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AN ALTERNATIVE APPROACH TO THE STRUCTURE

THEORY OF PI-RINGS

MATEJ BREŠAR

Abstract. We expose a rather simple and direct approach to the structure
theory of prime PI-rings (“Posner’s theorem”), based on fundamental proper-
ties of the extended centroid of a prime ring.

1. Introduction

The theory of rings with polynomial identities originated in Kaplansky’s 1948
paper [6], in which he showed that a primitive PI-algebra is finite-dimensional over
its center. In 1960 Posner [9] extended this theorem to the prime ring context; he
proved that a prime PI-ring has a two-sided classical ring of quotients which is a
finite-dimensional central simple algebra. After the discovery of central polynomials
on matrix algebras in the early 1970’s, Posner’s theorem was further improved by
noticing (by different authors, cf. [11]) that this ring of quotients is actually the
algebra of central quotients.

A standard proof of this sharpened version of Posner’s theorem, which can be
found in several graduate algebra textbooks (e.g., in [1, 8, 12]), is a beautiful il-
lustration of the power and applicability of the classical structure theory of rings.
Its main ingredients are the Jacobson density theorem, the theorem by Nakayama
and Azumaya on maximal subfields of division algebras, Amitsur’s theorem on the
Jacobson radical of the polynomial ring, the nonexistence of nonzero nil ideals in
semiprime PI-rings, and the existence of central polynomials on matrices. The
first two theorems are needed for the proof of Kaplansky’s theorem, which is an
intermediate step in this standard proof of Posner’s theorem.

The purpose of this paper is to give a more streamlined proof, which in each of
its steps avoids representing elements in our rings as matrices or linear operators.
All aforementioned ingredients are replaced by a single theorem (Theorem 2.1)
describing one of the basic properties of the extended centroid of a prime ring. This
theorem is essentially due to Martindale [7], and is one of the cornerstones in the
theory of generalized polynomial identities [2] as well as in the theory of functional
identities [4]. Our proof is in fact more typical for these two theories than for the
PI theory. We have to point out, however, that the idea to use such an approach
is not entirely new. Already in [7] Martindale noticed that Posner’s theorem can
be derived from his result on generalized polynomial identities in prime rings (see
also [2]). But the proof of the latter is not so easy. Focusing only on polynomial
identities, but hiddenly regarding them as generalized polynomial and functional
identities, we will be able to get a rather simple and straightforward proof.

Section 2 surveys the prerequisites needed for our proof. In Section 3 we study
identities in central simple algebras, and in particular prove Kaplansky’s theorem
for them. This weak version of Kaplansky’s theorem is our intermediate step which,
as we show in Section 4, quickly yields the final result.
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2. Preliminaries

The purpose of this section is to make this paper accessible to non-specialists.
It is divided into two parts. In the first one we review the properties of the ex-
tended centroid and related notions, and in the second one we give an elementary
introduction to polynomial identities.

2.1. The extended centroid. Let R be a prime ring, i.e., a ring in which the
product of two nonzero ideals is always nonzero. Then one can construct the sym-

metric Martindale ring of quotients Q = Qs(R) of R, which is, up to isomorphism,
characterized by the following four properties:

(a) R is a subring of Q;
(b) for every q ∈ Q there exists a nonzero ideal I of R such that qI ∪ Iq ⊆ R;
(c) if I is a nonzero ideal of R and 0 6= q ∈ Q, then qI 6= 0 and Iq 6= 0;
(d) if I is a nonzero ideal of R, f : I → R is a right R-module homomorphism,

and g : I → R is a left R-module homomorphism such that xf(y) = g(x)y
for all x, y ∈ I, then there exists q ∈ Q such that f(y) = qy and g(x) = xq

for all x, y ∈ I.

The center C of Q is called the extended centroid of R. It is a field containing the
center Z of R. We remark that Z has no zero divisors, and therefore, provided it is
nonzero, one can form its field of fractions. This is a subfield of C; examples where
it is a proper subfield can be easily constructed. We may consider Q as an algebra
over C. A subalgebra of special importance is the so-called central closure of R,
which we denote by RC . It consists of elements of the form

∑

i λiri, where λi ∈ C

and ri ∈ R. Both Q and RC are prime rings. The extended centroid of RC is just
C. The same is true for every nonzero ideal of RC (as well as of R). If C ⊆ RC ,
then C is the center of RC .

The main property of C that we need is given in the following theorem. Its
original version was proved by Martindale in [7]. The version that we state is, as
one can see from [4, Theorem A.4], a special case of [4, Theorem A.7].

Theorem 2.1. Let R be a prime ring with extended centroid C, and let I be

a nonzero ideal of R. Assume that ai, bi, cj , dj ∈ Qs(R) satisfy
∑n

i=1 aixbi =
∑m

j=1 cjxdj for all x ∈ I. If a1, . . . , an are linearly independent over C, then each

bi is a linear combination of d1, . . . , dm.

Proving Theorem 2.1, as well as all other facts about C and Q mentioned above,
is neither difficult nor lengthy; it is also entirely self-contained, and can be easily
incorporated into a course on noncommutative rings. See [2, Chapter 2] for a
detailed, and [4, Appendix A] for a more informal survey on this subject.

If R is a simple ring with 1, then it follows easily from (a)-(c) that R = Q and
hence C is the center of R. We may regard every such ring as a central simple
algebra (recall that an algebra over a field is said to be central if its center consists
of scalar multiples of 1). Our central simple algebras may be infinite-dimensional.

2.2. Polynomial identities. Let C be a field, and let C〈X1, X2, . . .〉 be the free
algebra over C generated by the indeterminates Xi, i = 1, 2, . . .. One can view
elements in C〈X1, X2, . . .〉 as polynomials in noncommuting indeterminatesXi. The
degree of such a polynomial is defined in a self-explanatory manner. Let A be an
algebra over C and let f = f(X1, . . . , Xn) ∈ C〈X1, X2, . . .〉. We say that f is an
identity of A if f(a1, . . . , an) = 0 for all ai ∈ A. If f 6= 0, then f is called a
polynomial identity of A. We say that f is a PI-algebra if there exists a polynomial
identity of A.

An element in C〈X1, X2, . . .〉 of the form
∑

π∈Sm

απXπ(1) . . .Xπ(m), απ ∈ C,
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where Sm is the symmetric group of degree m, is called a multilinear polynomial.
Especially important examples are the so-called standard polynomials in which απ is
defined as the sign of the permutation π. The standard polynomial of degree m will
be denoted by Stm. The simplest example of a polynomial that is not multilinear
is X2

1 . However, if this polynomial is an identity of A, then so is the multilinear
polynomial X1X2 +X2X1 = (X1 +X2)

2 −X2
1 −X2

2 . Somewhat more tedious, but
based on the same simple idea, is to prove that if A satisfies a polynomial identity
of degree n, then it also satisfies a multilinear polynomial identity of degree ≤ n.
Accordingly, if we are interested only in the structural properties of a PI-algebra,
we may confine ourselves to the study of multilinear polynomials.

A commutative algebra satisfies the polynomial identity St2 = [X1, X2]. Next,
every finite-dimensional algebra is a PI-algebra. Namely, if dimC A = m then A

satisfies Stm+1. Another important class of PI-algebras is provided by the Amitsur-
Levitzki theorem: If R is any (possibly infinite-dimensional) commutative algebra,
then St2n is a polynomial identity of the matrix algebra A = Mn(R).

Now let R be “merely” a ring. One can then consider identities of R as elements
in Z〈X1, X2, . . .〉. However, some care is needed in defining when R is a PI-ring.
Some trivial polynomials, such as pX1 if R has characteristic p, must be excluded.
Since we will be interested only in prime rings, we give just the definition adjusted
to this context: a prime ring R is said to be a PI-ring if a nonzero polynomial
in C〈X1, X2, . . .〉, where C is the extended centroid of R, is an identity of R. An
illustrative example is R = Mn(Z). It satisfies St2n, so is a prime PI-ring. Its
extended centroid is isomorphic to Q, and its central closure is isomorphic toMn(Q).

Everything said so far about polynomial identities is the most standard material
that can be found in numerous textbooks.

3. Central simple PI-algebras

The goal of this section is to prove a proposition that combines two well known
results: Kaplansky’s theorem on primitive PI-algebras [6, Theorem 1] and Mar-
tindale’s theorem on prime GPI-rings [7, Theorem 2]. However, we consider only
simple algebras in our proposition. The novelty is a simple proof, adjusted to this
special setting.

Let A be an algebra. For a, b ∈ A we define La, Rb : A → A by La(x) = ax,
Rb(x) = xb. Obviously, LaRb = RbLa. The set M(A) of all operators of the
form

∑

i Lai
Rbi , ai, bi ∈ A, forms a subalgebra of the algebra EndC(A) of all linear

operators on A. We call M(A) the multiplication algebra of A. We remark that
Theorem 2.1 considers two elements in M(Qs(RC)).

Proposition 3.1. Let A be a central simple algebra over a field C. The following

conditions are equivalent:

(i) A is a PI-algebra;

(ii) M(A) contains a nonzero finite rank operator;

(iii) dimC A < ∞;

(iv) M(A) = EndC(A).

Proof. (i)=⇒(ii). Let f = f(X1, . . . , Xn) be a multilinear polynomial identity of A.
Pick 1 ≤ i < j ≤ n, and write f = fi + fj where fi is the sum of all monomials
of f of the form mXim

′Xjm
′′, and fj is the sum of all monomials of f of the

form nXjn
′Xin

′′ (here, of course, m,m′ etc. are monomials in the other variables).
Suppose that both fi and fj are identities of A. Since f 6= 0, we have fi 6= 0 or
fj 6= 0. Without loss of generality we may assume that fi 6= 0. Now we may replace
the role of f by fi, and hence assume that Xi appears before Xj in all monomials
of f . Since X1X2 . . .Xn is not an identity of A, there exists a pair 1 ≤ i < j ≤ n

such that fi and fj are not identities of A. We may assume that i = 1 and j = 2.
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Fix ui ∈ A such that f1(u1, . . . , un) 6= 0. The identity f1(x, y, u3, . . . , un) =
−f2(x, y, u3, . . . , un) for all x, y ∈ A can be rewritten as a (functional) identity

(1)

r
∑

i=1

aixTi(y) =

s
∑

j=1

Sj(y)xdj for some Ti, Sj ∈ M(A), ai, dj ∈ A.

Since both sides of (1) are nonzero if we take x = u1 and y = u2, some of the ai’s
are nonzero. Without loss of generality we may assume that {a1, . . . , at}, t ≤ r, is a
maximal linearly independent subset of {a1, . . . , ar}. Expressing the ai’s with i > t

through the ai’s with i ≤ t we see that (1) can be rewritten as

(2)

t
∑

i=1

aixWi(y) =

s
∑

j=1

Sj(y)xdj for some Wi, Sj ∈ M(A), ai, dj ∈ A.

Of course, some of the Wi’s are nonzero; we may assume that W1 is one of them.
Now, for any fixed y ∈ A we infer from (2) and Theorem 2.1 that W1(y) lies in the
linear span of d1, . . . , ds. Thus, (ii) holds.

(ii)=⇒(iii). Let W =
∑n

i=1 Lai
Rbi be a nonzero finite rank operator in M(A).

Picking a maximal linearly independent subset of {a1, . . . , an} and then expressing
the other ai’s as linear combinations of elements from this set, we see that there is
no loss of generality in assuming the linear independence of {a1, . . . , an}. We may
also assume that b1 6= 0. The proof is by induction on n.

Let n = 1. Since A is simple, there exist uj , vj , wk, zk ∈ A such that
∑

j uja1vj =
∑

k wkb1zk = 1. Consequently,
∑

j,k Luj
RzkWLvjRwk

is the identity operator, and
is of finite rank. But this means that dimC A < ∞.

Now let n > 1. We will just repeat the appropriate argument from [7]. If each bi,
i ≥ 2, is a scalar multiple of b1, then we are back to the n = 1 case. We may therefore
assume that b2 and b1 are linearly independent. By Theorem 2.1 there exists c ∈ A

such that b1cb2 6= b2cb1. Define W ′ ∈ M(A) by W ′ = WRb1c −Rcb1W . Obviously,
W ′ has finite rank, and note that W ′ =

∑n

i=2 Lai
Rci where ci = b1cbi−bicb1. Since

a2, . . . , an are linearly independent and c2 6= 0, Theorem 2.1 shows that W ′ 6= 0.
By induction the proof is complete.

(iii)=⇒(iv). Let {a1, . . . , an} be a basis of A. Suppose λij ∈ C are such that
∑n

i,j=1 λijLai
Raj

= 0. Rewriting this as
∑n

i=1 Lai

(
∑n

j=1 λijRaj

)

= 0 we see by

using Theorem 2.1 that
∑n

j=1 λijRaj
= 0, which in turn yields λij = 0 for all i, j.

Therefore dimC M(A) = n2 = dimC EndC(A), and so M(A) = EndC(A).
Since (iii)=⇒(i) and (iv)=⇒(ii) are trivial, this completes the proof. �

Remark 3.2. The first step in the standard proof of Kaplansky’s theorem is the
reduction to the case where the algebra in question is a division algebra. This can
be done quite easily by applying the Jacobson density theorem. Proposition 3.1 of
course covers division algebras, so we now have a new proof of Kaplansky’s theorem
that does not use the theorem on maximal subfields of division algebras.

Remark 3.3. The proof of (i)=⇒(ii) is also applicable to generalized polynomial
identities. Explaining this in detail would make this paper, which is intended for
a wider audience, too technical. Therefore we will just give a few comments that
should be sufficient for specialists. Let f be a multilinear generalized polynomial
identity of degree n ≥ 2 of a prime ring R (in the sense of [2]). Fixing all variables
except two, we arrive at (1). The only problem is to show that we can choose the
two non-fixed variables in such a way that both sides of (1) are not identically zero.
We argue as in the first paragraph of the (i)=⇒(ii) proof, and in that way we arrive
at a generalized polynomial identity

∑

i a0iX1a1iX2a2i . . . an−1iXnani (instead of
X1X2 . . . Xn). But using Theorem 2.1 this identity can be easily handled. Therefore
we may assume (1) with both sides nonzero. Repeating the above argument leads us
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to the situation where [2, Lemmas 6.1.2 and 6.1.4] can be used to prove Martindale’s
characterization of prime GPI-rings [2, Theorem 6.1.6].

It seems that the proof that we outlined is somewhat simpler than the one given
in [2, pp. 216-217].

4. Prime PI-rings

We are now in a position to prove the ultimate version of Posner’s theorem.

Theorem 4.1. If R is a prime PI-ring with extended centroid C, then:

(a) its central closure RC is a finite-dimensional central simple algebra over C;

(b) every nonzero ideal of R intersects the center Z of R nontrivially;

(c) C is the field of fractions of Z;

(d) every element in RC is of the form z−1r with 0 6= z ∈ Z, r ∈ R.

Proof. (a) Let U be a nonzero ideal of RC . Since RC is a prime PI-ring (namely, it
clearly satisfies the same multilinear identities as R), so is U . Let f = f(X1, . . . , Xn)
be a multilinear polynomial identity of U of minimal degree n. Write

f = gXn +
∑

i

giXnhi

where each hi is a monomial of degree ≥ 1 and with leading coefficient 1, and g

and gi are multilinear polynomials. Without loss of generality we may assume that
g 6= 0. As the degree of g is n−1, g is not an identity of U . Pick u1, . . . , un−1 ∈ U so
that u = g(u1, . . . , un−1) 6= 0. We have ux1 = ux =

∑

vixwi for some vi ∈ RC +C,
wi ∈ U and all x ∈ U . Theorem 2.1 implies that 1 lies in the C-linear span of the
w′

is. This in particular shows that 1 ∈ RC , hence C ⊆ RC , and so 1 ∈
∑

Cwi ⊆ U .
Thus RC is a simple algebra over its center C. Proposition 3.1 tells us that it is
finite-dimensional.

(b) Let ϕ be a nonzero C-linear functional on RC . In view of (iv) in Proposition
3.1 there exists T ∈ M(RC) such that T (x) = ϕ(x)1 for all x ∈ A. Let pi, qi ∈ RC

be such that T =
∑n

i=1 Lpi
Rqi , q1 6= 0, and p1, . . . , pn are linearly independent

(the latter can indeed be required, since otherwise we can pick a maximal linearly
independent subset of the pi’s and then rewrite T in an appropriate way). Let Ji
and Ki be nonzero ideals of R such that piJi ⊆ R and Kiqi ⊆ R. Now pick any
nonzero ideal I of R. Then, since R is prime, I ′ = (J1 ∩ . . .∩Jn)I(K1 ∩ . . .∩Kn) is
again a nonzero ideal of R, and note that T (I ′) ⊆ I ∩ C. Theorem 2.1 shows that
T (I ′) 6= 0, and so I ∩C 6= 0. Since I ⊆ R we actually have I ∩ C = I ∩ Z.

(c) Let λ ∈ C. Take a nonzero ideal I of R such that λI ⊆ R. Picking 0 6= z ∈
I ∩ Z, we thus have λz ∈ R ∩ C = Z. Therefore λ = z−1z′ with z, z′ ∈ Z.

(d) Use a common denominator. �

Remark 4.2. A well known result by Rowen [11] says that (b) holds even for
semiprime PI-rings. The standard proof is based on central polynomials. Using
this tool - more precisely, we need the existence of a multilinear central polynomial
with integer coefficients on a finite-dimensional central simple algebra - one can
also derive this more general result by using our approach. Basically one just has to
follow Rowen’s argument, which, however, can be simplified by omitting the reduc-
tion to the semiprimitive case. Namely, in view of (a) we may deal with subdirect
products of prime rings instead of primitive ones.

Let us point out that we have also used some sort of “central polynomials” in the
proof of (b). However, instead of usual polynomials we have dealt with a generalized
polynomial

∑n

i=1 piXqi. As we saw, proving that such a “polynomial” can have only
central values is fairly easy. This cannot be said for the proof of the existence of
the usual central polynomials.
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Remark 4.3. The fact that in our proof we have avoided using the existence of
central polynomials on matrix algebras [5, 10], makes it possible for us to obtain
a new proof of that. Indeed, one just has to use (b) to conclude that the algebra
of generic n× n matrices (which is easily seen to be a prime PI-ring [12, Corollary
23.52]) has a nonzero center; cf. [3, p. 324].
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