideal of A. We say that
(i) L and J are related if [J,A] ⊆ L ⊆ N(J);
(ii) J embraces L if [J,A] ⊆ L ⊆ N([J,A]);
(iii) L and J are commutator equal if [L,A] = [J,A].

From the discussion above it follows that (iii)=⇒(ii)=⇒(i).
In Section 2 we give a more detailed insight into the notions introduced in Definition 1.5. In

particular, we show that there exist (a) Lie ideals that are not related to ideals, (b) Lie ideals that
are related to ideals but not embraced by ideals, and (c) linear subspaces that are related to and
commutator equal to ideals but are not Lie ideals. We also obtain some preparatory results and
review the foundations of Herstein’s theory of Lie ideals.

In Section 3 we consider a unital algebra A that contains an idempotent p1. The main idea
is to describe the properties of Lie ideals of A via the properties of Lie ideals of the algebra
p1Ap1 + p2Ap2, where p2 = 1 − p1. We show that this is possible if p1 satisfies a rather mild
condition. The background behind this result is that it makes it possible for us to effectively
handle W*-algebras in Section 5. At the same time, the result is of some interest in its own right.

Section 4 is devoted to the study of Lie ideals in the tensor product B⊗P of algebras B and P,
where B is a (locally) unital algebra. The main restrictions are imposed on the algebra P. Firstly,
P is assumed to be a prime algebra satisfying some further technical conditions. A complete
description of Lie ideals in this generality seems to be out of reach. We do, however, associate with
every Lie ideal L of B ⊗ P a pair of ideals of B and P that are in some sense connected to L. For
a simple P, we construct a large variety of Lie ideals of B ⊗ P from Lie ideals of B and P, and
thoroughly analyse the case when dim(P/[P,P]) ≤ 1. In this situation we are able to precisely
describe Lie ideals of B⊗P. In the special case where P = Mn(F) this leads to a characterization of
Lie ideals of Mn(B) ∼= B⊗Mn(F), which essentially strengthens the results of Murphy and Marcoux
mentioned above. Since Lie ideals of Mn(B) are not necessarily embraced by ideals (they are only
related to ideals), this characterization is necessarily a bit complicated. With Section 4 a purely
algebraic part of the paper ends.

In Section 5 we study Lie ideals (closed and non-closed) of Banach algebras. To analyse relations
between Lie ideals and associative ideals of Banach algebras A, we consider topological analogues
of the algebraic conditions. We say that a Lie ideal L is topologically embraced by an ideal J if

[J,A] ⊆ L ⊆ N([J,A]); (1.5) 0.1

and that L is topologically commutator equal to J if

[L,A] = [J,A]. (1.6) 0.2
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Although these conditions are weaker than the corresponding algebraic conditions, they are suffi-
ciently strong to characterize closed Lie ideals of many Banach algebras. Indeed, if all closed Lie
ideals of A are topologically embraced by closed ideals, then the set of all closed Lie ideals of A
consists of all closed subspaces that lie between [J,A] and N([J,A]), where J is an arbitrary closed
ideal of A.

For many classes of Banach algebras the link between closed Lie ideals and closed associative
ideals is very strong. Miers [Mi] showed that if A is a W*–algebra then, for each closed Lie ideal
L, there is a closed ideal J such that J ⊆ L + ZA ⊆ J + ZA. For uniformly hyperfinite triangular
operator algebrasA, Hudson, Marcoux and Sourour [HMS] proved that each L satisfies the inclusion
J ⊆ L ⊆ J +D, for some closed ideal J of A and some closed subalgebra D of the diagonal of A.
Marcoux [Ma] established that each simple UHF-algebra A has only four closed Lie ideals: {0}, C1,
[A,A] and A. In [MaMu] Marcoux and Murphy showed that it is also true for all unital simple C*-
algebras with only one tracial state (for example, for all UHF-algebras, for the irrational rotation
algebras Aθ, for Bunce-Deddens algebras and for the reduced group C*-algebras Cr(Fn), where Fn

is the free group on n > 1 generators).
We describe closed Lie ideals of some Banach *-subalgebras of the C*-algebra C(H) of all

compact operators on a Hilbert space H. In particular, we consider symmetrically normed ideals
of C(H) and the “differential” subalgebras of C(H), defined by symmetric operators (the term
“differential” arises from the fact that these subalgebras are the domains of closed *-derivations of
C(H)).

We also obtain some Banach algebraic counterpart of the results of Section 4 on tensor products.
We prove that, for any unital Banach algebra B, the closed Lie ideals of the projective tensor product
B⊗̂C(H) and, more generally, of B⊗̂J , where J is a separable symmetrically normed ideal of B(H)
different from C1, are ideals.

Going over from the general Banach case to a more special case of C*-algebras, we first consider
arbitrary (not necessarily closed) Lie ideals of W*-algebras. Relying heavily on algebraic properties
of W*-algebras, we derive from the results of Sections 3 and 4 the desirable characterization of Lie
ideals in general W*-algebras: every Lie ideal of a W*-algebra is commutator equal to (and, hence,
embraced by) an ideal.

The relation between Lie ideals and associative ideals in general C*-algebras A is much more
complicated and varied than in W*-algebras. We show that, for a closed Lie ideal L and a closed
associative ideal J of A, the “topological” conditions (1.5) and (1.6) are equivalent and that they
are equivalent to the algebraic condition that L and J are related. Using the characterization of
Lie ideals in W*-algebras, we establish the result that completely describes closed Lie ideals of
C*-algebras in terms of ideals: each Lie ideal of a C*-algebra is topologically commutator equal to
an associative ideal.

In special cases more transparent descriptions of closed Lie ideals can be possible. Thus if A
has no tracial states then each closed Lie ideal lies between I and N(I), for some closed ideal I of
A. Moreover, using the technique developed in the analysis of projective tensor products, we show
that any closed Lie ideal of a stable C*-algebra A (A ∼= A⊗ C(H)) is an ideal.

The authors are very grateful to the referee for the careful reading of the paper and for numerous
perceptive and helpful comments.
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2 Lie ideals in general algebras.

As above, A will be an algebra over a field F with char(F) 6= 2, and by ZA we denote its center. For
any subset S of A, denote by Id(S) the ideal of A generated by S that contains S, that is, Id(S)
is the linear span of all elements s, as, sa, asb with s ∈ S and a, b ∈ A. Let x, y, z ∈ A. Then

[xy, z] = [x, yz] + [y, zx], (2.1) 1

[xy, z] = [x, z]y + x[y, z]. (2.2) 2

Let L be a Lie ideal of A. Then LA ⊆ L+AL and AL ⊆ L+ LA. Hence

Id(L) = L+AL = L+ LA, (2.3) e2.1

and
ALA ⊆ AL ∩ LA, so AL and LA are ideals of A. (2.4) e2.2

Let us point out that if L,L′ are Lie ideals of A, then [L,L′] is again a Lie ideal (just use the Jacobi
identity to check this). This will be often used in the sequel.

L0 Lemma 2.1 (i) For a Lie ideal L and an ideal J of A conditions in Definition 1.5 satisfy the
implication (iii) =⇒ (ii) =⇒ (i).

(ii) If A = [A,A] + ZA then conditions (i), (ii), (iii) in Definition 1.5 are equivalent.

Proof. Part (i) is evident. Assume that A = [A,A] + ZA and show that condition (i) of
Definition 1.5 implies condition (iii). If L is related to J then [J,A] ⊆ L and [L,A] ⊆ J. By Jacobi
identity,

[L,A] = [L, [A,A] + ZA] = [L, [A,A]] ⊆ [[L,A],A] ⊆ [J,A].

Similarly [J,A] ⊆ [L,A]. Hence [J,A] = [L,A].

It should be noted that the condition A = [A,A] +ZA holds for many important classes of pure
and Banach algebras (for example, all W*-algebras satisfy this condition (see (5.18)).

The next four results are basically due to Herstein, at least they can be extracted from his
arguments [H2, pp. 4-5].

P1 Proposition 2.2 If L is a Lie ideal of A then N(L) is a subalgebra and a Lie ideal of A and

Id([L,L]) ⊆ Id([N(L), N(L)]) ⊆ N(L). (2.5) 5

Proof. For x, y ∈ N(L) and a ∈ A, we have from (2.1)

[xy, a] = [x, ya] + [y, ax] ∈ L.

Hence xy ∈ N(L), so N(L) is a subalgebra of A. It follows from the definition of N(L) that

[N(L),A] ⊆ L. (2.6) 3

As L ⊆ N(L), (2.6) in particular shows that N(L) is a Lie ideal of A.
As L ⊆ N(L), we only have to prove that Id([N(L), N(L)]) ⊆ N(L). Further, since N(L) is a Lie

ideal of A, so is [N(L), N(L)], and hence in view of (2.3) it suffices to show that A[N(L), N(L)] ⊆
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N(L). Given a ∈ A and x, y ∈ N(L), it follows from (2.2) that a[x, y] = [ax, y] − [a, y]x. As
N(L) is a Lie ideal and a subalgebra of A, both terms in the right-hand side lie in N(L). Whence
a[x, y] ∈ N(L).

Proposition 2.2 yields

contains Corollary 2.3 Each non-commutative Lie ideal L of A contains a Lie ideal of the form [J,A]
where J is a non-zero ideal of A. Moreover, one can take J = Id([L,L]).

The condition that L is non-commutative can be further weakened in semiprime algebras, that
is, the algebras in which aAa = {0} implies a = 0.

P2 Proposition 2.4 If L is a commutative Lie ideal of a semiprime algebra A, then L ⊆ ZA.

Proof. For all x ∈ L and a ∈ A, [x, [x, a]] = 0. Fix x and write dx(a) = [x, a]. Then d2
x(a) = 0

for all a ∈ A. Taking into account that, by (2.2), dx(ab) = adx(b) + dx(a)b for a, b ∈ A, we have

0 = d2
x(ab) = ad2

x(b) + 2dx(a)dx(b) + d2
x(a)b = 2dx(a)dx(b).

As char(F) 6= 2, it follows that dx(a)dx(b) = 0 for all a, b ∈ A. Hence, for all c ∈ A,

dx(a)cdx(a) = dx(a)dx(ca)− dx(a)dx(c)a = 0.

Since A is semiprime, dx(a) = [x, a] = 0 for all a ∈ A. Thus x ∈ ZA, so L ⊆ ZA.

A subspace of A is called central if it is contained in ZA. Proposition 2.4 thus tells us that in
semiprime algebras each non-central Lie ideal is non-commutative. Hence Corollary 2.3 may be
extended from non-commutative Lie ideals to non-central ones as follows.

Herstein Theorem 2.5 (Herstein) Each non-central Lie ideal L of a semiprime algebra A contains a Lie
ideal of the form [J,A] where J is a non-zero ideal of A. Moreover, one can take J = Id([L,L]).

Note that Theorem 1.3 follows immediately from Proposition 2.4 and Theorem 2.5.
So we see that it is not too difficult to find Lie ideals [J,A], with a non-zero ideal J , inside a

non-central Lie ideal L. However, this does not give us any information about how big is [J,A]; in
principle it could be a very small portion of L. Our goal is to find J so that [J,A] is as “close” to
L as possible. The condition (1.2) that L is embraced by J can be equivalently written as

[L,A] ⊆ [J,A] ⊆ L. (2.7) impii

So the problem is to locate [J,A] between [L,A] and L. The nice structure of some of the algebras
we shall consider will allow us to find J so that actually L is commutator equal to J : [L,A] = [J,A].

The weakest condition (1.3) in which we are interested that L is related to J can be rewritten
as

[J,A] ⊆ L and [L,A] ⊆ J, (2.8) relii

so L and J appear symmetrically. Note that the set of ideals J satisfying this condition, for a fixed
Lie ideal L, is closed under intersections and sums. Therefore, if L is related to some ideal J , then
there exist the smallest ideal and the largest ideal to which L is related.
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L1.0’ Lemma 2.6 A Lie ideal L of A is related to an ideal of A if and only if Id([L,A]) ⊆ N(L).
Moreover, in this case Id([L,A]) is the smallest ideal to which L is related.

Proof. If L is related to an ideal J , then we see from the second relation in (2.8) that
Id([L,A]) ⊆ J . So the first relation implies that Id([L,A]) ⊆ N(L). The converse is obvious.
Also, it is clear that Id([L,A]) is the smallest ideal related to L.

Thus, in order to show that a Lie ideal L is related to some ideal, one just has to check that

[Id([L,A]),A] ⊆ L. (2.9) reliii

As [[L,A],A] ⊆ L and since, by (2.3), Id([L,A]) = [L,A] + [L,A]A, (2.9) is equivalent to

[[L,A]A,A] ⊆ L. (2.10) reliv

T1 Proposition 2.7 For a Lie ideal L of A, set IL = Id([L,L]).
(i) If [L,A] ⊆ IL, then L is related to an ideal.
(ii) If the quotient algebra A/IL is semiprime or commutative, then [L,A] ⊆ IL.

Proof. By Proposition 2.2, IL ⊆ N(L), so part (i) follows from Lemma 2.6.
Let θ be the canonical map fromA ontoA/IL. Then θ(L) is a Lie ideal ofA/IL and [θ(L), θ(L)] =

θ([L,L]) = {0}. If A/IL is semiprime then, by Proposition 2.4, θ(L) lies in the centre of A/IL.
Hence [L,A] ⊆ IL. If A/IL is commutative, [L,A] ⊆ [A,A] ⊆ IL.

It should be noted that, even for ideals I, the inclusion [I,A] ⊆ Id([I, I]) does not always hold.
For example, in the algebra A of all upper triangular 2 × 2 matrices over F, consider the ideal
I = [A,A]. Then [I, I] = {0} but [I,A] 6= {0}.

The condition (2.10) is rather concrete and so the problem of showing that a Lie ideal is related
to an ideal is quite accessible. However, the problem of showing that a Lie ideal L is embraced by
some ideal is, in general, much harder, since there does not seem to be a way of expressing this
condition by a simple formula involving only L and A; that is, the ideal J in (2.7) is “unknown”,
while in (2.8) we know that Id([L,A]) is the natural candidate for J .

If a Lie ideal L is related to some ideal, one can then ask whether this ideal is unique. In
other words, is Id([L,A]) the only ideal to which L is related? The answer is clearly negative
in commutative algebras, and, in view of Herstein’s theorem, clearly positive in non-commutative
simple algebras. A more interesting example where the answer is positive is B(H). Namely, Fong
and Murphy showed in [FM] the uniqueness of the ideal J in the Fong-Miers-Sourour theorem (see
(1.1)). This uniqueness problem will also be one of the issues in this paper.

The next lemma shows that if one can describe Lie ideals of A through ideals of A, then the
same description carries over to homomorphic images of A.

L5’ Lemma 2.8 Let B be a homomorphic image of A. If each Lie ideal of A is embraced by (related
to, commutator equal to) an ideal of A, then all Lie ideals of B have the same property.

Proof. Let π : A → B be a surjective algebra homomorphism. If M is a Lie ideal of B,
then L = π−1(M) is a Lie ideal of A. Suppose that L is embraced by an ideal J of A, so that
(2.7) holds. Since π(L) = M and K = π(J) is an ideal of B, applying π to (2.7) we get that
[M,B] ⊆ [K,B] ⊆M . Thus M is embraced by K.
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The other two conditions can be handled similarly.

We end this section with examples showing the independence and the non-triviality of the
concepts that were introduced. In view of Lemma 2.8 it is natural to search for such examples in
free algebras (since every algebra is a homomorphic image of a free algebra).

E1.1 Example 2.9 Let A = F〈x, y, z, w〉 be the free algebra in x, y, z, w. Then the Lie ideal

L = Fx+ [x,A] + [[x,A],A] + [[[x,A],A],A] + . . .

of A generated by x is not related to any ideal.

Proof. Suppose that L is related to some ideal. Then Id([L,A]) ⊆ N(L) by Lemma 2.6, so
(2.10) holds. In particular, [[x, y]z, w] ∈ L. Note that this is possible only if there are λi ∈ F such
that

[[x, y]z, w] = λ1[x, yzw] + λ2[x, ywz] + λ3[x, zyw] + λ4[x, zwy]
+λ5[x,wyz] + λ6[x,wzy] + λ7[[x, y], zw] + λ8[[x, y], wz]
+λ9[[x, z], yw] + λ10[[x, z], wy] + λ11[[x,w], yz] + λ12[[x,w], zy]
+λ13[[x, yz], w] + λ14[[x, zy], w] + λ15[[x, yw], z] + λ16[[x,wy], z]
+λ17[[x, zw], y] + λ18[[x,wz], y] + λ19[[[x, y], z], w] + λ20[[[x, y], w], z]
+λ21[[[x, z], y], w] + λ22[[[x, z], w], y] + λ23[[[x,w], y], z] + λ24[[[x,w], z], y].

Comparing the coefficients at the monomials wyxz, zxwy, ywxz and zxyw, respectively, we get

−λ10 − λ16 + λ19 + λ20 + λ21 = 1,
−λ10 − λ16 − λ22 − λ23 − λ24 = 0,
−λ9 − λ15 + λ22 + λ23 + λ24 = 0,
−λ9 − λ15 − λ19 − λ20 − λ21 = 0.

¿From the first two identities we infer that

λ19 + λ20 + λ21 + λ22 + λ23 + λ24 = 1,

while the last two identities imply that

λ19 + λ20 + λ21 + λ22 + λ23 + λ24 = 0.

This contradiction shows that L is not related to any ideal of A.

E1.2 Example 2.10 Let A = F〈x, y, z〉 be the free algebra in x, y, z. Denote by An the linear span of
all monomials of degree greater or equal to n. Then

L = Fx+ [x,A] + [[x,A],A] +A4

is a Lie ideal of A related to an ideal, but not embraced by any ideal.
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Proof. It is clear that L is a Lie ideal of A. As A = F1 +A1 and [L,A] ⊆ A2,

[[L,A]A,A] ⊆ [[L,A],A] + [[L,A]A1,A] ⊆ L+ [[L,A]A1,A1] ⊆ L+A4 = L,

so L satisfies (2.10) which means that it is related to an ideal (see Lemma 2.6). Suppose that L is
embraced by an ideal J . Pick an arbitrary element u ∈ J and write u = α + βx + γy + δz + u2,
where α, β, γ, δ ∈ F and u2 ∈ A2. We have

β[x, y] + δ[z, y] + [u2, y] = [u, y] ∈ [J,A] ⊆ L,

from which we easily infer that δ = 0. Similarly we see that γ = 0. Hence

α[y, z] + β[xy, z] + [u2y, z] = [uy, z] ∈ [J,A] ⊆ L.

As [u2y, z] ∈ A4 ⊆ L, it follows that α[y, z] + β[xy, z] ∈ L, whence α = 0. Suppose β 6= 0. Then
[xy, z] ∈ L. It is easy to see that then we must have

[xy, z] = λ1[x, yz] + λ2[x, zy] + λ3[[x, y], z] + λ4[[x, z], y]

for some λi ∈ F. However, comparing the coefficients at the monomials zxy and yxz we obtain
−1 = −λ3 − λ4 and 0 = −λ3 − λ4, which is clearly impossible. Thus β = 0 as well, and so u = u2.
That is to say, J ⊆ A2. However, this yields [x, y] ∈ [L,A] ⊆ [J,A] ⊆ A3 – a contradiction. Thus
L is not embraced by any ideal.

E1.3 Example 2.11 Let A be the algebra of all strictly upper triangular 3× 3 matrices over F, that is,
A = Fe12 + Fe13 + Fe23, where eij denote matrix units. Then L = Fe12 is a linear space related to
an ideal and commutator equal to an ideal, but is not a Lie ideal.

Proof. Clearly, L is not a Lie ideal, as [L,A] = Fe13 does not lie in L. As [A,A] = Fe13, L is
commutator equal to A. Finally, L is related to the ideal J = Fe13.

3 Lie ideals in algebras with idempotents.

The presence of an idempotent p1 in a unital algebra A makes it possible to reduce the study of
the relation between Lie ideals and ideals in A to the study of this relation in the “block-diagonal
subalgebra” Ad = p1Ap1 + p2Ap2 of A with p2 = 1 − p1. We will show that, under some mild
conditions on p1, a Lie ideal L of A is related to (embraced by) an ideal of A if and only if the
same is true for the Lie ideal Ld = L ∩ Ad of Ad. This link, interesting by itself, becomes crucial
for the study of Lie ideals of W*-algebras (see Section 5).

Firstly we will consider the simplest case when A = A1 uA2 is the direct sum of subalgebras.
(In this case we do not require that A contains idempotents pi such that Ai = piA. However, if
A has such idempotents then they are central.) If all Lie ideals of A1 and A2 are embraced by
ideals, then Lie ideals of A are not necessarily embraced by ideals of A. If, however, all Lie ideals
of A1 and A2 are commutator equal to ideals, then all Lie ideals of A are also commutator equal
to ideals.
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P1.4 Proposition 3.1 Let A = A1 uA2 be the direct sum of algebras A1 and A2.
(i) Each Lie ideal of A is commutator equal to an ideal of A if and only if all Lie ideals of A1

and A2 are commutator equal to ideals.
(ii) Let A1 or A2 be unital. Let all Lie ideals of A1 and A2 be commutator equal to ideals. Then

each Lie ideal of A is only related to one ideal of A if and only if each Lie ideal of A1 and A2 is
only related to one ideal.

Proof. Denote by Pi the projections on the subalgebras Ai in A: Pi(x1 + x2) = xi, for all
xi ∈ Ai. (If A contains idempotents pi such that Ai = piA, then Pi(x1 +x2) = pix1 +pix2). Assume
that each Lie ideal of A is commutator equal to an ideal of A and show that A1,A2 have the same
property. Every Lie ideal L1 of A1 is a Lie ideal of A. So there is an ideal J of A such that [L1,A] =
[J,A]. As [L1,A] = P1[L1,A] = [L1,A1], we have [L1,A1] = P1[L1,A] = P1[J,A] = [J1,A1], where
J1 = P1J is an ideal of A1. The “only if” part is proved.

Let L be a Lie ideal of A. Then Li = PiL is a Lie ideal of Ai,

L ⊆ L1 u L2 and [L,A] = [L1,A1] u [L2,A2]. (3.1) 1.10

If all Lie ideals of A1 and A2 are commutator equal to ideals, then

[J1,A1] = [L1,A1] and [J2,A2] = [L2,A2],

for some ideals Ji of Ai. Then J = J1 u J2 is an ideal of A and, by (3.1),

[J,A] = [J1,A1] u [J2,A2] = [L1,A1] u [L2,A2] = [L,A].

Part (i) is proved.
Suppose now that A1 is unital and that each Lie ideal of the algebra A1 and of A2 is commutator

equal to an ideal and is only related to one ideal. Let L be a Lie ideal of A and let J = J1 u J2

be the ideal constructed above that commutator equal to L. Then J is related to L. Assume that
there is another ideal I related to L, that is, [L,A] ⊆ I and [I,A] ⊆ L. As A1 is unital, the ideals
I1 = P1I = 1A1I of A1 and I2 = P2I of A2 lie in I and I = I1 u I2. By (3.1), we have

[L1,A1] u [L2,A2] = [L,A] ⊆ I = I1 u I2,

[I1,A1] u [I2,A2] = [I,A] ⊆ L ⊆ L1 u L2.

Hence [Li,Ai] ⊆ Ii and [Ii,Ai] ⊆ Li for i = 1, 2. Thus L1 is related to I1. The Lie ideal L1 is also
related to the ideal J1. As L1 is only related to one ideal, I1 = J1. Similarly, I2 = J2. Hence I = J,
so L is only related to one ideal.

On the other hand, if a Lie ideal M of A1 is related to ideals I1 and I ′1 of A1, then M considered
as a Lie ideal of A is related to the ideals I1 and I ′1 considered as ideals of A.

We will consider now the general case of a unital algebra A with an idempotent p1. We do
not assume that p1 and p2 = 1− p1 are equivalent, so A is not, generally speaking, isomorphic to
M2(B). For a linear subspace L of A, set Lij = piLpj . The subspaces Lij of A do not necessarily
lie in L. We have

AiiAij = Aij , AijAjk ⊆ Aik and AijAkm = {0} if j 6= k, (3.2)
[Aij , Ljk] = AijLjk ⊆ Aik if i 6= k. (3.3)
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A linear subspace J of A is an ideal if and only if

J = J11 + J12 + J21 + J22, with JijAjk ⊆ Jik and AijJjm ⊆ Jim. (3.4) 1.4

Indeed, if J is an ideal, then Jij = piJpj ⊆ J and JijAjk ⊆ Jik, AijJjm ⊆ Jim. For each x ∈ J,
x = p1xp1 + p1xp2 + p2xp1 + p2xp2, so (3.4) holds. The converse is evident.

L1.5 Lemma 3.2 (i) A linear subspace L is a Lie ideal of A if and only if

L = L12 + L21 + Ld where Ld = L ∩ (A11 +A22) ⊆ L11 + L22, (3.5) 1.5

LijAjj = [Lij ,Ajj ] = Lij = AiiLij = [Aii, Lij ] for i 6= j, (3.6) 1.6

[Ld,A11 +A22] = [L11,A11] + [L22,A22] ⊆ Ld, (3.7) 1.7

[Lij ,Aji] ⊆ Ld, [Ld,Aij ] ⊆ Lij for i 6= j. (3.8) 1.8

(ii) If L is a Lie ideal of A then

[L,A] = L12 + L21 + [L11,A11] + [L22,A22] + [L12,A21] + [L21,A12].

Proof. Let L be a Lie ideal of A. For each x ∈ L,

p1xp2 =
1
2

([p1, [p1, x]] + [p1, x]) ∈ L and p2xp1 =
1
2

([p1, [p1, x]]− [p1, x]) ∈ L.

Hence L12 + L21 ⊆ [L,A] ⊆ L. Therefore (3.5) holds.
As [Lij ,Ajj ] ⊆ Lij and Ajj are unital, LijAjj = [Lij ,Ajj ] = Lij and AiiLij = [Aii, Lij ] = Lij ,

for i 6= j, so (3.6) holds.
Conditions (3.7) follow from the fact that Ld ⊆ L11 + L22 and [Ld,Aii] = [Lii,Aii].
As LijAji ⊆ Aii and [Lij ,Aji] ⊆ L, for i 6= j, we have [Lij ,Aji] ⊆ L ∩ (A11 + A22) = Ld. We

also have [Ld,Aij ] ⊆ L ∩ Aij = Lij , so (3.8) holds.
Conversely, let (3.5)-(3.8) hold. Then

[L,A11] = [L12,A11] + [L21,A11] + [Ld,A11] = L12 + L21 + [L11,A11] ⊆ L.

Similarly, [L,A22] ⊆ L, [L,A12] ⊆ L, [L,A21] ⊆ L, so L is a Lie ideal of A. Part (i) is proved.
Making use of (3.5)-(3.8), we prove part (ii).

We continue to assume that L is a Lie ideal of A. Set

Ad = A11 +A22, Ac = A12 +A21, Lc = L12 + L21.

As A is unital, it follows from (3.2)-(3.8) that

AdAd = Ad, AdAc = AcAd = Ac, AcAc ⊆ Ad, (3.9)
LcAd = AdLc = [Lc,Ad] = Lc, [Ld,Ac] ⊆ Lc. (3.10)

[Ld,Ad] = [L11,A11] + [L22,A22] ⊆ Ld, (3.11)
[Lc,Ac] = [L12,A21] + [L21,A12] ⊆ Ld. (3.12)
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We have that

Ac[Ld,Ad] = A12[L22,A22] +A21[L11,A11] = [A12, [L22,A22]] + [A21, [L11,A11]]
⊆ [A12, Ld] + [A21, Ld] = [Ac, Ld] ⊆ Lc,

[Ld,Ad]Ac = [L22,A22]A21 + [L11,A11]A12

= [[L22,A22],A21] + [[L11,A11],A12] ⊆ Lc. (3.13)

We also have

[LcAc,Ad] = [L12A21 + L21A12,A11 +A22] = [L12A21,A11] + [L21A12,A22]
= [[L12,A21],A11] + [[L21,A12],A22] ⊆ [Ld,Ad].

Similarly, [AcLc,Ad] ⊆ [Ld,Ad]. Hence

[LcAc +AcLc,Ad] ⊆ [Ld,Ad]. (3.14) e1.9

Set I = Lc + LcAc +AcLc, M = Ad[Ld,Ad]Ad and J = I +M.

P1.7 Proposition 3.3 If AcLcAc ⊆ Lc, then J = Id([L,A]) and

[J,A] = Lc + [Lc,Ac] + [LcAc +AcLc,Ad] + [M,Ad]. (3.15) f2

Proof. As AcLcAc ⊆ Lc, it follows from (3.9), (3.10), (3.13) that

AdI = AdLc +AdLcAc +AdAcLc = Lc + LcAc +AcLc = I,

AcI = AcLc +AcLcAc +AcAcLc ⊆ AcLc + Lc +AdLc = AcLc + Lc ⊆ I,
AdM = AdAd[Ad, Ld]Ad = Ad[Ad, Ld]Ad =M,

AcM = AcAd[Ad, Ld]Ad = Ac[Ad, Ld]Ad ⊆ LcAd = Lc ⊆ I.

Thus AJ ⊆ J. Similarly, JA ⊆ J, so J is an ideal of A.
It follows from Lemma 3.2(ii) that Id([L,A]) ⊆ J, since

[L,A] = Lc + [Lc,Ac] + [Ld,Ad] ⊆ Lc + (LcAc +AcLc) +Ad[Ld,Ad]Ad = J. (3.16) f1

On the other hand, I ⊆ Id(Lc) and Lc ⊆ [L,A], so that I ⊆ Id([L,A]). We also have M =
Ad[Ld,Ad]Ad ⊆ Id([L,A]). Hence J ⊆ Id([L,A]). Thus J = Id([L,A]).

Let us now find [J,A]. As AcLcAc ⊆ Lc, we have from (3.9) and (3.10) that

[LcAc,Ac] ⊆ LcAcAc +AcLcAc ⊆ LcAd + Lc = Lc.

Similarly, [AcLc,Ac] ⊆ Lc. Hence we have from (3.10) that

[I,A] = [I,Ad] + [I,Ac] = [Lc,Ad] + [LcAc +AcLc,Ad] + [Lc,Ac] + [LcAc +AcLc,Ac]
= Lc + [LcAc +AcLc,Ad] + [Lc,Ac].

Next, by (3.9), (3.10) and (3.13),

[M,Ac] = [Ad[Ld,Ad]Ad,Ac] ⊆ Ad[Ld,Ad]AdAc +AcAd[Ld,Ad]Ad
= Ad[Ld,Ad]Ac +Ac[Ld,Ad]Ad ⊆ AdLc + LcAd = Lc.

12



Therefore

[J,A] = [I,A] + [M,Ac] + [M,Ad] = Lc + [Lc,Ac] + [LcAc +AcLc,Ad] + [M,Ad]

which completes the proof.

It should be noted that M = Ad[Ld,Ad]Ad = IdAd([Ld,Ad]), so M is an ideal of Ad.

T1.8 Theorem 3.4 Let L be a Lie ideal of A. Set J = Id([L,A]).

(i) L is related to an ideal of A if and only if the Lie ideal Ld of Ad is related to an ideal of Ad
and

AcLcAc ⊆ Lc. (3.17) f3

(ii) Let AcLcAc ⊆ Lc.

1) If IdAd([Ld,Ad]) embraces Ld, then J embraces L.

2) If IdAd([Ld,Ad]) and Ld are commutator equal, then J and L are commutator equal.

Proof. Suppose that L is related to an ideal of A. By Lemma 2.6, L is related to J. Hence
[J,A] ⊆ L. As A is unital, J = Id([L,A]) = A[L,A]A, so [A[L,A]A,A] ⊆ L. Hence, by (3.10),

[A12[Lc,Ad]A12,A11] = [A12LcA12,A11] = A11A12LcA12 = A12LcA12 ⊆ L.

Thus A12LcA12 ⊆ Lc. Similarly, A21LcA21 ⊆ Lc. Hence AcLcAc ⊆ Lc.
Set M = IdAd([Ld,Ad]). We have

[Ad[Ld,Ad]Ad,Ad] = [M,Ad] ⊆ Ld.

As [Ld,Ad] ⊆M, the Lie ideal Ld is related to the ideal M.
Conversely, let (3.17) hold and Ld be related to an ideal of Ad. Then it follows from Lemma

2.6 that Ld is related to M, so [M,Ad] ⊆ Ld. It follows from (3.12) that [Lc,Ac] ⊆ Ld and from
(3.14) that

[LcAc +AcLc,Ad] ⊆ [Ld,Ad] ⊆ Ld.

As AcLcAc ⊆ Lc, we obtain from (3.15) that [J,A] ⊆ L. As [L,A] ⊆ J, we have that J and L are
related. Part (i) is proved.

Let M implement Ld, that is, [Ld,Ad] ⊆ [M,Ad] ⊆ Ld. By (3.14), (3.15) and (3.16), [L,A] ⊆
[J,A] ⊆ L, so J embraces L. Part (ii) 1) is proved. Part 2) is proved similarly.

We will now study condition (3.17).

D4.4 Definition 3.5 An idempotent p1 in a unital algebra A is called locally cyclic, if for (i, j) = (1, 2)
and (i, j) = (2, 1) and for each pair x, y ∈ Aij , there is z ∈ Aij such that x, y ∈ AiizAjj .

L1.9 Lemma 3.6 Let p1 be an idempotent in a unital algebra A and let L be a Lie ideal of A.
(i) If A12 = {0} then AcLcAc = {0} ⊆ Lc.
(ii) If p1 is locally cyclic then AcLcAc ⊆ Lc.
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Proof. If A12 = {0} then L12 = {0}. Hence we obtain part (i):

AcLcAc = A12L21A12 +A21L12A21 = {0} ⊆ Lc.

Let z ∈ A12 and b ∈ L21. By (3.2), z2 = 0. It follows from (3.8) that [z, b] ∈ Ld, so

zbz =
1
2

(−z2b+ 2zbz − bz2) =
1
2

[[z, b], z] ∈ L12. (3.18) f4

Let x, y ∈ A12 and v ∈ L21. If p1 is locally cyclic then there is z ∈ A12 such that x, y ∈ A11zA22.
Hence x =

∑
aizbi and y =

∑
cjzdj , for some ai, cj ∈ A11 and bi, dj ∈ A22. Therefore

xvy =

(∑
i

aizbi

)
v

∑
j

cjzdj

 =
∑
i,j

aiz(bivcj)zdj .

¿From (3.6) it follows that all bivcj ∈ L21. Hence, by (3.18), all z(bivcj)z ∈ L12. From (3.6) we have
that all aiz(bivcj)zdj ∈ L12. Hence xvy ∈ L12, so A12L21A12 ⊆ L12. Similarly, A21L12A21 ⊆ L21.
Thus AcLcAc ⊆ Lc.

Theorem 3.4 and Lemma 3.6 yield

T1.10 Theorem 3.7 Let p1 be an idempotent in a unital algebra A. Set p2 = 1 − p1, Aij = piApj and
Ad = A11 +A22. Suppose that p1 is locally cyclic, or that A12 = {0}. Let L be a Lie ideal of A and
Ld = L ∩ Ad.

(i) L is related to an ideal of A if and only if the Lie ideal Ld of Ad is related to an ideal of Ad.

(ii) If IdAd([Ld,Ad]) embraces Ld, then Id([L,A]) embraces L.

(iii) If IdAd([Ld,Ad]) and Ld are commutator equal, then Id([L,A]) and L are commutator equal.

Theorem 3.7 describes the relation between Lie ideals and ideals of an algebra A in terms of
this relation in the “block-diagonal subalgebra” Ad = A11 + A22 of A. Part (iii) of Theorem 3.7
can be further refined to describe the relation between Lie ideals and ideals of A in terms of this
relation in the subalgebras A11 and A22.

C1.10 Corollary 3.8 Suppose that an idempotent p1 in A is locally cyclic, or that A12 = {0}. If all Lie
ideals M of the algebras Aii, i = 1, 2, are commutator equal to the ideals Id([M,Aii]) of Aii, then
each Lie ideal L of A is commutator equal to the ideal Id([L,A]) of A.

Proof. By Lemma 3.6, AcLcAc ⊆ Lc. If all Lie ideals M of Aii, i = 1, 2, are commutator
equal to the ideals Id([M,Aii]) of Aii, then it follows from the proof of Proposition 3.1 that the
Lie ideal Ld of the algebra Ad is commutator equal to the ideal Id([L11,A11])+ Id([L22,A22]) =
IdAd([Ld,Ad]) of Ad. By Theorem 3.7(iii), L is commutator equal to the ideal Id([L,A]).
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4 Lie ideals of tensor products of algebras.

We saw that all non-commutative Lie ideals of an algebra A contain Lie ideals of the form [J,A]
and that this result can be extended to all non-central Lie ideals if A is semiprime. A similar result
was obtained even earlier by Jacobson and Rickart for matrix algebras over an algebra: every non-
central Lie ideal of A = B ⊗Mn(F), where B is any unital algebra, contains a Lie ideal of the form
[J,A], where J is a non-zero ideal of A [JR, Theorem 19]. Murphy [Mu] (for n = 2) and Marcoux
[Ma] (for all n) proved that any Lie ideal L of A is related to an ideal J : [J,A] ⊆ L ⊆ N(J).

In this section we will firstly extend (in a much stronger form) the theorem of Jacobson and
Rickart to the tensor products A = B⊗P with P prime. Then we will obtain a precise description
of Lie ideals of B⊗P for the case that P is simple and satisfies some additional conditions. Even
in case P = Mn(F) it substantially strengthens the results of Murphy and Marcoux.

4.1 The case of prime algebras P .

In this subsection P will be a prime non-commutative algebra over a field F with char(F) 6= 2.
Recall that P is prime if IJ 6= {0}, for non-zero ideals I, J. Equivalently,

aPb = {0}, for a, b ∈ P, implies a = 0 or b = 0. (4.1) 4.0

We shall need two results about derivations of prime algebras. The first one is well-known (see
Posner [P]).

Lposner Lemma 4.1 If a derivation d of P is such that [d(x), x] ∈ ZP for all x ∈ P, then either d = 0, or
P is commutative.

It follows from Lemma 4.1 that, for each p /∈ ZP , there is x ∈ P such that

[[p, x], x] /∈ ZP , so [p, x] /∈ ZP . (4.2) d1

The second one is a special case of a result of Lanski [L, Theorem 4].

Llanski Lemma 4.2 If derivations d, h of P are such that [d(x), h(x)] ∈ ZP for all x ∈ P, then d and h
are linearly dependent over the extended centroid.

The reader is referred to the book [BMM] for a full account of the theory of the extended
centroid and related notions. Let us just mention here that the extended centroid C(P) of a prime
F-algebra P is a field containing F and the center ZP . A prime algebra P is called centrally closed
over F if C(P) = F. If P is unital, this means that C(P) = ZP = F1; if P is non-unital, then we
have ZP = {0}. For example, a simple unital ring P is always centrally closed over its center ZP
(here it should be noted that ZP is a field because of the simplicity of P, and so we may consider
P as an algebra over ZP). Further, primitive Banach algebras and prime C∗-algebras are centrally
closed over C. The only commutative centrally closed algebra is P = F1.

Definition 4.3 We call an algebra B locally unital if, for every finite subset b = {bi} of B, there
is a local identity eb ∈ B such that bieb = ebbi = bi for all bi.
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There are many examples of non-unital, locally unital algebras: the algebra of functions with
compact support on a topological space, the algebra of sequences with finite number of non-zero
entries, the algebra of all infinite matrices with finite number of non-zero entries, the algebra of
finite rank operators on a linear space etc. If B is locally unital then, for any subset X of B,

X ⊆ XB and X ⊆ BX. (4.3) e3.1

tensor Proposition 4.4 Let B be a locally unital F-algebra and let P be a centrally closed non-commutative
prime F-algebra. Let L be a Lie ideal of B ⊗ P and let a =

∑n
i=1 bi ⊗ pi ∈ L. If p1 /∈ ZP then there

exist q ∈ [P,P], with q /∈ ZP , and λi ∈ F, i = 2, ..., n, such that

b⊗ q ∈ L with b = b1 +
n∑
i=2

λibi.

Proof. Recall that ZP = F1, if P is unital, and ZP = {0}, if P is non-unital. We will use
induction on n. If n = 1 then a = b⊗ p. For all x ∈ P, we have [b⊗ p, eb ⊗ x] = b⊗ [p, x] ∈ L. As
p /∈ ZP , it follows from (4.2) that there is x such that q = [p, x] /∈ ZP .

Let 1 < n. If all pi − λip1 ∈ ZP , for some λi ∈ F, then

either 1) a = b⊗ p1, if P is non-unital, or 2) a = b⊗ p1 + c⊗ 1, if P is unital,

where b = b1 +
∑n

i=2 λibi and b 6= 0, if {bi}ni=1 are linearly independent. Case 1) was considered
above. In case 2), let e be the local identity of the set {b, c} and let x ∈ P be such that q =
[p1, x] /∈ ZP (see (4.2)). Then [a, e ⊗ x] = b ⊗ [p1, x] = b ⊗ q ∈ L. Thus in both cases the result of
the proposition holds.

If now, say, pn /∈ Fp1+ZP , then x 7→ [p1, x] and x 7→ [pn, x] are linearly independent derivations.
Hence, by Lemma 4.2, [[p1, x], [pn, x]] /∈ ZP for some x ∈ P. Set qi = [[pi, x], [pn, x]] and let eB be
a local identity for B = {bi}ni=1. Then

n−1∑
i=1

bi ⊗ qi = [[
n∑
i=1

bi ⊗ pi, eB ⊗ x], eB ⊗ [pn, x]] = [
n∑
i=1

bi ⊗ [pi, x], eB ⊗ [pn, x]] ∈ L,

As q1 /∈ ZP and in view of our assumption, the proof is complete.

centr Corollary 4.5 Let B and P be the same as in Proposition 4.4 and let A = B ⊗ P. If P is unital,
then ZA = ZB ⊗ 1. If P is non-unital, then ZA = {0}, so A has no central Lie ideals.

Proof. Let P be unital. Suppose that ZA is not contained in ZB⊗1. Since it is a Lie ideal,
it follows from Proposition 4.4 that ZA contains a non-zero element b⊗q for some q /∈ F1. Hence
there is p ∈ P with [q, p] 6= 0, so [b⊗q, eb⊗p] = b⊗[q, p] 6= 0, a contradiction. Thus ZA = ZB ⊗ 1.
The proof of the case when P is non-unital is similar.

We need now the following auxiliary results.

Lel Lemma 4.6 Let X and Y be Lie ideals of an algebra A. Then the linear span K of all elements
of the form [[y, x], x], x ∈ X and y ∈ Y, is also a Lie ideal of A.
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Proof. Substituting x + x′ for x in [[y, x], x], we see that K contains all elements [[y, x], x′] +
[[y, x′], x] with y ∈ Y , x, x′ ∈ X. Consequently, for each a ∈ A,

[[[y, x], x], a] = ([[y, x], [x, a]] + [[y, [x, a]], x]) + [[[y, a], x], x] ∈ K.

Thus K is a Lie ideal.

Le2 Lemma 4.7 Any non-zero ideal of a prime non-commutative algebra P is non-central.

Proof. Let J 6= {0} be an ideal of P. If J ⊆ ZP then j[x, y] = [jx, y] = 0 for j ∈ J , x, y ∈ P.
Hence J [P,P] = {0} and so JP[P,P] = {0}. As [P,P] 6= {0}, this contradicts (4.1).

t3 Theorem 4.8 Let B be a locally unital F-algebra and let P be a centrally closed, non-commutative,
locally unital prime F-algebra. If L is a non-central Lie ideal of the algebra A = B ⊗ P, then there
exist non-zero ideals U of B and V of P such that

[V,P] 6= {0} and U ⊗ [V,P] + [U,B]⊗ V ⊆ L.

Proof. First let us show that L contains an element b⊗ p 6= 0 with p /∈ ZP . If P is non-unital,
then ZP = {0} and the result follows from Proposition 4.4. If P is unital then ZP = F1. Assume
that L ⊆ B ⊗ 1. By Corollary 4.5, L * ZB ⊗ 1, so B is non-commutative. Hence there is b ∈ B\ZB
such that b ⊗ 1 ∈ L. Choosing p ∈ P and b′ ∈ B such that p /∈ F1 and [b, b′] 6= 0, we arrive at a
contradiction [b, b′] ⊗ p = [b ⊗ 1, b′ ⊗ p] ∈ L. Thus L * B ⊗ 1 and it follows from Proposition 4.4
that L contains b⊗ p 6= 0 with p /∈ ZP .

Set T = {t ∈ P: b⊗ t ∈ L}. Clearly T is a linear subspace of P. Moreover, from [b⊗ t, eb⊗x] =
b ⊗ [t, x] we see that T is a Lie ideal of P. As p ∈ T , T is non-central. Theorem 2.5 therefore
yields the existence of a non-zero ideal Y of P such that [Y,P] ⊆ T . Further, let S be the set of all
elements s ∈ B such that s⊗ T ⊆ L. Then S 6= {0}, since b ∈ S, and S is a Lie ideal of B. Indeed,
as P is locally unital, [s, a]⊗t = [s⊗t, a⊗et] ∈ L, for s ∈ S, a ∈ B, t ∈ T . Hence [s, a] ∈ S.

Pick s ∈ S, z ∈ B, y ∈ Y , x ∈ P. Then [s, z] ∈ S and [y, x], [yx, x] ∈ T , as Y is an ideal of P
and [Y,P] ⊆ T. So we infer from the identity

zs⊗ [[y, x], x] = [s⊗ [y, x], z ⊗ x]− [s, z]⊗ [yx, x]

that zs ⊗ [[y, x], x] ∈ L. Set U = BS and let K be the linear span of all [[y, x], x], y ∈ Y , x ∈ P.
Then

U ⊗K ⊆ L. (4.4) 31

By Lemma 4.6, K is a Lie ideal of P. We have from Lemma 4.7 that Y is non-central. If y ∈ Y is
a non-central element, it follows from (4.2) that there is x ∈ P such that [[y, x], x] /∈ ZP . Hence K
is a non-central Lie ideal.

As S is a Lie ideal of B and S 6= {0}, we have from (2.4) and (4.3) that U is a non-zero ideal
of B. Pick u ∈ U , x ∈ B, k ∈ K and y ∈ P; then [k, y] ∈ K and so

[u, x]⊗ yk = [u⊗ k, x⊗ y]− ux⊗ [k, y] ∈ [U ⊗K,A] + U ⊗K ⊆ L.

Thus
[U,B]⊗ PK ⊆ L. (4.5) 32
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By Theorem 2.5, there is a non-zero ideal W of P such that [W,P] ⊆ K. By Lemma 4.7,
W * ZP , so [W,P] 6= {0}. Hence, by (2.4) and (4.3), V = P[W,P] is a non-zero ideal of P
contained in W ∩ PK. By Lemma 4.7, V * ZP , so {0} 6= [V,P] ⊆ [W,P] ⊆ K. By (4.4), it follows
that U ⊗ [V,P] ⊆ L. By (4.5), it follows that [U,B]⊗ V ⊆ L.

Theorem 4.8 yields the following extension of Herstein’s result (see Theorem 2.5).

C3.2t Corollary 4.9 If A = B⊗P is as in Theorem 4.8, then every non-central Lie ideal L of A contains
a non-zero Lie ideal [J,A], where J is an ideal of A.

Proof. Let U and V be as in Theorem 4.8. Then J = U ⊗ V is an ideal of A. To prove that
[J,A] ⊆ L, consider u ∈ U , b ∈ B, v ∈ V , and p ∈ P. We have

[u⊗ v, b⊗ p] = ub⊗ [v, p] + [u, b]⊗ pv ∈ U ⊗ [V,P] + [U,B]⊗ V ⊆ L.

As [u⊗ V, eu ⊗ P] = u⊗ [V,P] ⊆ [J,A] and [V,P] 6= {0}, we have [J,A] 6= {0}.

In general, Lie ideals L of B ⊗P are not related to associative ideals: we cannot always choose
an ideal J in such a way that L would be contained in N(J). For example, the free algebra
P = F〈x, y, z, w〉 is prime and centrally closed, and the algebra F⊗P ∼= P contains Lie ideals which
are not related to any ideal (see Example 2.9). However, if P is simple, we are able to construct a
large variety of Lie ideals of B ⊗ P each of which is related to an ideal of B ⊗ P and, moreover, to
an exactly one ideal. We will consider this in the next section.

4.2 The case of simple algebras P .

If P is a simple F-algebra then its extended centroid C(P) coincides with the centroid of P and
can be defined as the algebra of all linear operators T : P → P satisfying the identity T (x)y =
T (xy) = xT (y) for all x, y ∈ P. Moreover, P can be viewed as a centrally closed simple algebra
over C(P). If ZP 6= {0} then C(P) = ZP is a field, so P is an algebra over its center (such algebras
are commonly known as central simple algebras). It is possible, of course, that ZP = {0}. A typical
example is the algebra of all finite rank operators on an infinite-dimensional linear space over a
field F. Then ZP = {0}, while C(P) ∼= F.

In this section P will be a centrally closed simple F-algebra, so C(P) ∼= F. Occasionally we will
have to distinguish two cases: 1) when ZP 6= {0}, so P is unital and C(P) = ZP = F1; and 2) when
ZP = {0}.

The following lemma is well-known, at least for unital P. For the reader’s convenience, we will
provide a short proof, based on the previous results, that also covers the non-unital case.

L3.5 Lemma 4.10 Let B be a locally unital F-algebra and P be a centrally closed non-commutative
simple F-algebra. If J is an ideal of B ⊗ P, then J = I ⊗ P where I is an ideal of B.

Proof. If b⊗ q ∈ J, then b⊗
∑
rjqsj =

∑
(eb ⊗ rj)(b⊗ q)(eb ⊗ rj) ∈ J , for rj , sj ∈ P. As P is

simple, b⊗P ⊆ J. Set I = {b ∈ B: b⊗P ⊆ J}. Then I is a linear space. If b ∈ I then, for all x ∈ B
and p, q ∈ P, xb⊗ pq = (x⊗ p)(b⊗ q) ∈ J. As P2 6= {0}, we have that xb ∈ I. Similarly, bx ∈ I, so
I is an ideal of B and I ⊗ P ⊆ J.

Let us prove by induction on n that, if a =
∑n

i=1 bi⊗ pi ∈ J with linearly independent {bi} and
{pi}, then all bi⊗pi ∈ J. This will imply that J ⊆ I⊗P which, in turn, gives us that I⊗P = J. For
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n = 1, the result is obviously true. Assume this is true for n = k − 1. Let now n = k. Since either
ZP = F1 or ZP = {0} and since all {pi} are linearly independent, we may assume that p1 /∈ ZP .
By Proposition 4.4, there exist q ∈ [P,P], with q /∈ ZP , and λi ∈ F, i = 2, ..., n, such that b⊗ q ∈ J
with b = b1 +

∑n
i=2 λibi 6= 0. Then b⊗ P ⊆ J, so b⊗ p1 ∈ J. Hence

n∑
i=2

bi ⊗ (pi − λip1) = a− b⊗ p1 ∈ J.

Then (pi−λip1) 6= 0, i = 2, ..., n, and they are linearly independent. Hence, by our assumption, all
bi ⊗ (pi − λip1) ∈ J. Therefore bi ⊗ P ⊆ J, for i = 2, ..., n, so b1 ⊗ p1 ∈ J.

Denote Q = [P,P]. A non-zero subspace L of P is a Lie ideal (see Theorem 1.1) if and only if
either L contains Q or L = F1 (only if P is unital). One can construct a Lie ideal of A = B⊗P in
the following way. Choose proper subspaces {Qα}α∈A of P, containing Q, and ideals {Iα}α∈A of
B. Then IA =

∑
α∈A Iα is an ideal of B. Let K,M be Lie ideals of B satisfying the conditions

[M,B] ⊆ K ⊆M and [Iα,B] ⊆ K ⊆ IA.

Set
L(K,M, {Iα}α∈A, {Qα}α∈A) = K⊗P +

∑
α∈A

Iα⊗Qα +M⊗1.

For a non-unital P, the summand M⊗1 is absent and we write L(K, {Iα}α∈A, {Qα}α∈A).

genperf Theorem 4.11 Let B be a locally unital F-algebra and let P be a centrally closed, non-commutative
simple F-algebra. If P is unital then L = L(K,M, (Iα)α∈A, (Qα)α∈A) is a Lie ideal of A = B⊗P
and J = IA⊗P is the only ideal of A related to L. Moreover, J = Id([L,A]). The same holds if P
is non-unital and L = L(K, (Iα)α∈A, (Qα)α∈A).

Proof. Let P be unital (the non-unital case is similar). For all b, x ∈ B and p, s ∈ P,

[b⊗p, x⊗s] = [b, x]⊗ps+ xb⊗[p, s]. (4.6) simfor

If b ∈ K, then [b, x] ∈ K and xb ∈
∑n

i=1 Ii, for some ideals Ii. As [p, s] ∈ Q ⊆ ∩αQα, we have
[b⊗p, x⊗s] ∈ L. Thus [K⊗P,A] ⊆ K⊗P +

∑
α∈A Iα⊗Qα ⊆ L.

If b ∈ Iα and p ∈ Qα, then [b, x] ∈ K and xb ∈ Iα, whence by (4.6), [b⊗p, x⊗s] ∈ L. Thus
[Iα⊗Qα,A] ⊆ K⊗P +

∑
α∈A Iα⊗Qα ⊆ L.

Finally, let b ∈ M and p = 1. Then [b, x] ∈ K and [p, s] = 0, so [b⊗p, x⊗s] ∈ L. Hence
[M⊗1,A] ⊆ L, so [L,A] ⊆ L. Thus L is a Lie ideal of A.

Let us prove that [L,A] ⊆ J . As K⊗P +
∑

α Iα⊗Qα ⊆ J , it follows from the above that
we need only to show that [M⊗1,A] ⊂ J . But [m⊗1, x⊗s] = [m,x]⊗s ∈ K⊗P ⊂ J for all
m ∈ M , x ∈ B, s ∈ P. Let us establish now that [J,A] ⊆ L. Let i ∈ Iα, p ∈ P. Then, by (4.6),
[i⊗p, x⊗s] = [i, x]⊗ps+ xi⊗[p, s] ∈ L, as [i, x] ∈ K, xi ∈ Iα, [p, s] ∈ Q. Thus J is related to L.

Suppose that another ideal W of A is related to L. By Lemma 4.10, W = V⊗P where V is an
ideal of B. We will prove that V = IA. Let v ∈ V. Then, for each p, s ∈ P, v⊗[p, s] = [v⊗p, ev⊗s] ∈
[W,A] ⊆ L. By (4.2), we can choose p, s such that [p, s] /∈ F1. Let f be a linear functional on P
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with f(1) = 0 and f([p, s]) = 1. Consider the map F : A → B defined by: F (b⊗r) = f(r)b. Then
v = F (v⊗[p, s]) ∈ F (L) and

F (L) = F (K⊗P +
∑
α

Iα⊗Qα +M⊗1) = F (K⊗P +
∑
α

Iα⊗Qα) ⊆ K +
∑
α

Iα = IA.

Thus V ⊆ IA.
Conversely, for each i ∈ IA, q ∈ Q, s ∈ P, we have i⊗[q, s] = [i⊗q, ei⊗s] ∈ [L,A] ⊆W. It follows

from (4.2) that there are q and s such that [q, s] 6= 0. Hence i ∈ V . Thus IA ⊆ V , so IA = V and
J = W . Hence J is the only ideal of A related to L. Using Lemma 2.6, we have J = Id([L,A]).

4.3 The case of simple algebras P with dim(P/[P ,P ]) ≤ 1.

The above construction becomes more definite if the codimension of Q in P does not exceed 1:

dim(P/[P,P]) ≤ 1. (4.7) codim

In this case there is only one possible choice for Qα: Qα = Q, so we take only one ideal I and
use the notation L(K,M, I) (L(K, I) if P is non-unital). Our aim is to prove that in this case our
construction of Lie ideals of algebras is almost universal and gives us all Lie ideals of B ⊗ P.

Note that there are many important examples of simple centrally closed algebras satisfying
(4.7). For example, the Weyl algebra (the algebra of all polynomials over F with generators x, y
satisfying the relation xy − yx = 1) and simple purely infinite unital C*-algebras (in particular,
von Neumann type III factors) satisfy P = [P,P]. The full matrix algebras Mn(F), the algebra of
quaternions, UHF C*-algebras, von Neumann type II1 factors, the algebra M∞(F) of all infinite
matrices with finite number of non-zero entries and the algebra of all finite rank operators on an
infinite-dimensional linear space satisfy dim(P/[P,P]) = 1.

We will need the following result.

notalg Lemma 4.12 If P is a simple algebra and [P,P] 6= P then there is c ∈ [P,P] with c2 /∈ [P,P].

Proof. By [H2, page 6], the subalgebra generated by [P,P] coincides with P. Hence, as
[P,P] 6= P, [P,P] is not a subalgebra of P. Since it is a Lie subalgebra, it can not be closed with
respect to Jordan multiplication a ◦ b = (ab+ ba)/2. Since ab+ ba = (a+ b)2 − a2 − b2, there is an
element c in [P,P] with c2 /∈ [P,P].

In what follows B stands for a locally unital F-algebra and P for a simple, centrally closed,
locally unital F-algebra satisfying condition (4.7). By Theorem 1.1, the only Lie ideals of P are

{0}, Q = [P,P], P and F1, if P is unital. (4.8) 5.0

Given a Lie ideal L of B⊗P, set

K(L) = {b ∈ B: b⊗P ⊆ L}, I(L) = {b ∈ B: b⊗Q ⊆ L} and
M(L) = {b ∈ B: b⊗1 ∈ L} if P is unital.

Then K(L) ⊆ I(L) ∩M(L).
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mainideals Lemma 4.13 (i) If b⊗p ∈ L, for some p /∈ ZP , then b ∈ I(L).
(ii) Let p1 /∈ ZP and p2 /∈ Q. If b⊗p1 ∈ L and b⊗p2 ∈ L then b ∈ K(L).
(iii) [M(L),B] ⊆ K(L) and [I(L),B] ⊆ K(L), so K(L) and M(L) are Lie ideals of B.
(iv) I(L) is an ideal of B.

Proof. Set K = K(L), I = I(L), M = M(L). For b ∈ B, set P(b) = {p ∈ P : b⊗p ∈ L}.
Then P(b) is a Lie ideal of P. Indeed, let p ∈ P(b), s ∈ P. Then b⊗[p, s] = [b⊗p, eb⊗s] ∈ L, so
[p, s] ∈ P(b). The assumption of (i) means that P(b) * ZP . Hence, by (4.8), P(b) contains Q, so
b ∈ I. Part (i) is proved.

Similarly, the assumption of (ii) implies that P(b) * ZP and P(b) * Q. By (4.8), P(b) = P.
This means that b ∈ K. Part (ii) is proved.

Assume that P is unital and let b ∈M , x ∈ B. Then for each p ∈ P, [b, x]⊗p = [b⊗1, x⊗p] ∈ L.
Hence [b, x] ∈ K, so [M,B] ⊆ K.

Let us show now that I is a Lie ideal of B. Let b ∈ I, x ∈ B. For q ∈ Q \ ZP , [b, x]⊗q =
[b⊗q, x⊗eq] ∈ L. By (i), [b, x] ∈ I, so that I is a Lie ideal.

If P = Q then K = I and (iii) is proved. Let P 6= Q. By Lemma 4.12, there is c ∈ Q such that
c2 /∈ Q, so P = Q+ Fc2. Then [b, x]⊗c2 = [b⊗c, x⊗c] ∈ L. Since also [b, x]⊗q ∈ L, for each q ∈ Q,
we have [b, x]⊗ P ⊆ L. Hence [b, x] ∈ K. Thus [I,B] ⊆ K. Part (iii) is proved.

Let b ∈ I. Choose q ∈ Q \ ZP . For x ∈ B and p ∈ P, we have from (4.6)

bx⊗[q, p] = [b⊗q, x⊗p]− [b, x]⊗pq.

Since b⊗q ∈ L, we have [b⊗q, x⊗p] ∈ L. Since [b, x] ∈ K, the same is true for [b, x]⊗pq. Hence
bx⊗[q, p] ∈ L. Choosing p so that [q, p] /∈ ZP (see (4.2)), we conclude from (i) that bx ∈ I. Similarly,
xb ∈ I, so that I is an ideal.

For each Lie ideal L of A = B⊗P, set

L0 = K(L)⊗P + I(L)⊗Q+M(L)⊗1, or L0 = K(L)⊗P + I(L)⊗Q, if P is non-unital.

It follows from the definitions that L0 ⊆ L. We will see below that L0 = L when either 1) P = Q,
or 2) P = Qu F1, that is, in all cases satisfying (4.7) apart from the case

1 ∈ [P,P] 6= P. (4.9) exep

This will give us a full description of Lie ideals of algebras B⊗P, satisfying (4.7) and not satisfying
(4.9), in terms of Lie ideals of B.

C3.3t Theorem 4.14 Let B be a locally unital F-algebra. Let P be a centrally closed, locally unital simple
F-algebra and let A = B ⊗ P. Let dim(P/[P,P]) ≤ 1 and suppose that P does not satisfy (4.9).

(i) If P is unital and P = [P,P], then all Lie ideals L of A are of the form

L = I ⊗ P +M ⊗ 1, (4.10) dop

where I is an ideal of B and M is a Lie ideal of B satisfying [M,B] ⊆ I ⊆M.
(ii) If P = [P,P] u F1 then all Lie ideals L of A are of the form

L = I ⊗ [P,P] +M ⊗ 1, (4.11) e6.2
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where M is a Lie ideal of B related to an ideal I of B : [I,B] ⊆M ⊆ N(I).
(iii) If P is non-unital and P = [P,P], then all Lie ideals L of A are of the form L = I ⊗ P

where I is an ideal of B, that is, all Lie ideals of A are ideals.
(iv) If P is non-unital and dim(P/[P,P]) = 1 then all Lie ideals of A are of the form

L = K⊗P + I⊗[P,P], (4.12) nonunitideal

where K is a Lie ideal of B and I is an ideal of B satisfying [I,B] ⊆ K ⊆ I.
In all cases each Lie ideal L of A is only related to the ideal Id([L,A]) = I⊗P.

Proof. Using induction on n, we will show that each a =
∑n

i=1 bi⊗pi ∈ L belongs to L0. In
(ii) and (iv) P = Qu Fr and, if not all pi lie in Q, then we will assume, without loss of generality,
that pn = r and all pi ∈ Q for i < n.

Let n = 1 and a = b⊗p ∈ L. If p ∈ ZP , then P is unital and p ∈ F1, so b ∈ M(L) and a ∈ L0.
Let p /∈ ZP . Then, by Lemma 4.13(i), b ∈ I(L). If p ∈ Q then a ∈ L0. If p /∈ Q then, by Lemma
4.13(ii), b ∈ K(L). So again a ∈ L0.

Let n > 1 and assume that our hypothesis is true for all k < n. Let all {bi} and {pi} be linearly
independent. Without loss of generality, one of pi, say p1, can be chosen to belong to Q and do not
belong to F1. This is evident in (iii). In (i) all pi ∈ Q and, as they linearly independent, at least
one of them does not belong to F1. In (ii) and (iv) all pi, i < n, lie in Q and do not belong to F1.

By Proposition 4.4, there is b = b1 +
∑n

i=2 λibi and q ∈ Q \ F1 such that b⊗q ∈ L. By Lemma
4.13(i), b ∈ I(L), so b⊗p1 ∈ L0 and a − b⊗p1 =

∑n
i=2 bi ⊗ (pi − λip1) ∈ L. By the induction

hypothesis, a− b⊗p1 ∈ L0, whence a ∈ L0. Thus, if P is unital and does not satisfy (4.9) then

L = L0 = K(L)⊗P + I(L)⊗[P,P] +M(L)⊗ 1,

for each Lie ideal L of A. By Lemma 4.13,

[M(L),B] ⊆ K(L) ⊆M(L) and [I(L),B] ⊆ K(L) ⊆ I(L).

(i) If P = [P,P], then K(L) = I(L), so L = I(L)⊗P + M(L) ⊗ 1. On the other hand, by
Theorem 4.11, for each ideal I and a Lie ideal M of B satisfying [M,B] ⊆ I ⊆ M, the space
L̃ = I⊗P +M ⊗ 1 is a Lie ideal of A. It is easy to check that I(L̃) = I and M(L̃) = M. Part (i) is
proved.

(ii) If P = [P,P] u F1 then

K(L)⊗P = K(L)⊗Q+K(L)⊗1 ⊆ I(L)⊗Q+M(L)⊗1.

Hence L = I(L)⊗[P,P] +M(L)⊗ 1 and the rest of the proof is the same as in (i).
If P is non-unital then, for each Lie ideal L of A,

L = L0 = K(L)⊗P + I(L)⊗[P,P], where [I(L),B] ⊆ K(L) ⊆ I(L).

If P 6= [P,P] then, by Theorem 4.11, for each ideal I of B and Lie ideal K of B satisfying
[I,B] ⊆ K ⊆ I, L̃ = K⊗P + I⊗[P,P] is a Lie ideal of A. It is easy to check that K(L̃) = K and
I(L̃) = I which proves part (iv).

If P = [P,P], then K(L) = I(L), so L = I(L)⊗P. By Theorem 4.11, for each ideal I of B,
L̃ = I⊗P is a Lie ideal of A. As I(L̃) = I, part (iii) is proved.

22



The fact that each Lie ideal of A is only related to one ideal follows from Theorem 4.11.

If P satisfies (4.9), then the approach of Theorem 4.14 does not work for elements of the form
c⊗1 + d⊗p with p /∈ Q. Moreover, we can construct examples of Lie ideals L with L 6= L0 in
the following way. Choose an ideal I of B and Lie ideals K,M with K $ I ⊆ M $ N(K). Then
L0 = K⊗P+I⊗Q+M⊗1 is a Lie ideal of A = B⊗P. Let m = min(dim(I/K),dim(N(K)/M)). For
n ≤ m, choose elements {di}ni=1 in I linearly independent modulo K and elements {ci}ni=1 in N(K)
linearly independent modulo M. Set ai = ci⊗1 + di⊗p for some p /∈ Q. Then L = L0 +

∑n
i=1 Fai

is a Lie ideal of B ⊗ P, as [ai,A] ⊆ L0, and

K(L) = K, I(L) = I, M(L) = M and L0 6= L.

Simple algebras satisfying (4.9) do exist. The authors are indebted to Misha Chebotar for the
following example.

Example. Let p = char(F) and P = Mp(F). It is easy to see that all matrices in [P,P] have
zero trace, and, moreover, [P,P] = {a ∈ P: Tr(a) = 0}. (In fact, every element in [P,P] can be
written as a commutator [AM]). Hence 1 ∈ [P,P] 6= P.

All Lie ideals L of the algebras A = B⊗P considered in Theorem 4.14 are related to the ideals
J = Id([L,A]). We will show that in many cases L is commutator equal to J : [L,A] = [J,A].

We begin with the following technical result.

commutators Lemma 4.15 If P is simple with dim(P/Q) ≤ 1, then [I⊗P,A] = [I⊗Q,A], for each ideal I of B.

Proof. We only need to consider the case dim(P/Q) = 1 and to show that [I⊗P,A] ⊆ [I⊗Q,A].
By (4.6),

[I ⊗ P,B ⊗ P] ⊆ [I,B]⊗ P + I ⊗Q.

As [Q,P] is a Lie ideal of P, it follows from Theorem 1.1 that either [Q,P] = Q or [Q,P] ⊆ F1.
As the latter is impossible by (4.2), Q = [Q,P]. For i ∈ I, q ∈ Q, p ∈ P, we have i ⊗ [q, p] =
[i⊗ q, ei ⊗ p] ∈ [I ⊗Q,A]. Thus I ⊗Q ⊆ [I ⊗Q,A].

For i ∈ I, x ∈ B and q ∈ Q, we have [i, x] ⊗ q = [i ⊗ q, x ⊗ eq] ∈ [I ⊗ Q,A]. Furthermore, if
c ∈ Q with c2 /∈ Q (see Lemma 4.12) then [i, x]⊗ c2 = [i⊗ c, x⊗ c] ∈ [I ⊗Q,A]. Since each p ∈ P
can be written in the form p = q+λc2 with q ∈ Q, λ ∈ F, we conclude that [I,B]⊗P ⊆ [I ⊗Q,A].
Thus [I ⊗ P,A] ⊆ [I ⊗Q,A].

restricted Theorem 4.16 Let B and P be as in Theorem 4.14, let L be a Lie ideal of A = B⊗P and J =
Id([L,A]).

(i) If P = [P,P] then J ⊆ L (J = L if P is non-unital) and [L,A] = [J,A].
(ii) If P is non-unital and dimP/[P,P] = 1, then L ⊆ J and [L,A] = [J,A].
(iii) If P = [P,P] u F1 then [J,A] ⊆ [L,A]. Moreover, [J,A] = [L,A] if and only if [M,B] ⊆

[I,B] (in particular, if B = [B,B] + ZB).

Proof. Let P = [P,P]. If P is non-unital then (see Theorem 4.14(iii)) L = J is an ideal. If P
is unital then, by Theorem 4.14(i), L = I ⊗P +M ⊗ 1, where I is an ideal of B, [M,B] ⊆ I ⊆M,
and J = I ⊗ P. Hence J ⊆ L and

[J,A] ⊆ [L,A] = [J,A] + [M ⊗ 1,A] = [J,A] + [M,B]⊗ P ⊆ [J,A] + I ⊗ P.
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As each p ∈ P can be written in the form p =
∑

k[sk, tk], we have b ⊗ p =
∑

k[b ⊗ sk, eb ⊗ tk] for
each b ∈ B. This shows that J = I ⊗ P = [J,A]. Hence [L,A] = [J,A]. Part (i) is proved.

In (ii), by Theorem 4.14(iv), L = K⊗P + I⊗Q, where [I,B] ⊆ K ⊆ I, and J = I ⊗ P. Hence
L ⊆ J and, by Lemma 4.15, [L,A] ⊆ [J,A] = [I ⊗ P,A] = [I ⊗Q,A] ⊆ [L,A] which proves (ii).

In (iii), by Theorem 4.14(ii) and its proof, L = I ⊗ Q + M ⊗ 1, where [M,B] ⊆ I ⊆ M, and
J = I ⊗ P. Hence, by Lemma 4.15, [J,A] = [I ⊗Q,A] ⊆ [L,A].

As I ⊗Q ⊆ J , the equality [L,A] = [J,A] is equivalent to the inclusion [M ⊗ 1,A] ⊆ [J,A]. As
[M ⊗ 1,A] = [M,B]⊗ P, if [M,B] ⊆ [I,B] then

[M ⊗ 1,A] ⊆ [I,B]⊗ P = [I ⊗ P,B ⊗ 1] ⊆ [J,A].

Conversely, let [M ⊗ 1,A] ⊆ [J,A]. By (4.6), [J,A] ⊆ [I,B]⊗ P + I ⊗Q, so

[M,B]⊗ P = [M ⊗ 1, I ⊗ P] ⊆ [J,A] ⊆ [I,B]⊗ P + I ⊗Q.

As P = Qu F1,

[M,B]⊗Qu [M,B]⊗ 1 ⊆ ([I,B]⊗Q+ I ⊗Q) u [I,B]⊗ 1.

Therefore [M,B] ⊆ [I,B].
If B = [B,B] + ZB then [M,B] = [M, [B,B]] ⊆ [[M,B],B] ⊆ [I,B]. Hence [L,A] = [J,A].

It is only in case (iii) of Theorem 4.16 that a Lie ideal of the algebra A = B⊗P may be related
to, but not commutator equal to, an ideal of A. We will now show that A may have Lie ideals that
are not even embraced by ideals of A.

Corollary 4.17 There is a unital F-algebra B such that, for each central simple F-algebra P sat-
isfying P = [P,P] u F1, the algebra A = B ⊗ P has Lie ideals that are not embraced by ideals.

Proof. In Example 2.10 we constructed a Lie ideal M of an algebra B related to an ideal of B
but not embraced by any ideal of B. By Lemma 2.6, M is related to the ideal I = Id([M,B]), so
[I,B] ⊆ M. Therefore, by Theorem 4.14, L = I ⊗Q + M ⊗ 1 is a Lie ideal of A = B ⊗ P, related
to a unique ideal J = I ⊗ P. By Lemma 4.15, [J,A] = [I ⊗Q,A] ⊆ [L,A]. If L is embraced by J,
then [L,A] ⊆ [J,A] which implies [L,A] = [J,A]. Hence, by Theorem 4.16(iii), [M,B] ⊆ [I,B], so
[I,B] ⊆M ⊆ N([I,B]). But this would mean that M is embraced by I, a contradiction.

Let us consider now what our results give for matrix algebras over algebras. Let A = Mn(B),
n ≥ 2, be the full matrix algebra with entries from a locally unital F-algebra B. Then A = B ⊗ P,
where P = Mn(F) is a central simple algebra, and P = [P,P]uF1, where [P,P] consists of matrices
with zero trace.

By Lemma 4.10, J is an ideal of A if and only if J = I ⊗P, for some ideal I of B, so that J is
isomorphic to Mn(I) and I ⊗ [P,P] is isomorphic to

M0
n(I) = {a = (aij) ∈Mn(I) :

∑
aii = 0}.

For a Lie ideal M of B, the space M ⊗ 1 is isomorphic to

DM = {a ∈Mn(B) : aij = 0, if i 6= j, and a11 = ... = ann ∈M}

and Mn(I) = M0
n(I) uDI .Theorems 4.14(ii) and 4.16(iii) yield
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C3 Corollary 4.18 Let A = Mn(B), n ≥ 2, where B is a locally unital F-algebra.

(i) A linear subspace L of A is a Lie ideal if and only if there is an ideal I of B and a Lie ideal
M of B such that

[I,B] ⊆M ⊆ N(I) and L = L(M, I) = M0
n(I) uDM .

(ii) Let L = L(M, I) be a Lie ideal of A. Set J = Mn(I). Then J is an ideal of A, J = Id([L,A])
and it is the only ideal of A related to L. Moreover,

[J,A] = [Mn(I),A] = [M0
n(I),A] + [DI ,A] = M0

n(I) uD[I,B], (4.13)

[L,A] = [M0
n(I),A] + [DM ,A] = M0

n(I) uD[I+M,B]. (4.14)

If [M,B] ⊆ [I,B] (in particular, if B = [B,B] + ZB), then J and L are commutator equal:
[J,A] = [L,A].

Proof. Part (i) follows from Theorem 4.14(ii).
The fact that L is only related to the ideal J = Id([L,A]) = Mn(I) follows from Theorem 4.14.
As [Mn(I),A] is a Lie ideal and [Mn(I),A] ⊆Mn(I), it follows from (i) that there are an ideal

I1 ⊆ I, and a Lie ideal K of B such that [I1,B] ⊆ K ⊆ N(I1) and

[Mn(I),A] = M0
n(I1) uDK .

Let {rij} be the matrix identity in P. Each a = (aij) ∈ A can written in the form a =
∑
aijrij ,

where aijrij is a matrix such that only (i, j) entry is non-zero and equals aij ∈ B. Let i, j, k be all
different. For each b ∈ I, brij ∈M0

n(I) and [brij , ebrjk] = brik ∈M0
n(I1). Hence I1 = I.

For each b ∈ I and c ∈ B and for i 6= j,

[brij , crji] = bcrii − cbrjj =
1
n

∑
[b, c]rkk −

(
1
n

∑
[b, c]rkk − (bcrii − cbrjj)

)
,

where 1
n

∑
[b, c]rkk − (bcrii − cbrjj) ∈M0

n(I) and [b, c] ∈ K. Hence [I,B] ⊆ K.
For diagonal elements

∑
birii and

∑
cirii, with bi ∈ I and ci ∈ B,

a = [
∑

birii,
∑

cirii] =
∑

[bi, ci]rii =
∑

grii +
∑

dirii,

where g = 1
nTr(a) ∈ D[I,B] and di = [bi, ci]−g. Hence

∑
dirii ∈M0

n(I). This implies that [I,B] = K,
so (4.13) is proved.

¿From the above discussion we also have that [M0
n(I),A] = M0

n(I) uD[I,B]. Hence

M0
n(I) uD[I,B] = [M0

n(I),A] ⊆ [L,A] = [M0
n(I),A] + [DM ,A].

For all b ∈M and a = (aij) ∈ A,

[
∑
i

brii,
∑
k,j

akjrkj ] =
∑
i

[b, aii]rii +
∑
k 6=j

[b, akj ]rkj ,

∑
[b, aii]rii =

∑
[b,

1
n

Tr(a)]rii +
∑

[b, aii −
1
n

Tr(a)]rii,
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where
∑

k 6=j [b, akj ]rkj and
∑

i[b, aii −
1
nTr(a)]rii belong to M0

n(I), and
∑

i[b,
1
nTr(a)]rii ∈ [M,B].

From this (4.14) follows immediately.

Let B(H) be the algebra of all bounded operators on a separable Hilbert space H. Then H
is isomorphic to K ⊕ K, so B(H) is isomorphic to B(K ⊕ K) which, in turn, is isomorphic to
M2(B(K)). Calkin proved in [C] that, for each ideal I of B(K), N(I) = I+C1. Hence if a Lie ideal
M of B(K) is related to I, then [I,B(K)] ⊆M ⊆ N(I) = I + C1. Combining this with Corollary
4.18 yields a refinement of the results of [FMS] and [FM].

C1.3 Corollary 4.19 Let B(H) be the algebra of all bounded operators on a separable Hilbert space H,
let L be a Lie ideal of B(H) and let J = Id([L,B(H)]). Then

(i) [FMS, FM] [J,B(H)] ⊆ L ⊆ J + C1 and J is the only ideal of B(H) related to L.
(ii) L and J are commutator equal: [L,B(H)] = [J,B(H)].

Let C(H) be the algebra of all compact operators on H and let Cp, 1 ≤ p < ∞, be Schatten
ideals of compact operators on H. Then, as above, C(H) is isomorphic to M2(C(H)) and all Cp are
isomorphic to M2(Cp). As the algebra C(H) and the algebras Cp are not locally unital, Corollary
4.18 can not be applied to them.

Problem 4.20 Are Lie ideals of the algebra C(H) and of the algebras Cp related to (embraced by)
ideals of these algebras?

Remark. De la Harpe in [Ha] (cf. [Mu]) showed that all Lie ideals L of C(H) of finite
codimension coincide with C(H).

Denote by M∞(F) the algebra of all infinite matrices with only finite number of non-zero entries.
Let B be a locally unital F-algebra and M∞(B) be the algebra of all infinite matrices with entries
from B, only finitely many of which are non-zero. Then M∞(B) = B ⊗ P where P = M∞(F).
The algebra P is non-unital, locally unital, simple, centrally closed and dim(P/[P,P]) = 1, where
[P,P] is the Lie algebra of all matrices with zero trace. Applying the above results and arguments
we get

infinmatr Corollary 4.21 Each Lie ideal L of M∞(B) has form

L = K⊗P + I⊗[P,P], with [I,B] ⊆ K ⊆ I,

where K is a Lie ideal of B and I is an ideal of B. It consists of all matrices A = (aij) from M∞(B)
with entries in I such that

∑
i aii ∈ K. It is only related to the ideal J = I ⊗ P which consists of

all matrices from M∞(B) with entries in I. Moreover, L and J are commutator equal.

5 Lie ideals of Banach algebras.

In this section we will consider topological versions of the previous results. Although we will still
investigate here arbitrary Lie ideals of Banach algebras, our main objects will be closed Lie ideals.
For this we need some modifications of our main definitions and notations.
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5.1 Generalities

Throughout this section we denote a Banach algebra by A. The norm closure of a subset S of A
is denoted by S. We say that a Lie ideal L is topologically embraced by an ideal J if

[J,A] ⊆ L ⊆ N([J,A]). (5.1) toprestr

Condition (5.1) is weaker than the condition that L is embraced by J in the algebraic sense.
However, it is sufficiently strong to characterize closed Lie ideals of A in terms of closed ideals.
Namely if each closed Lie ideal of A is topologically embraced by a closed ideal, then the set of all
closed Lie ideals of A consists of all closed subspaces that lie between [J,A] and N([J,A]), where
J spans the set of all closed ideals of A. If L and J are closed then (5.1) implies that L is related
to J .

A stronger condition than (5.1) is the equality

[L,A] = [J,A], (5.2) topcomeq

which again is weaker than the corresponding algebraic condition [L,A] = [J,A]. We say in this
case that L and J are topologically commutator equal. For C*-algebras, we will show that a closed
Lie ideal L is topologically embraced by an ideal J if and only if it is topologically commutator
equal to J and that the both conditions are equivalent to the condition that L and J are related.

L4.1 Lemma 5.1 A closed Lie ideal L of A is related to Id([L,L]) if [L,A] ⊆ Id([L,L]).

Proof. Set IL = Id([L,L]). By the condition of the lemma, L ⊆ N(IL). By (2.5), IL ⊆ N(L).
Since L is closed, N(L) is closed. Hence IL ⊆ N(L), so L is related to IL.

Clearly, a Banach algebra is semiprime if and only if, for each closed ideal I, I2 = {0} implies
I = {0}. Repeating the argument of Proposition 2.7, we have

T4.1 Proposition 5.2 Let L be a closed Lie ideal of a Banach algebra A and let IL = Id([L,L]). If the
Banach algebra A/IL is semiprime or commutative, then [L,A] ⊆ IL, so L is related to IL.

A Banach algebra A is topologically simple if A2 6= {0} and it has no closed ideals apart from {0}
and itself. For unital algebras this is equivalent to algebraic simplicity, but non-unital topologically
simple Banach algebras are usually not simple. For example, the algebra C(H) of all compact
operators on a Hilbert space H and the Schatten ideals Cp, 1 ≤ p < ∞, are topologically simple
Banach algebras but not simple algebras. Any topologically simple algebra is prime.

In the next subsection we will describe closed Lie ideals of some “differential” *-subalgebras of
C(H) and, in particular, of all symmetrically normed ideals of C(H). As Banach algebras, they
are all either topologically simple or have topologically simple ideals with commutative quotients.
So we will establish now some results about Lie ideals of Banach algebras of this type. They can
be considered as a topological version of the results on Lie ideals of simple algebras.

A tracial functional on A is a bounded functional satisfying f(ab) = f(ba) for all a, b ∈ A. Let
TF(A) be the set of all non-zero tracial functionals on A. As [A,A] ⊆ Ker(f), for each f ∈ TF(A),
it follows from Hahn-Banach theorem that

[A,A] = A if TF(A) = ∅, and [A,A] = ∩ {Ker(f): f ∈ TF(A)}. (5.3) 6.01
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C4.2 Theorem 5.3 Let A be a topologically simple Banach algebra.

(i) A closed subspace L of A is a Lie ideal if and only if either L ⊆ ZA or [A,A] ⊆ L.

(ii) If L is commutative then L ⊆ ZA; otherwise [L,A] = [A,A].

(iii) A has only one closed non-central Lie ideal - A, if and only if it has no non-zero tracial
functionals.

(iv) Let B be a dense subalgebra of A and tr(·) be a trace functional on B such that Ker(tr) ⊆ [B,B].

a) If tr is unbounded on B, then A has only one closed non-central Lie ideal - A.
b) If tr is bounded, then A has two closed non-central Lie ideals: A and [A,A]; moreover,

the Lie ideal [A,A] has codimension 1.

Proof. Part “if” in (i) is evident. Set IL = Id([L,L]). As A is topologically simple, either
IL = A or IL = {0}. Let IL = A. By Proposition 2.2, IL ⊆ N(L). As L is closed, N(L) is closed.
Hence N(L) = A, so [A,A] ⊆ L. Part (i) is proved.

If IL = {0} then [L,L] = {0}, so L is commutative. As A is prime, by Proposition 2.4, L ⊆ ZA.
Let L be non-commutative, so there is l ∈ L such that l /∈ ZA. Consider the closed Lie ideal

[L,A]. By the above argument, either [L,A] ⊆ ZA or [A,A] ⊆ [L,A]. As A is prime, it follows from
(4.2) that there is x ∈ A such that [l, x] /∈ ZA. Hence the first case does not hold. In the second
case [L,A] = [A,A]. Part (ii) is proved.

Part (iii) follows from (i) and (5.3).
For any subspace E of A, [E,E] = [E,E]. Hence Ker(tr) = [B,B] = [A,A]. Any linear functional

f 6= 0 on a dense linear subspace of a Banach space X is bounded if and only if Ker(f) 6= X, in
which case Ker(f) has codimension 1 in X. This completes the proof.

C5.1 Corollary 5.4 Let A be a semiprime Banach algebra and let it have a closed topologically simple
ideal I such that A/I is commutative.

(i) If L is a closed non-central Lie ideal of A then I = Id([L,L]) and I and L are related.

(ii) If [I, I] = I then the set of all closed non-central Lie ideals of A consists of all closed subspaces
L satisfying I ⊆ L ⊆ A.

Proof. If L is a closed Lie ideal of A then [L,L] ⊆ [L,A] ⊆ [A,A] ⊆ I. Hence Id[L,L] ⊆
Id[L,A] ⊆ Id[A,A] ⊆ I. As I is topologically simple, either [L,L] = {0} or Id[L,L] = I. If
[L,L] = {0} then, by Proposition 2.4, L ⊆ ZA. If Id[L,L] = I then, by Proposition 5.2, I and L
are related.

Clearly, all L satisfying I ⊆ L ⊆ A are Lie ideals. Let [I, I] = I. By (i), each closed non-central
Lie ideal L is related to I, so [I,A] ⊆ L. Hence I = [I, I] ⊆ [I,A] ⊆ L
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5.2 Closed Lie ideals of Banach *-algebras of compact operators.

Let H be a separable Hilbert space. For x, y ∈ H, denote by y ⊗ x the rank one operator:

(y ⊗ x)z = (z, y)x for z ∈ H.

Then, for x, y, u, v ∈ H and A ∈ B(H),

(y ⊗ x)(u⊗ v) = (v, y)(u⊗ x), A(y ⊗ x) = y ⊗Ax and (y ⊗ x)A = A∗y ⊗ x.

If R is a subspace of H, we denote by F(R) the linear subspace of B(H) generated by all rank
one operators y ⊗ x, x, y ∈ R. In particular, F(H) is the algebra of all finite rank operators on H.

L6.4 Lemma 5.5 Let B be a ∗-subalgebra of F(H) dense in C(H). Then there exists a dense subspace
R of H such that B = F(R).

Proof. Let a = a∗ ∈ B. Then a =
∑n

i=1 λipi, where n <∞, all λi are distinct and pi are finite-
dimensional mutually orthogonal projections. As λkpk

∏
i 6=k(λk − λi) = a

∏
i 6=k(a − λi1) ∈ B, all

pk ∈ B. Let a projection p belong to B and e ∈ Range(p). As B is dense in C(H), ‖e⊗ e− an‖ → 0
for some an ∈ B. Thus ‖e⊗ e− panp‖ = ‖p(e⊗ e− an)p‖ → 0. As pBp is a subalgebra of the
finite-dimensional algebra pF(H)p, we have e⊗ e ∈ B. Hence B is the linear space generated by all
rank one operators e⊗ e ∈ B.

Let e⊗ e, f ⊗ f ∈ B. For a ∈ B,

(f, a∗e)(f ⊗ e) = (a∗e⊗ e)(f ⊗ f) = (e⊗ e)a(f ⊗ f) ∈ B.

As B is dense in C(H), (f, a∗e) 6= 0 for some a, so f⊗e ∈ B. Similarly, e⊗f ∈ B, so (e+f)⊗(e+f) ∈
B. Thus there is a dense linear subspace R of H such that B = F(R).

We denote by Tr(·) the standard trace functional on F(H) and set F0(R) := [F(R),F(R)] for
any subspace R of H. It is well known that

F0(R) = {a ∈ F(R): Tr(a) = 0} and F(R) = F0(R) u C(e⊗ e), (5.4) e5.2

for each e ∈ R. We will use now Theorem 5.3 to obtain the following result.

P6.4 Proposition 5.6 Let A be a dense ∗-subalgebra of C(H) and a Banach ∗-algebra in norm ‖·‖A .
Assume that A ∩ F(H) is dense in (A, ‖·‖A). Then A is topologically simple and

(i) if Tr(·) is unbounded on A ∩ F(H), then A has only two closed Lie ideals: {0} and A;
(ii) if Tr(·) is bounded on A∩F(H), then A has three closed Lie ideals: {0}, A and [A,A] that

has codimension 1 in A.

Proof. As ‖·‖A majorizes the operator norm in C(H), A∩F(H) is dense in C(H). By Lemma
5.5, A ∩ F(H) = F(R) for some dense subspace R of H. Let I be an ideal of A and 0 6= B ∈ I.
Then Bx 6= 0 for some x ∈ R. For all e ∈ R,

‖Bx‖2 (e⊗ e) = (Bx⊗ e)(e⊗Bx) = (x⊗ e)B∗B(e⊗ x) ∈ I.

Hence e⊗ e ∈ I, so A ∩ F(H) ⊆ I. Therefore I = A and A is topologically simple.
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The proof of (i) and (ii) follows from (5.4) and Theorem 5.3(iv) a) and b), respectively.

Now we will consider various examples of Banach *-algebras of compact operators. A two-sided
ideal J of a C*-algebra (A, ‖·‖) is symmetrically normed (s. n.) if it is a Banach space with respect
to a norm ‖ · ‖J and

‖axb‖J ≤ ‖a‖‖x‖J ‖b‖, for all a, b ∈ A and x ∈ J . (5.5) 7.8

Denote by Φ the set of all symmetric norming functions on the space of all sequences ξ = {ξi} of
real numbers converging to 0. Each φ ∈ Φ defines a symmetrically normed ideal (Jφ, ‖ ·‖φ) of B(H)
(for the detailed discussion, see [GK]). For example, the functions

φp(ξ) =

( ∞∑
i=1

|ξi|p
) 1

p

, for 1 ≤ p <∞

define the Schatten ideals Cp: Jφp = Cp. The ideal F(H) lies in each Jφ, its closure F(H)
φ

in ‖ · ‖φ
is a separable s. n. ideal Jφ0 and Jφ0 ⊆ Jφ. Each separable s. n. ideal of B(H) is isomorphic to Jφ0
for some φ ∈ Φ. In many cases (for example, for all φp above) the ideals Jφ0 and Jφ coincide. It
was proved in [BKS, Theorem 3.6] that

(Jφ)2 ⊆ Jφ0 . (5.6) 6.1

It is well known that the functional Tr(·) on F(H) is only bounded in ‖·‖φ1.
For the convenience

of the reader we will prove it.

L6.1n Lemma 5.7 The linear functional Tr(·) is not bounded in ‖·‖φ , if φ 6= φ1.

Proof. Let {en} be an orthonormal basis in H. Consider the finite rank operators An =
1
n(e1 ⊗ e1 + ...+ en ⊗ en). Then Tr(An) = 1. If φ 6= φ1 then (see [GK, III.4])

‖An‖φ =
1
n
‖e1 ⊗ e1 + ...+ en ⊗ en‖φ =

1
n
φ(1, ..., 1︸ ︷︷ ︸

n

, 0, ....)→ 0, (5.7) 7.10

as it follows from (3.18) of [GK] that sup
n

n
φ(1, ..., 1︸ ︷︷ ︸

n

,0,....)
=∞. Hence Tr(·) is not bounded in ‖·‖φ.

For each s. n. ideal J of B(H) (see [GK]), there exists a function φ ∈ Φ such that

Jφ0 ⊆ J ⊆ J
φ; (5.8) 71

the first inclusion is isometric and the second one is continuous. It is known (see, for example,
Corollary 4.10 in [KS]) that each s. n. ideal J of C(H) also satisfies (5.8). (Note that ideals of
C(H) are not necessarily ideals of B(H) (see [FM, p. 451]).)

T4.2 Theorem 5.8 (i) Let J = Jφ0 6= C1 be a separable s. n. ideal of B(H) or J = C(H). Then J
has only two closed Lie ideals: {0} and J .
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(ii) C1 has only three closed non-zero Lie ideals: {0}, C0
1 = F0(H) and C1; furthermore

[C0
1 , C

0
1 ] = [C0

1 , C1] = [C1,C1] = C0
1 $ C1.

(iii) Let J be a non-separable s. n. ideal of C(H) and Jφ0 $ J ⊆ Jφ. A closed subspace L 6= {0}
of J is a Lie ideal if and only if it contains Jφ0 . Moreover, in this case L is an ideal of J and

[L,L] = [L,J ] = [J ,J ] = Jφ0 .

Proof. By Lemma 5.7, Tr(·) is not bounded in ‖·‖φ , for φ 6= φ1. It is well known that Tr(·) is
bounded on C1. Hence (i) and (ii) follow from Proposition 5.6.

The “if” part in (iii) follows from (5.6). Each non-zero ideal I of J contains F(H) and F(H)2 =
F(H). Hence J is a prime algebra and ZJ = {0}. As Tr(·) is not bounded in ‖·‖φ , for φ 6= φ1, we

have F0(H)
φ

= F(H)
φ

= Jφ0 . Therefore

Jφ0 = F0(H)
φ

= [F(H),F(H)]
φ ⊆ [Jφ0 , J

φ
0 ]
φ
⊆ Jφ0 ,

so
[Jφ0 , J

φ
0 ]
φ

= Jφ0 . (5.9) e5.5

Hence the “only if” part in (iii) follows from (5.6) and Corollary 5.4.

Let S be a densely defined, symmetric, closed operator on H with domain D(S). Set

KS = {a ∈ C(H): aD(S) ⊆ D(S), a∗D(S) ⊆ D(S) and [S, a]|D(S)

extends to a bounded operator aS on H};

and JS = {a ∈ KS : aS ∈ C(H)}.

The subalgebra FS of F(H) generated by all rank one operators x ⊗ y with x, y ∈ D(S) is dense
in C(H) and FS = F(D(S)). Let ΦS be the closure of FS in the norm

‖a‖S = ‖a‖+ ‖[S, a]‖ .

Then ΦS ⊆ JS ⊆ KS . It was proved in [KS1] that KS , JS and ΦS are Banach *-algebras, that FS
is contained in every ideal of ΦS and (FS)2 = FS . Moreover,

(KS)2 = (JS)2 = ΦS .

Hence the algebras ΦS , JS and KS are prime. If S is selfadjoint then ΦS = JS 6= KS . Thus ΦS is
topologically simple and it follows from Proposition 5.6 that

(i) ΦS has only two closed Lie ideals: {0} and ΦS , if Tr(·) is unbounded on FS ,
(ii) ΦS has three closed Lie ideals: {0}, FS0 = [FS ,FS ] and ΦS , if Tr(·) is bounded on FS .

P5.4e Proposition 5.9 Let S be a symmetric, closed operator. Suppose that there are c > 0 and unit vec-
tors {en}∞n=1 in D(S) such that all subspaces {en, Sen} are mutually orthogonal and ‖[S, en ⊗ en]‖ ≤
c. Then Tr(·) is unbounded on FS , so
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(i) ΦS has only two closed Lie ideals: {0} and ΦS ;

(ii) a closed subspace L of KS is a Lie ideal if and only if ΦS ⊆ L ⊆ KS . Moreover, L is an ideal
of KS and

[L,L] = [L,KS ] = [KS ,KS ] = ΦS .

The same is true for the algebra JS .

Proof. Consider an = 1
n(e1 ⊗ e1 + ...+ en ⊗ en). Then Tr(an) = 1 and

‖an‖S = ‖an‖+ ‖[S, an]‖ =
1
n
‖e1 ⊗ e1 + ...+ en ⊗ en‖

+
1
n
‖[S, e1 ⊗ e1] + ...+ [S, en ⊗ en]‖

=
1
n

sup ‖ei ⊗ ei‖+
1
n

sup ‖[S, ei ⊗ ei]‖ → 0,

as n → ∞. Hence Tr is unbounded on FS . This implies (i). Part (ii) can be proved in the same
way as part (iii) in Theorem 5.8.

In particular, all selfadjoint and all maximal symmetric operators satisfy conditions of Propo-
sition 5.9.

Problem 5.10 Do there exist symmetric operators S for which Tr(·) is bounded on FS?

5.3 Closed Lie ideals of projective tensor products B⊗̂J .

In the theory of C*-algebras an important role is played by stable C*-algebras, that is, by the
C*-tensor products B ⊗min C(H), where B is a C*-algebra. In the category of Banach algebras a
natural tensor product is the projective one. We will show that in the projective tensor products
B⊗̂C(H), where B are unital Banach algebras, and, more generally, in B⊗̂J , where J 6= C1 are
separable s. n. ideals of B(H), all closed Lie ideals are ideals. This can be viewed as a Banach
algebraic counterpart of some results in Section 4. A similar result for stable C*-algebras will be
obtained in Section 5.5.

For each algebra A, we denote by Aop the opposite algebra, that is, the same linear space with
multiplication a◦b = ba. The following auxiliary result is taken from [SS]; we will give its proof for
the convenience of the reader.

tanya Lemma 5.11 Let M = Mn(C) and let V be the subalgebra of the algebra M ⊗Mop generated by
all elements a⊗ 1− 1⊗ a with a ∈M . Then

V =

{∑
i

ai ⊗ bi :
∑
i

aibi =
∑
i

biai = 0

}
. (5.10) descr

Proof. Denote the right hand side of (5.10) by U . One can easily check that U is a subalgebra
of M ⊗Mop and V ⊆ U . Define the representation π of M ⊗Mop on the space M by the equality:
π(a⊗ b)(x) = axb. Then π is irreducible and faithful, as M ⊗Mop is simple (see Lemma 4.10). So
it suffices to show that π(U) = π(V ).
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Set M0 = {x ∈M : Tr(x) = 0}. Then M0 = [M,M ] and M = M0 uC1. For T =
∑

i ai⊗bi ∈ U,

Tr (π(T )x) = Tr

(∑
i

aixbi

)
= Tr

(
x
∑
i

biai

)
= 0, for each x ∈M.

Therefore π(U)M ⊆M0. Clearly, C1 ⊆ Ker π(U) ⊆ Ker π(V ). As

π(a⊗ 1− 1⊗ a)x = ax− xa, for a, x ∈M, (5.11) 7.4

x ∈ Ker π(V ) only if xa = ax for all a ∈M. Hence C1 = Ker π(U) = Ker π(V ).
We have from (5.11) that if L is an invariant subspace for π(V ), then L is a Lie ideal of M.

Thus if L is an invariant subspace of π(V ) in M0, it follows from Theorem 1.1 that either L = {0}
or L = M0. Hence π(V ) has no non-trivial invariant subspaces in M0. By Burnside’s Theorem,
π(V )|M0 coincides with the algebra B(M0) of all operators on M0. Therefore π(V ) = B(M0)u{0}
on M = M0 u C1. As π(V ) ⊆ π(U) and Ker π(U) = C1, we have π(V ) = π(U).

We will assume below that H is an infinite dimensional Hilbert space.

L7.1 Lemma 5.12 Let K be a subspace of H, dim(K) = n <∞ with an orthonormal basis {fi}ni=1. For
each N, there is a subspace KN of H with an orthonormal basis {ek}nNk=1 such that K ⊂ KN and
|(fi, ek)| ≤ 1√

N
for all i and k.

Proof. Let {Ri}ni=1 be N -dimensional mutually orthogonal subspaces of H such that fi ∈ Ri.
Let {gmi }Nm=1 be an orthonormal basis in Ri. Set gi = 1√

N

∑N
m=1 g

m
i . Then ‖gi‖ = 1. Let Ui,

i = 1, .., n, be unitary operators on Ri such that Uigi = fi. Then {eim = Uig
m
i : 1 ≤ i ≤ n,

1 ≤ m ≤ N} is the required basis in KN = R1 ⊕ ...⊕Rn.

For each unit vector e ∈ H, by pe = e⊗ e is the orthogonal projection onto Ce. If E = {ei}ni=1

is a finite family of pairwise orthogonal unit vectors in H, we set pE =
∑

i pei . Let J = Jφ0 be a
separable s. n. ideal of B(H). We define operators sE and tE on J by

sE(x) =
∑
i

peixpei and tE(x) = pExpE , for x ∈ J . (5.12) 5.55

As all projections pei , for ei ∈ E , are mutually orthogonal, it can be deduced from Theorem III.4.2 of
[GK] that ‖sE(x)‖φ ≤ ‖x‖φ for x ∈ J . It also follows from (5.5) that ‖tE(x)‖φ = ‖pExpE‖φ ≤ ‖x‖φ .
Hence

‖sE‖ = ‖tE‖ = 1. (5.13) ogr

L7.2 Lemma 5.13 Let J = Jφ0 6= C1 be a separable s. n. ideal or J = C(H). Then for each finite
family (x1, ..., xm) in F(H) and each ε > 0, there is E with

‖sE(xi)‖J < ε and xi = tE(xi), for 1 ≤ i ≤ m. (5.14) 7.12

Proof. As all xi ∈ F(H), there is a finite-dimensional subspace K of H such that xiH ⊂ K
and x∗iH ⊂ K, 1 ≤ i ≤ m. Let {fj}nj=1 be an orthonormal basis in K. Then all xi are linear
combinations of the rank one operators fp⊗ fj . Let KN , K ⊂ KN , be a subspace of H constructed
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in Lemma 5.12 and E = {ek}nNk=1 be the basis in KN such that |(ek, fj)| ≤ 1√
N
. Then tE(xi) =

pExipE = xi. As φ 6= φ1 (in particular, when φ = φ∞, we have J = C(H)), we obtain as in (5.7)
(see [GK, III.4]) that

‖sE(fp ⊗ fj)‖J =

∥∥∥∥∥
nN∑
k=1

pek(fp ⊗ fj)pek

∥∥∥∥∥
J

=

∥∥∥∥∥
nN∑
k=1

(ek, fp)(fj , ek)pek

∥∥∥∥∥
J

≤

∥∥∥∥∥
nN∑
k=1

1
N
pek

∥∥∥∥∥
J

=
1
N
φ(1, ..., 1︸ ︷︷ ︸

nN

, 0, ....) = n

 1
nN

φ(1, ..., 1︸ ︷︷ ︸
nN

, 0, ....)

→ 0.

as N → ∞. Hence ‖sE(fp ⊗ fj)‖φ → 0, as N → ∞, for all p and j. As sE is linear and n is fixed,
for each ε > 0, we can find N such that ‖sE(xi)‖φ < ε, for 1 ≤ i ≤ m. Thus (5.14) is proved.

Let B be a unital Banach algebra and J be a separable s. n. ideal of B(H). Let τ be an
algebraic cross-norm on the algebraic tensor product B⊗J . Then its completion A = B⊗τ J with
respect to τ is a Banach algebra. We consider the algebraic tensor product A0 = B ⊗ F(H) as
a subalgebra of A. As J is separable, F(H) is dense in J , so A = A0

τ
. Let id be the identity

operator on B. For E = {ei}ki=1, consider the operators

SE = id⊗sE and TE = id⊗tE

on A0. We will impose on τ the condition that the families of operators SE and TE are uniformly
bounded: there is k > 0 such that, with respect to the norm τ,

‖SE‖ ≤ k and ‖TE‖ ≤ k for each E . (5.15) 5.u

Our aim is to show that under this condition all closed Lie ideals of A are ideals.

density Proposition 5.14 Let J 6= C1 be a separable s. n. ideal of B(H) or J = C(H). Suppose that
(5.15) holds for a norm τ. Then L ∩ A0 is dense in L for each Lie ideal L of A.

Proof. Let E = {ei}ki=1. As the operators SE and TE are bounded on A0, they extend to A; we
denote their extensions by SE and TE . They map A into A0. Indeed, let R be the linear span of E
and F(R) be the subspace of all operators y ∈ F(H) such that yH ⊂ R, y∗H ⊂ R. For each x ∈ J,
we have tE(x), sE(x) ∈ F(R). If a =

∑m
i=1 bi ⊗ xi ∈ A0 then TE(a) =

∑m
i=1 bi ⊗ tE(xi) ∈ B ⊗ F(R).

As F(R) is finite-dimensional, B ⊗ F(R) is a closed subspace of A and B ⊗ F(R) ⊂ A0. As TE is
bounded, it maps A into B ⊗ F(R). The same is true for SE . Hence TE(a)− SE(a) ∈ A0, for each
a ∈ A.

Let us show that TE(a) − SE(a) ∈ L if a ∈ L. For each matrix u = (uij) ∈ Mk(C) = Mk,
the operator û =

∑
uij(ej ⊗ ei) lies in F(R). We define a bilinear map Ψ from Mk×Mk into the

space B(A) of all bounded operators on A by setting Ψ(u, v)(b ⊗ x) = b ⊗ ûxv̂. It extends to the
homomorphism from Mk ⊗Mop

k into B(A) which will be also denoted by Ψ.
As Ψ(û⊗ 1k − 1k ⊗ û)(b⊗ x) = b⊗ [û, x] = [1B ⊗ û, b⊗ x], we have

Ψ(u⊗ 1k − 1k ⊗ u)a = [1B ⊗ û, a] for all a ∈ A.

34



Hence L is invariant under all operators Ψ(u⊗1k−1k⊗u), u ∈Mk. By Lemma 5.11, L is invariant
under all operators {Ψ(

∑
i ui ⊗ vi):

∑
i uivi =

∑
i viui = 0, ui, vi ∈Mk} . As TE = Ψ(1k⊗1k) and

SE = Ψ(
∑k

i=1 pi ⊗ pi),

TE − SE = Ψ(1k ⊗ 1k −
k∑
i=1

pi ⊗ pi)

and 1−
∑k

i=1 pipi = 0, so L is invariant under TE − SE . Thus TE − SE maps L into L ∩ A0.
We claim that, for each a ∈ A and ε > 0, there is E such that

‖SE(a)‖A < ε and ‖a− TE(a)‖A < ε. (5.16) verymalo

As A0 is dense in A and all ‖SE‖ ≤ k and ‖TE‖ ≤ k, it suffices to prove (5.16) for a ∈ A0. Let
a =

∑m
i=1 bi⊗xi with all xi ∈ F(H). Then SE(a) =

∑m
i=1 bi ⊗ sE(xi) and

‖SE(a)‖A ≤
m∑
i=1

‖bi‖B ‖sE(xi)‖J ≤ βmax
i
‖sE(xi)‖J ,

where β =
∑

i ‖bi‖B. To obtain (5.16), take the set E constructed in Lemma 5.13 for (x1, ..., xm)
and ε/β instead of ε. Then ‖SE(a)‖A < ε and TE(a) =

∑
i bi ⊗ tE(xi) =

∑
i bi ⊗ xi = a. Thus this

claim is also proved.
As a consequence of (5.16) we have that, for each a ∈ A and ε > 0, there is E such that

‖a− (TE(a)− SE(a))‖A < 2ε.

This concludes the proof.

C7.3 Theorem 5.15 Let B be a unital Banach algebra, let J 6= C1 be a separable s. n. ideal of B(H)
or J = C(H) and let A = B ⊗τ J be a Banach algebra. Suppose that the families of operators
{SE} and {TE} are uniformly bounded in the norm τ (see (5.15)). Then a closed subspace L of A
is a Lie ideal if and only if it is an ideal. Moreover, L is of the form L = I ⊗ J τ ∼= I ⊗τ J , where
I is a closed ideal of B.

Proof. The “if” part is evident. Let L be a closed Lie ideal of A. Set F = F(H), A0 = B ⊗F
and L0 = L ∩ A0. As F is a simple non-unital algebra and dim(F/[F ,F ]) = 1, Theorem 4.14(iv)
implies that there is a Lie ideal K of B and an ideal I0 of B such that

L0 = K ⊗F + I0 ⊗ [F ,F ] and [I0,B] ⊆ K ⊆ I0.

Let J = Jφ0 (in particular, φ = φ∞, so J = C(H)). By Lemma 5.7, [F ,F ]
φ

= J . Hence

L0 ⊆ I0 ⊗ J ⊆ I0 ⊗ [F ,F ]
τ ⊆ L0

τ
.

Set I = I0. By Proposition 5.14, L0
τ = L. Hence L = I0 ⊗ J

τ = I ⊗ J τ .

Let A and B be bounded operators on Banach spaces X and Y respectively. It is well known
that the operator A ⊗ B on the projective tensor product X⊗̂Y has norm ‖A‖‖B‖. The same is
true for A ⊗ B on the tensor product X ⊗λ Y with respect to the injective cross norm λ. Hence,
by (5.13), ‖SE‖ = ‖TE‖ = 1 on B⊗̂J and on B ⊗λ J . We formulate the result of Theorem 5.15 for
these tensor products separately.
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C7.4 Corollary 5.16 Let B be a unital Banach algebra and let J 6= C1 be a separable s. n. ideal of
B(H) or J = C(H).

(i) A closed subspace L of the projective tensor product B⊗̂J is a Lie ideal if and only if it is
an ideal. Moreover, L ∼= I⊗̂J where I is a closed ideal of B.

(ii) If B ⊗λ J is a Banach algebra, then its closed subspace L is a Lie ideal if and only if L is
an ideal. Moreover, L ∼= I ⊗λ J where I is a closed ideal of B.

Consider now the projective tensor product A = B⊗̂C1. By Theorem 5.8, C0
1 = {a ∈ C1:

Tr(a) = 0} is the only non-trivial closed Lie ideal of C1 and C1 = C(e1 ⊗ e1) u C0
1 . Let K be a

closed Lie ideal of B and I be a closed ideal of B such that [I,B] ⊆ K ⊆ I. Then it follows from
(4.6) that

L(K, I) = K⊗̂C1 + I⊗̂C0
1 = K ⊗ (e1 ⊗ e1) u I⊗̂C0

1

is a closed Lie ideal of A. Repeating the proof of Theorem 5.15, we also obtain that if L is a closed
Lie ideal of A and L∩A0 6= {0}, where A0 = B⊗F(H), then L contains a closed Lie ideal L(K, I)
for some K and I.

Problem 5.17 Do all closed Lie ideals of B⊗̂C1 have form L(K, I) = K ⊗ (e1 ⊗ e1) u I⊗̂C0
1 for

some K and I?

5.4 Lie ideals of W*-algebras.

In this subsection we study the algebraic relation between Lie ideals and ideals of W*-algebras A.
In particular, we show that each Lie ideal L of A is commutator equal to the ideal J = Id([L,A]):
[L,A] = [J,A]. To do this we first establish the following result.

5.p Proposition 5.18 Each projection in a W∗-algebra A is locally cyclic (see Definition 3.5).

Proof. Let p and q be orthogonal projections in A and p + q = 1. Assume first that p ≺ q,
that is, there is a projection p1 ≤ q and a partial isometry u such that u∗u = p, uu∗ = p1. Let
x1, x2 ∈ pAq. As p1u = u, we have yi = uxi ∈ p1Aq. Let yi = |yi| vi be their polar decompositions,
where |yi| = (yiy∗i )

1/2 ∈ p1Ap1 and vi ∈ p1Aq ⊆ qAq. As p1vi = vi,

xi = pxi = u∗yi = u∗ |yi| vi = u∗ |yi| p1vi = (u∗ |yi|u)(u∗p1)vi = (u∗ |yi|u)evi,

where u∗ |yi|u ∈ pAp and e = u∗p1 ∈ pAp1 ⊆ pAq. Thus xi ∈ (pAp)e(qAq).
Similarly, if x1, x2 ∈ qAp, then yi = xiu

∗ ∈ qAp1, as u∗p1 = p1. Let yi = wi |yi| be their polar
decompositions, where |yi| = (y∗i yi)

1/2 ∈ p1Ap1 and wi ∈ qAp1 ⊆ qAq. Then, as wip1 = wi,

xi = xip = yiu = wi |yi|u = wip1 |yi|u = wi(p1u)(u∗ |yi|u) = wie(u∗ |yi|u),

where u∗ |yi|u ∈ pAp and e = p1u ∈ p1Ap ⊆ qAp. Thus xi ∈ (qAq)e(pAp). Therefore p and q are
locally cyclic.

Let now p and q be not comparable. Then (see [S, Theorem 2.1.3]) there is a central projection
z such that zp ≺ zq and (1 − z)q ≺ (1 − z)p. By the above argument, for each pair x1, x2 ∈ pAq,
there exist e1 ∈ zpAq and e2 ∈ (1 − z)pAq such that zxi ∈ (zpAp)e1(zqAq) and (1 − z)xi ∈
((1− z)pAp)e2((1− z)qAq), for i = 1, 2. Then e = e1 + e2 ∈ pAq, e1 = ze, e2 = (1− z)e and

xi = zxi + (1− z)xi ∈ (pAp)ze(qAq) + (pAp)(1− z)e(qAq) ⊆ (pAp)e(qAq).
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Similarly, we can prove that, for each pair x1, x2 ∈ qAp, there exists e ∈ qAp such that xi ∈
(pAp)e(qAq). Thus p and q are locally cyclic.

As each projection q ∈ A is similar to an orthogonal projection p ∈ A (q = apa−1 for some
invertible a ∈ A), all projections in A are locally cyclic.

Each W*-algebra A has the decomposition A = AI ⊕ AII ⊕ AIII where AI,AII,AIII are W*-
algebras of type I,II and III. The algebraAI decomposes uniquely into the direct sum of W*-algebras
An of type In:

AI = ⊕n∈N(A)An, (5.17) 1.11

where n is the number of mutually orthogonal abelian equivalent projections pi in An such that
1An =

∑
pi and N(A) is a subset of (N− {0}) ∪∞.

T51 Theorem 5.19 Let A be a W∗-algebra.
(i) Each Lie ideal L of A is commutator equal to the ideal J = Id([L,A]), that is, [J,A] = [L,A].
(ii) Let there exist a finite number of prime numbers q1, ..., qk such that each n ∈ N(A) is

divisible by one of them. Then each Lie ideal L of A is related to only one ideal Id([L,A]).

Proof. It was proved in [Su] that if C is a properly infinite W*-algebra then C = [C, C]. For
a finite W*-algebra C it was proved in [PT, Theorem 1] that [C, C] = {c ∈ C: c\ = 0}, where
c→ c\ is the center-valued trace (c\ ∈ ZC). Then (see the proof of [Mi, Lemma 3]), for each c ∈ C,
c − c\ ∈ [C, C], as (c − c\)\ = 0. As c\ ∈ ZC , C = [C, C] + ZC . Since each W*-algebra C is the direct
sum of a properly infinite and a finite algebras, this implies that

C = [C, C] + ZC . (5.18) 5.1

The algebra B = AII ⊕ AIII has no abelian projections. By Proposition 2.2.13 [S], there is a
projection p equivalent to 1B − p. Hence B is isomorphic to M2(pBp).

Split N(A) into odd and even parts: N(A) = Ne(A) ∪ No(A). Then AI = AoI ⊕ AeI with
AeI = ⊕n∈Ne(A)An and AoI = ⊕n∈No(A)An. The W*-algebra AeI is isomorphic to M2(U) for some
W*-algebra U . Hence M = AeI ⊕AII ⊕AIII is isomorphic to M2(C) where C = U ⊕ pBp. It follows
from Corollary 4.18(ii) and (5.18) that each Lie ideal L of the W*-algebra M is commutator equal
to the ideal J = Id([L,A]).

For each n ∈ No(A), there are n mutually orthogonal abelian equivalent projections p(n)
i in An

such that 1An =
∑n

i=1 p
(n)
i , so An is isomorphic to Mn(Bn), for some commutative W*-algebra Bn.

Set
p = ⊕n∈No(A)p

(n)
1

and q = 1 − p. Then A11 = pAoIp = ⊕n∈No(A)Bn is a commutative W*-algebra, so each Lie
ideal L of A11 is commutator equal to Id([L,A11]) = {0}. As all n − 1 are even, the W*-algebra
A22 = qAoI q = ⊕n∈No(A)Mn−1(Bn) is isomorphic to M2(D) for some W*-algebra D. Hence it follows
from Corollary 4.18(ii) and (5.18) that each Lie ideal L of A22 is commutator equal to Id([L,A22]).
By Proposition 5.18, p is locally cyclic. Therefore it follows from Corollary 3.8 that each Lie ideal
L of AoI is commutator equal to Id([L,AoI ]).

As A = AoI ⊕M, it follows from Proposition 3.1(i) that each Lie ideal L of A is commutator
equal to the ideal Id([L,A]). Part (i) is proved.
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If A satisfies the condition in (ii), then AI = Mq1(B1) ⊕ ... ⊕ Mqk(Bk), where Bi are some
W*-algebras. Hence

A = AI ⊕ B = Mq1(B1)⊕ ...⊕Mqk(Bk)⊕M2(pBp). (5.19) 4.2

We have from Corollary 4.18(ii) that each Lie ideal of the W*-algebra Mn(C), n ≥ 2, is only related
to one ideal, so each summand in (5.19) has this property. Using now Proposition 3.1, we obtain
that each Lie ideal L of A is only related to the ideal J = Id([L,A]).

Theorem 5.19 is one of two main results of this section. The other one is Theorem 5.27 below.
Applying (5.18) and Lemma 2.1, we obtain

Corollary 5.20 For a Lie ideal L and an ideal I of a W∗-algebra the following conditions are
equivalent.

(i) L is related to I;

(ii) L is embraced by I;

(iii) L is commutator equal to I.

If a W*-algebra A has a commutative component A1, then each Lie ideal of A1 is related to
more than one ideal. Hence, by Proposition 3.1(ii), A has Lie ideals related to more than one ideal.

Problem 5.21 Let a W∗-algebra A have no commutative summand A1. Is every Lie ideal of A
related to only one ideal?

5.5 Lie ideals of C∗-algebras.

We will start this subsection by showing that all closed Lie ideals of stable C*-algebras are associa-
tive ideals. Let B be a unital C*-algebra. Identify it with its faithful representation on a Hilbert
space K. The C*-algebra A = B ⊗min C(H) (the completion of B ⊗ C(H) in the minimal and,
hence, in any C*-norm, as C(H) is nuclear) can be considered as an operator algebra on K ⊗H.
For each E = {ei}ni=1, ei ∈ H, the map TE on B ⊗ C(H) acts (see (5.12)) by

TE(b⊗ c) = b⊗ tE(c) = (1K⊗pE)(b⊗ c)(1K⊗pE),

so ‖TE‖ = ‖1K⊗pE‖ = 1. The map SE on B ⊗ C(H) acts (see (5.12)) by

SE(b⊗ c) = b⊗ sE(c) =
∑
i

(1K⊗pei)(b⊗ c)(1K⊗pei).

The projections 1K⊗pei on K ⊗H are mutually orthogonal. Hence ‖SE‖ = 1. Thus the families of
operators TE and SE are uniformly bounded. Therefore from Theorem 5.15 we obtain

stable Corollary 5.22 Let B be a unital C∗-algebra. All closed Lie ideals L of the stable C∗-algebra
B ⊗min C(H) are ideals and have form L = I ⊗ C(H)

min ∼= I ⊗min C(H) where I is a closed ideal
of B.
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We will mention now some applications of Theorem 5.3 to C*-algebras. These results were
already published (see [MaMu]), but in somewhat different form. Denote by T(A) the set of all
tracial states on a C*-algebra A. Cuntz and Pedersen proved in [CP] that

[A,A] = ∩
f∈T(A)

Ker(f) (5.20) 6.0

(cf. (5.3)). For unital C*-algebras, Pop proved in [Po] that

T(A) = ∅ implies [A,A] = A. (5.21) 62

For example, the Cuntz algebras On and infinite simple C*-algebras (aa∗ 6= a∗a = 1, for some
a ∈ A) satisfy (5.21). Earlier Fack [F] showed that [A,A] = A, if A ∼= A ⊗min C(H) or if A is an
infinite simple C*-algebra, and that [A,A] = [A,A] if A is a unital simple AF-algebra.

Thomsen [Th] extended the last result and proved that [A,A] = [A,A] for simple, infinite-
dimensional, unital inductive limits of certain C*-algebras. This includes all unital simple AF-
algebras, Bunce-Deddens algebras and the irrational rotation algebrasAθ.Moreover, Bunce-Deddens
algebras, the algebras Aθ and UHF-algebras have exactly one tracial state.

We will call the Lie ideals {0}, A and C1 (if A is unital) trivial.

6.5 Proposition 5.23 Let A be a unital simple C∗-algebra.

(i) If T(A) = ∅, then A has only trivial Lie ideals.

(ii) Let T(A) consist of one functional. Then

a) [MaMu] A has only one non-trivial closed Lie ideal [A,A] and its codimension is 1;

b) if [A,A] is closed, then A has only one non-trivial Lie ideal [A,A].

Proof. For unital simple C∗-algebra A, ZA = C1. If T(A) = ∅ then (see (5.21)) [A,A] = A.
Applying Theorem 1.1, we obtain part (i).

Let T(A) = {tr(·)}. By (5.20), [A,A] = Ker(tr(·)) and part (ii) a) follows from Theorem 5.3(iv)
b).

If [A,A] = [A,A] then, by a), [A,A] has codimension 1 in A. Applying Theorem 1.1, we
conclude the proof.

Corollary 5.4 allows us to describe closed Lie ideals of extensions of C(H) by commutative
C*-algebras. The simplest non-trivial example of such an extension is the Toeplitz C*-algebra T
generated by the unilateral shift. It is unital, contains the ideal C(H) and T /C(H) is a commutative
algebra isomorphic to C(T), where T is the unit circle.

C7.2 Corollary 5.24 Let a C∗-subalgebra A of B(H) contain C(H) and let A/C(H) be commutative.
A closed subspace L of A is a non-trivial Lie ideal if and only if C(H) ⊆ L.

Proof. The “if” part is evident. By (5.9), [C(H), C(H)] = C(H). As ZA = {0} or ZA = C1 (if
A is unital), the result follows from Corollary 5.4(ii).

We will consider now Lie ideals of general C*-algebras. Let A∗ be the dual space of a C*-algebra
A (the space of all bounded functionals on A). The bidual space A∗∗ of A is a W*-algebra and the
natural inclusion of A into A∗∗ is a *-homomorphism. We will consider A as a subalgebra of A∗∗.
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It follows from the general duality theory of Banach spaces that for any subspace E of A,

E = A ∩ Eσ (5.22) inter

where E is the closure of E in A and E
σ is the closure of E in A∗∗ with respect to the *-weak

topology, that is, σ(A∗∗, A∗)-topology. We also have A∗∗ = Aσ.
For each a ∈ A∗∗, the mappings x → xa and x → ax are σ-continuous, so EσF ⊆ EF

σ for all
subspaces E and F of A. Hence EσF σ

σ
⊆ EσF

σ
⊆ EF σ. On the other hand, EF σ ⊆ EσF σ

σ
, so

E
σ
F
σσ = EF

σ
. (5.23) 7.6

Similarly,
[Eσ, F σ]

σ
= [E,F ]

σ
. (5.24) 7.5

Bunce (see [Mi, Lemma 1]) proved that if I is a closed ideal of a C*-algebra A then [I,A] =
I ∩ [A,A]. The following proposition is a refinement of this result.

P7.2 Proposition 5.25 Let I be a closed ideal of C∗-algebra A. Then

[I, I] = [[I,A],A] = [I,A] = I ∩ [A,A], (5.25) numer

so N([I,A]) = N(I).
Moreover, if A has no tracial states then [I,A] = I.

Proof. We only need to prove the first and second equalities. It follows from (5.18) that
[C, C] = [[C, C], C], for each W*-algebra C. As Iσ is a *-weakly closed ideal of the W*-algebra Aσ,
there is a projection P in ZAσ such that Iσ = PAσ. Hence, as P commutes with Aσ,

[Iσ,Aσ] = [PAσ,Aσ] = [PAσ, PAσ] = [Iσ, Iσ]
= P [Aσ,Aσ] = P [[Aσ,Aσ],Aσ] = [[PAσ,Aσ],Aσ] = [[Iσ,Aσ],Aσ].

Therefore we obtain from (5.22) and (5.24) that

[I, I] = A ∩ [I, I]
σ

= A ∩ [Iσ, Iσ]
σ

= A ∩ [Iσ,Aσ]
σ

= A ∩ [I,A]
σ

= [I,A],

[I,A] = A ∩ [Iσ,Aσ]
σ

= A ∩ [[Iσ,Aσ],Aσ]
σ

= A ∩ [[I,A]
σ
,Aσ]

σ

= A ∩ [[I,A],A]
σ

= [[I,A],A]

which establish (5.25).
If A has no tracial states then, by (5.20), [A,A] = A and it follows from (5.25) that [I,A] = I.

bezr Corollary 5.26 Let A be a C∗-algebra. For a closed ideal I of A and for a closed Lie ideal L of
A, the following conditions are equivalent:

(i) L is related to I : [I,A] ⊆ L ⊆ N(I);
(ii) L is topologically embraced by I : [I,A] ⊆ L ⊆ N([I,A]);
(iii) L and I are topologically commutator equal: [I,A] = [L,A].
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Proof. (i) ⇒ (iii). By Proposition 5.25, N(I) = N([I,A]). Hence if L is related to I then

[I,A] ⊆ L ⊆ N(I) = N([I,A]).

Therefore, by Proposition 5.25, [I,A] = [[I,A],A] ⊆ [L,A] ⊆ [I,A], so [L,A] = [I,A]. Thus (i)
implies (iii). The inclusions (iii) ⇒ (ii) ⇒ (i) are evident.

We will prove now the second main result of this section.

C*-cl Theorem 5.27 Let L be a closed Lie ideal of a C∗-algebra A and I = Id([L,A]). Then
(i) L is topologically commutator equal to the ideal I: [L,A] = [I,A].
(ii) if A has no tracial states then

I ⊆ L ⊆ N(I). (5.26) 7.7

Proof. It follows from (5.24) that Lσ is a *-weakly closed Lie ideal of the W*-algebra Aσ. By
Theorem 5.19(i), the ideal J = Id([Lσ,Aσ]) of Aσ satisfies [Lσ,Aσ] = [J,Aσ]. Hence, by (5.24),

[L,A]
σ

= [Lσ,Aσ]
σ

= [J,Aσ]
σ

= [Jσ,Aσ]
σ
. (5.27) top

By (2.3), I = [L,A] +A[L,A] and J = [Lσ,Aσ] + Aσ[Lσ,Aσ] = Aσ[Lσ,Aσ], as Aσ is unital.
As A[L,A] ⊆ I ⊆ J, we have from (5.24) and (5.23)

J
σ ⊇ Iσ ⊇ A[L,A]

σ
= Aσ[L,A]

σσ
= Aσ[Lσ,Aσ]

σσ

= J
σ
.

Hence Iσ = J
σ
. Thus, by (5.24), [Jσ,Aσ]

σ
= [Iσ,Aσ]

σ
= [I,A]

σ
. Therefore (5.27) implies [L,A]

σ
=

[I,A]
σ
. Taking the intersection of both parts with A and using (5.22), we complete the proof of

part (i):
[L,A] = A ∩ [L,A]

σ
= A ∩ [I,A]

σ
= [I,A].

If A has no tracial states then, by Proposition 5.25, [I,A] = I, so [L,A] = I. This implies
(5.26).

Theorem 5.27 and Corollary 5.26 give a full description of the set all closed Lie ideals of a
C*-algebra A as the set of all closed subspaces that lie between [I,A] and N([I,A]), where I is
an arbitrary closed ideal of A. If A has no tracial states, then the set of all closed Lie ideals of A
coincides with the set of all closed subspaces that lie between I and N([I,A]), for all closed ideals
I of A.

If A has a tracial state then (5.26) does not necessarily hold. Indeed, let A be an UHF-algebra
and L = [A,A] (see Proposition 5.23). As A is simple, it has only two closed ideals I1 = A and
I2 = {0}. As L 6= A, (5.26) holds neither for I1 nor for I2.

Let A be a dense subalgebra of a C∗-algebra A and L be a Lie ideal of A. Then

[L,A] = [J,A], where J = Id([L,A]). (5.28) subal

Indeed, as L is a closed Lie ideal of A, by Theorem 5.27, [L,A] = [I,A] where I = Id([L,A]).
Then J ⊆ I. By (2.3), I = [L,A] + A[L,A] and J = [L,A] + A[L,A]. Hence I ⊆ J, so I = J. As
[E,A] = [E,A], for each subspace E of A, we have [L,A] = [L,A] = [I,A] = [I,A] = [J,A] = [J,A].

Let A be also a Banach *-algebra in some norm ‖·‖A . It would be interesting to know under
what conditions (5.28) holds if the closure there is taken in ‖·‖A .
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