
SKOLEM-NOETHER ALGEBRAS

MATEJ BREŠAR1, IGOR KLEP2, AND JURIJ VOLČIČ3

Abstract. An algebra S is called a Skolem-Noether algebra (SN algebra for short)

if for every central simple algebra R, every homomorphism R → R ⊗ S extends to

an inner automorphism of R⊗ S. The classical Skolem-Noether theorem implies that

central simple algebras are SN. A fundamental property of SN algebras is that each

automorphism of a matrix algebra over an SN algebra S is the composition of an inner

automorphism with an automorphism of S. The class of SN algebras contains artinian

algebras and hence finite-dimensional algebras, unique factorization domains, and free

algebras. Finally, an algebra S is SN if and only if the polynomial algebra S[ξ] is SN.

1. Introduction

Our main motivation for this work is the celebrated Skolem-Noether theorem. We
will state its version as given, for example, in [Her68]. But first, a word on conventions.
All our algebras are assumed to be unital algebras over a fixed field F , subalgebras are
assumed to contain the same unity, and all homomorphisms send 1 to 1.

Theorem 1.1. (Skolem-Noether) Let A be simple artinian algebra with center F . If
R is a finite dimensional simple F -subalgebra of A and ϕ is an F -algebra homomorphism
from R into A, then there exists an invertible element c ∈ A such that ϕ(x) = cxc−1

for all x ∈ R. (In other words, ϕ can be extended to an inner automorphism of A.)

Recall that an algebra is said to be central if its center consists of scalar multiples
of unity. As usual, we will use the term central simple algebra for an algebra that
is central, simple, and also finite-dimensional.

Definition 1.2. An algebra S is a Skolem-Noether algebra (SN algebra for short)
if for every central simple algebra R and every homomorphism ϕ : R → R ⊗ S there
exists an invertible element c ∈ R ⊗ S such that ϕ(x) = cxc−1 for every x ∈ R. (Here,
R is identified with R⊗ 1).
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The Skolem-Noether theorem, together with the well-known fact that the class of
central simple algebras is closed under tensor products, implies that every central simple
algebra S is an SN algebra. A partial converse is also true: the assertion that central
simple algebras are SN algebras implies an important special case of the Skolem-Noether
theorem where A is a central simple algebra and R is its central simple subalgebra. This
is because, under these assumptions, A is isomorphic to R⊗S where S is also a central
simple subalgebra of A [Bre14, Corollary 4.49].

SN algebras naturally arise from the problem of understanding automorphism groups
of tensor products of algebras. The general solution to this problem seems far out of
reach. For instance, while automorphisms of univariate and bivariate polynomial alge-
bras are well understood [Jun42], already the trivariate case is wild [SU03]. In another
direction, functional analysts consider the question when the flip automorphism A ⊗
A→ A⊗A is (approximately) inner for operator algebras A, see [Sak75, ER78, Izu17].
In this paper we settle the following special case of the above problem. If S is an SN
algebra and R is a central simple algebra, then automorphisms of R⊗ S are just com-
positions of inner automorphisms and automorphisms of S; see Proposition 3.3. While
the class of SN algebras looks restrictive, our main results show that various classical
and important families of algebras satisfy the SN property, for example semilocal (in
particular artinian and finite-dimensional) algebras, unique factorization domains, free
algebras, etc.

Some of the readers might be interested only in the case where R = Mn(F ), the
algebra of n×n matrices with entries in F . Let us therefore mention that since Mn(F )⊗
S can be identified with Mn(S), the condition that S is an SN algebra implies that every
homomorphism from Mn(F ) into Mn(S) can be extended to an inner automorphism of
Mn(S). Moreover, we show in Proposition 2.1 that the latter condition implies the SN
property. However, this does not lead to any simplifications of our proofs, so we persist
with central simple algebras as in Definition 1.2.

1.1. Main results and guide to the paper. The short Section 2 on preliminaries
includes Proposition 2.1: S is an SN algebra if and only if all homomorphisms Mn(F )→
Mn(S) extend to inner automorphisms. Section 3 positions SN algebras into a wider
context of automorphisms of tensor products. For instance, Proposition 3.3 proves that
given an SN algebra S and a central simple algebra R, every automorphism of R⊗S is
the composition of an inner automorphism and an automorphism of S. In particular,
this applies to matrix algebras over SN algebras.

We then identify classes of algebras which satisfy the SN property. The main result
of Section 4 is Theorem 4.7 showing that semilocal algebras are SN. Hence all artinian
algebras and thus all finite-dimensional algebras are SN. Section 5 refines the latter
result. Namely, every homomorphism from a central simple subalgebra R of a finite-
dimensional algebra A into A extends to an inner automorphism of A (see Theorem
5.1). In Section 6 we give examples of domains which are SN algebras, such as unique
factorization domains (UFDs) and free algebras, see Corollary 6.5 and Corollary 6.3.
Finally, the paper concludes with Section 7, where we show that an algebra S is SN
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if and only if the polynomial algebra S[ξ] is SN if and only if the formal power series
algebra S[[ξ]] is SN.

2. Preliminaries

The purpose of this section is to introduce the notation and terminology, and prove
a proposition that yields a characterization of SN algebras.

Let R be a central simple algebra. Given w, z ∈ R, we define the left and right
multiplication operators Lw, Rz : R→ R by

Lw(x) = wx and Rz(x) = xz.

As is well-known, every linear map from R into R can be written as a sum of maps of
the form LwRz, w, z ∈ R [Bre14, Lemma 1.25]. Accordingly, given a basis {r1, . . . , rd}
of R, there exists wj, zj ∈ R such that h =

∑
j Lwj

Rzj satisfies h(r1) = 1 and h(rk) = 0,
k 6= 1. That is,

(2.1)
∑
j

wjr1zj = 1 and
∑
j

wjrkzj = 0 if k > 1.

We will be mostly concerned with tensor product algebras R ⊗ S. Here R, S are
algebras over a field F and the tensor product is taken over F . As usual, we identify
R by R ⊗ 1, and, accordingly, often write r ⊗ 1 ∈ R ⊗ 1 simply as r. Let us point out
an elementary fact that will be used freely without further reference. If the ri’s are
linearly independent elements in R, then for all pj ∈ R and sj, ti ∈ S,

(2.2)
∑
i

ri ⊗ ti =
∑
j

pj ⊗ sj

implies that each ti lies in the linear span of the sj’s [Bre14, Lemma 4.9]. Similarly,
assuming that the ti’s are linearly independent, it follows from (2.2) that each ri lies in
the linear span of the pj’s.

By rad(S) we denote the Jacobson radical of the algebra S. Recall that S is called
a semilocal algebra if S/rad(S) is a semisimple algebra, i.e., isomorphic to a finite
direct product of simple artinian algebras. In the special case where S/rad(S) is a
division algebra, S is called a local algebra. Finally, we say that S is a stably finite
algebra if for all n ≥ 1 and all x, y ∈Mn(S), xy = 1 implies yx = 1.

To conclude the section we give an alternative characterization of the SN property.
In order to show that S is an SN algebra it suffices to verify the condition of Definition
1.2 for R = Mn(F ), i.e., all F -algebra homomorphisms Mn(F ) → Mn(S) are given by
conjugation.

Proposition 2.1. Let S be an algebra and suppose that for every n ∈ N and a ho-
momorphism ϕ : Mn(F ) → Mn(S) there exists c ∈ Mn(S) such that ϕ(x) = cxc−1 for
every x ∈ R. Then S is an SN algebra.
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Proof. Let R be a central simple algebra and ϕ : R → R ⊗ S a homomorphism. Let
e ∈ N be the exponent of R, i.e., the order of R as an element of the Brauer group of
F [GS06, Definition 4.5.12]. Let

ϕ̃ = ide−1 ⊗ ϕ : R⊗e → R⊗e ⊗ S.

Since

R⊗e ∼= M(degR)e(F ),

by assumption there exists c ∈ R⊗e ⊗ S such that ϕ̃(x) = cxc−1 for every x ∈ R⊗e.
If e > 1, we can write c as

c =
∑

i2,...,ie,j

ai2,...,ie,j ⊗ ri2 ⊗ · · · ⊗ rie ⊗ sj

for some ai2,...,ie,j, ri ∈ R and sj ∈ S where {ri}i ⊂ R and {sj}j ⊂ S are linearly
independent sets. If x = x1 ⊗ 1⊗ · · · ⊗ 1 for x1 ∈ R, then ϕ̃(x)c− cx = 0 becomes∑

i2,...,ie,j

(xai2,...,ie,j − ai2,...,ie,jx)⊗ ri2 ⊗ · · · rie ⊗ sj = 0.

Since the elements ri2 ⊗ · · · rie ⊗ sj form a linearly independent set in R⊗(e−1) ⊗ S, we
conclude that xai2,...,ie,j = ai2,...,ie,jx for all ai2,...,ie,j ∈ R and x ∈ R. As R is central we
have ai2,...,ie,j ∈ F and therefore c ∈ 1⊗ R⊗(e−1) ⊗ S ∼= R⊗(e−1) ⊗ S. Consequently the
homomorphism

ϕ̂ = ide−2 ⊗ ϕ : R⊗(e−1) → R⊗(e−1) ⊗ S
satisfies ϕ̂(x) = cxc−1 for every x ∈ R⊗(e−1). Continuing by induction we conclude that
c ∈ R⊗ S and ϕ(x) = cxc−1 for all x ∈ R, so S is an SN algebra. �

While Proposition 2.1 seemingly facilitates demonstrating that S is an SN algebra,
it does not simplify our proofs in the sequel.

3. SN algebras and automorphisms

In this section we give a few motivating results and prove that every automorphism
of a matrix algebra over an SN algebra S is an inner automorphism composed with an
automorphism of S, see Corollary 3.4.

We begin with a proposition which justifies the requirement in Definition 1.2 that
the algebra R is central simple.

Proposition 3.1. Let R be a subalgebra of an algebra S. If the homomorphism x⊗1 7→
1⊗ x from R = R⊗ 1 into R⊗ S can be extended to an inner automorphism of R⊗ S,
then R is a central simple algebra.

Proof. By assumption, there exists an invertible element a ∈ R⊗ S such that

1⊗ x = a(x⊗ 1)a−1
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for all x ∈ R. Let us write a =
∑m

i=1 ui ⊗ vi and a−1 =
∑n

j=1wj ⊗ zj. Accordingly,

1⊗ x =
( m∑

i=1

ui ⊗ vi
)

(x⊗ 1)
( n∑

j=1

wj ⊗ zj
)

(3.1)

=
m∑
i=1

n∑
j=1

uixwj ⊗ vizj.

This implies that every x ∈ R lies in the linear span of all vizj, i = 1, . . . ,m, j = 1, . . . , n.
Thus, R is finite-dimensional. On the other hand, (3.1) implies that for every nonzero
x ∈ R, 1 lies in RxR. This means that R is simple. Finally, if z lies in the center of R,
then 1 ⊗ z = a(z ⊗ 1)a−1 = z ⊗ 1, which readily implies that z is a scalar multiple of
1, as desired. �

The question of when the automorphism x⊗y 7→ y⊗x of R⊗R is inner was initiated
by Sakai [Sak75] in the C∗-algebra context, and investigated further by Bunce [Bun74].
The following corollary is an extension of [Bun74, Theorem 2].

Corollary 3.2. Let R be an arbitrary algebra. The homomorphism x⊗1 7→ 1⊗x from
R = R⊗ 1 into R⊗R can be extended to an inner automorphism of R⊗R if and only
if R is a central simple algebra.

Proof. If R is a central simple algebra, then so is R⊗R [Bre14, Corollary 4.44], and so
every homomorphism from R into R ⊗ R can be extended to an inner automorphism
by the Skolem-Noether theorem. The converse follows from Proposition 3.1. �

The next proposition yields another motivation for considering SN algebras.

Proposition 3.3. Let R be a central simple algebra and let S be an SN algebra. Then
every automorphism ϕ of R ⊗ S is the composition of an inner automorphism and an
automorphism of the form idR ⊗ σ where σ is an automorphism of S.

Proof. By assumption, the restriction of ϕ to R can be extended to an inner automor-
phism x 7→ cxc−1 of R ⊗ S. Considering the automorphism x 7→ c−1ϕ(x)c we thus see
that there is no loss of generality in assuming that ϕ acts as the identity on R. Note
that the proposition will be proved by showing that ϕ maps 1 ⊗ S into itself. Pick
s ∈ S. We can write ϕ(1 ⊗ s) as

∑
j pj ⊗ sj where the sj’s are linearly independent.

Since 1⊗ s commutes with x⊗ 1 for every x ∈ R it follows that so does ϕ(1⊗ s). This
implies that ∑

j

(pjx− xpj)⊗ sj = 0.

As the sj’s are linearly independent it follows that pjx − xpj = 0 for each j and each
x ∈ R. Hence, since R is central, each pj is a scalar multiple of 1. Consequently,
ϕ(1⊗ s) ∈ 1⊗ S. �

If R = Mn(F ), then R ⊗ S can be identified with Mn(S), and the proposition gets
the following form.
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Corollary 3.4. If S is an SN algebra, then every automorphism ϕ of Mn(S) is of the
form

ϕ
(
(sij)

)
= c
(
σ(sij)

)
c−1

where c is an invertible element in Mn(S) and σ is an automorphism of S.

This result is known in the case where S is either an artinian algebra [BO81, Theorem
3.13], a UFD [Isa80, Corollary 15], or a commutative local algebra (see, e.g., [Kov73,
p. 163]). As we will see, all these algebras are SN algebras. On the other hand,
[Isa80] shows that the commutative domain Z[

√
−5] does not satisfy the conclusion of

Corollary 3.4. We give an algebra with the same property in Example 6.6.

4. Semilocal algebras

The main result of this section is Theorem 4.7 showing that semilocal algebras are
SN.

4.1. Basic lemma and local algebras. Our next result is a technical lemma that
will be frequently used to derive some of our main results. Its proof will use some ideas
from the proof of the (special case of) Skolem-Noether theorem given in [Bre14, pp.
13–14].

Lemma 4.1. Let R be a central simple algebra with basis {r1, . . . , rd} and let S be an
arbitrary algebra. Then ϕ : R → R ⊗ S is a homomorphism if and only if there exist
c1, . . . , cd ∈ R⊗ S such that

(a) ϕ(x) =
∑d

k=1 ckxrk for all x ∈ R,
(b) ϕ(x)ck = ckx for all x ∈ R, and

(c)
∑d

k=1 ckrk = 1.

Moreover, writing ck =
∑d

l=1 rl ⊗ skl, we have that for each k and l there exists bkl ∈
R⊗ S such that

bklck = 1⊗ skl.
Accordingly, if S is stably finite and there exist k and l such that skl is invertible in S,
then c = ck is invertible in R⊗ S and

ϕ(x) = cxc−1

for all x ∈ R.

Proof. Since R is finite-dimensional, there exist finitely many si ∈ S and linear maps
fi : R→ R such that

ϕ(x) =
∑
i

fi(x)⊗ si

for all x ∈ S. By [Bre14, Lemma 1.25] there exist wij, zij ∈ R such that

fi =
∑
j

Lwij
Rzij .
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Consequently, for every x ∈ R we have

ϕ(x) =
∑
i

(∑
j

wijxzij

)
⊗ si

=
∑
i

∑
j

(wij ⊗ si)xzij.

Writing each zij as a linear combination of r1, . . . , rd we see that ϕ is of the form
described in (a).

We now use the multiplicativity of ϕ, i.e., ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R. In view
of (a) we can rewrite this as

(4.1)
d∑

k=1

ckxyrk =
d∑

k=1

ϕ(x)ckyrk.

Pick wj, zj ∈ R such that (2.1) holds. Setting y = wj in (4.1), multiplying the identity,
so obtained, from the right by zj, and then summing up over all j we get

∑
j

d∑
k=1

ckxwjrkzj =
∑
j

d∑
k=1

ϕ(x)ckwjrkzj,

that is,
d∑

k=1

ckx
(∑

j

wjrkzj

)
=

d∑
k=1

ϕ(x)ck

(∑
j

wjrkzj

)
.

By (2.1) this reduces to c1x = ϕ(x)c1. Of course, the same proof applies to every ck,
so (b) holds. Finally, (c) follows from ϕ(1) = 1.

A direct verification shows that (a), (b), and (c) imply that ϕ is a homomorphism.
Let us write c1 =

∑
l rl ⊗ s1l, and let wj, zj be as above. Using (b) we obtain∑

j

wjϕ(zj)c1 =
∑
j

wjc1zj

=
∑
j

∑
l

wj(rl ⊗ s1l)zj

=
∑
l

(∑
j

wjrlzj

)
⊗ s1l

= 1⊗ s11.

Thus, b11 =
∑

j wjϕ(zj) satisfies b11c1 = 1⊗ s11. Similarly we find other bkl’s.

Finally, assume that skl is invertible in S for some k and l. Then (1⊗ s−1kl )bkl is a left
inverse of ck. If S is stably finite, then the result by Montgomery [Mon83, Theorem
1] implies that this element is also a right inverse. Therefore, (b) shows that c = ck
satisfies ϕ(x) = cxc−1 for all x ∈ R. �
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We continue with a simple application of Lemma 4.1, showing that local algebras
are SN. This result will be generalized to semilocal algebras (with a considerably more
involved proof) later in this section, see Theorem 4.7.

Corollary 4.2. Every local algebra is an SN algebra.

Proof. Let rk, skl be elements from Lemma 4.1. From (c) it follows that∑
k,l

rlrk ⊗ skl = 1⊗ 1.

This implies that 1 lies in the linear span of skl. Consequently, at least one skl does
not lie in rad(S). Since S is local it follows that skl is invertible in S. As S is stably
finite [Lam01, Theorem 20.13], the last assertion of Lemma 4.1 shows that there exists
c ∈ R⊗ S such that ϕ(x) = cxc−1 for all x ∈ R. �

We next show that semisimple algebras are SN. For this we need a simple lemma.

Lemma 4.3. If S1 and S2 are SN algebras, then so is their direct product S1 × S2.

Proof. Recall that R ⊗ (S1 × S2) can be identified with (R ⊗ S1) × (R ⊗ S2). Take a
homomorphism

ϕ : R→ (R⊗ S1)× (R⊗ S2).

Writing

ϕ(x) = (ϕ1(x), ϕ2(x))

it is immediate that ϕi is a homomorphism from R into R⊗Si, i = 1, 2. By assumption,
there exist ci ∈ R⊗ Si such that ϕi(x) = cixc

−1
i for all x ∈ R, i = 1, 2. Hence,

c = (c1, c2) ∈ (R⊗ S1)× (R⊗ S2)

satisfies ϕ(x) = cxc−1 for all x ∈ R. �

As mentioned in the introduction, the Skolem-Noether theorem implies that every
central simple algebra is an SN algebra. With a little extra effort we can extend this
to semisimple algebras.

Lemma 4.4. Every semisimple algebra is an SN algebra.

Proof. In view of Lemma 4.3 it suffices to consider the case where S is simple artinian.
Let R be a central simple algebra. The algebra R⊗ S is then simple [Bre14, Theorem
4.42]. We claim that it is also artinian. Indeed, considering R ⊗ S as a left S-module
in the natural way we see that it is isomorphic to the left S-module Sd where d is the
dimension of R, and that a descending chain of left ideals of R⊗S is also a descending
chain of left S-submodules. The desired conclusion thus follows from the fact that Sd

is artinian.
Let K be the center of S. The center of R ⊗ S is equal to 1 ⊗K [Bre14, Corollary

4.32], which we identify with K. Consider R ⊗ K as an algebra over K in the usual
way. Clearly, it is finite-dimensional and, again by [Bre14, Theorem 4.42], simple.
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Now, given a homomorphism ϕ : R→ R⊗ S, we define

Φ : R⊗K → R⊗ S
by

Φ(x⊗ k) = ϕ(x)(1⊗ k).

Note that Φ is a K-algebra homomorphism. The Skolem-Noether theorem thus tells
us that there exists c ∈ R ⊗ S such that Φ(x⊗ k) = c(x⊗ k)c−1 for all x ∈ R, k ∈ K.
Setting k = 1 we get the desired conclusion. �

4.2. Semilocal algebras. Our goal is to show that semilocal algebras are SN algebras
by reducing the general case to the semisimple case. We will actually prove a general
reduction theorem whose possible applications are not limited to semilocal algebras.
To this end, we need the following lemma. From its nature one would expect that it
is known, but we were unable to find a good reference. We include the short proof for
the sake of completeness.

Lemma 4.5. If R is a central simple algebra, then rad(R⊗ S) = R⊗ rad(S) for every
algebra S.

Proof. As an ideal of R⊗ S, rad(R⊗ S) is necessarily of the form R⊗ I for some ideal
I of S [Bre14, Theorem 4.42]. We will show that I ⊆ rad(S), by making use of the
following characterization of rad(A): v ∈ rad(A) if and only if 1 − vx is invertible for
every x ∈ A. Take u ∈ I. Since 1⊗ u ∈ rad(R⊗ S) it follows that

1⊗ (1− ux) = 1⊗ 1− 1⊗ ux = 1⊗ 1− (1⊗ u)(1⊗ x)

is invertible in R⊗S for every x ∈ S. However, this is possible only if 1−ux is invertible,
implying that u ∈ rad(S). Thus, I ⊆ rad(S), and so rad(R⊗ S) ⊆ R⊗ rad(S).

As the lemma is well-known if R = Mn(F ) (see, e.g., [Lam01, pp. 57-58]), we will
establish the converse inclusion by reducing the general case to this one. Take a splitting
field K for R which is a finite separable extension of F (see, e.g., [GS06, Proposition
4.5.4]). Then K ⊗ R may be identified with Mn(K) for some n ≥ 1, and, therefore,
K ⊗ R ⊗ S may be identified with Mn(K ⊗ S). Thus, by what we pointed out at the
beginning of the paragraph, we have

rad(K ⊗R⊗ S) = Mn(rad(K ⊗ S)).

By [Lam01, Theorem 5.17], rad(K ⊗ S) = K ⊗ rad(S), so that

(4.2) rad(K ⊗R⊗ S) = Mn(K)⊗ rad(S).

According to [Lam01, Theorem 5.14],

rad(R⊗ S) = (R⊗ S) ∩ rad(K ⊗R⊗ S),

and hence, by (4.2),

rad(R⊗ S) = (R⊗ S) ∩ (Mn(K)⊗ rad(S)).

Since both R ⊗ S and Mn(K) ⊗ rad(S) readily contain R ⊗ rad(S), it follows that
R⊗ rad(S) ⊆ rad(R⊗ S). �
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We can now prove the announced reduction theorem.

Theorem 4.6. If an algebra S is stably finite and S/rad(S) is an SN algebra, then S
is an SN algebra.

Proof. Let R be central simple and write

J = R⊗ rad(S).

Take a homomorphism ϕ : R→ R⊗ S. We define

Φ : R→ (R⊗ S)/J

by

Φ(x) = ϕ(x) + J.

Since (R⊗S)/J is canonically isomorphic to R⊗ (S/rad(S)), and S/rad(S) is assumed
to be an SN algebra, it follows that there exists an invertible element a ∈ (R ⊗ S)/J
such that

Φ(x) = a(x+ J)a−1 for all x ∈ R.

As J is, by Lemma 4.5, the Jacobson radical of R ⊗ S, it follows that there exists an
invertible element b ∈ R⊗ S such that a = b+ J . Obviously, we have

ϕ(x)− bxb−1 ∈ J for all x ∈ R,

that is,

b−1ϕ(x)b− x ∈ J for all x ∈ R.

Replacing the role of ϕ by the homomorphism x 7→ b−1ϕ(x)b we see that without loss
of generality we may assume that b = 1. Thus,

(4.3) ϕ(x)− x ∈ J for all x ∈ R.

Now apply Lemma 4.1. Picking a basis {r1, . . . , rd} of R, we can thus find skl ∈ S,
k, l = 1, . . . , p, such that

(4.4) ϕ(x) =
d∑

k=1

d∑
l=1

rlxrk ⊗ skl for all x ∈ R,

and our goal is to show that at least one skl is invertible in S.
Let λk ∈ F be such that 1 =

∑d
k=1 λkrk. Then

x = 1 · x · 1 =
d∑

k=1

d∑
l=1

(λkλl)rlxrk for all x ∈ R.

Using (4.3) and (4.4) we thus obtain

(4.5)
d∑

k=1

d∑
l=1

rlxrk ⊗ (skl − λkλl · 1) ∈ J for all x ∈ R.
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We may assume that λ1 6= 0. Choose wj, zj ∈ R that satisfy (2.1). Denoting the
expression in (4.5) by ρ(x), we have∑

j

wjρ(zj) =
∑
j

d∑
k=1

d∑
l=1

wjrlzjrk ⊗ (skl − λkλl · 1)

=
d∑

k=1

d∑
l=1

(∑
j

wjrlzj

)
rk ⊗ (skl − λkλl · 1)

=
d∑

k=1

rk ⊗ (sk1 − λkλ1 · 1).

As ρ maps into J it follows that

d∑
k=1

rk ⊗ (sk1 − λkλ1 · 1) ∈ J = R⊗ rad(S).

Since the rk’s are linearly independent, we must have sk1 − λkλ1 · 1 ∈ rad(S) for each
k. In particular, s11 = λ21 · 1 + u for some u ∈ rad(S). Since λ1 6= 0 it follows that s11
is invertible, as desired. �

We are now in a position to give our main result.

Theorem 4.7. Every semilocal algebra S is an SN algebra.

Proof. Since S is stably finite [Lam01, Theorem 2.13] and the algebra S/rad(S) is
semisimple, the theorem follows from Lemma 4.4 and Theorem 4.6. �

Corollary 4.8. Every artinian algebra is an SN algebra.

5. Finite dimensional algebras

Corollary 4.8 shows that every finite-dimensional algebra is an SN algebra. The next
result gives a strengthening of this property.

Theorem 5.1. Let A be a finite-dimensional algebra and let R be its central simple
subalgebra. Then every homomorphism from R into A can be extended to an inner
automorphism of A.

Proof. Assume first that R = Mn(F ). Then A contains a set of n× n matrix units and
is therefore isomorphic to Mn(S) ∼= R⊗ S for some subalgebra S of A [Bre14, Lemma
2.52]. Since S is also finite-dimensional, the desired conclusion follows from Corollary
4.8.

Now let R be an arbitrary central simple algebra. We may assume that the field F is
infinite, for otherwise R ∼= Mn(F ) by the Wedderburn’s theorem on finite division rings.
Let ϕ be a homomorphism from R into A. Take a splitting field K for R. Identifying
K ⊗ R with Mn(K), n ≥ 1, it follows from the preceding paragraph that there exists
b ∈ K ⊗ A such that

(idK ⊗ ϕ)(y) = byb−1
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for all y ∈ K ⊗R. In particular,

(1⊗ ϕ(x))b = b(1⊗ x)

for all x ∈ R. Writing b =
∑m

i=1 ki ⊗ ai with the ki’s linearly independent, it follows
that

m∑
i=1

ki ⊗ (ϕ(x)ai − aix) = 0,

and so ϕ(x)ai = aix for all x ∈ R and every i. Hence we see that it suffices to show
that spanF{a1, . . . , am} contains an element which is invertible in A.

As a finite-dimensional algebra, A can be considered as a subalgebra of MN(F ) for
some N ≥ 1. Take the polynomial

f(ξ1, . . . , ξm) = det
( m∑

i=1

ξiai

)
∈ F [ξ1, . . . , ξm].

Note that K ⊗ A can be viewed as a subalgebra of MN(K). Since b is invertible in
K⊗A, we know that spanK{a1, . . . , am} contains an invertible element in K⊗A. This
clearly implies that f is a nonzero polynomial. As F is infinite, there exist λi ∈ F
such that f(λ1, . . . , λm) 6= 0. That is, spanF{a1, . . . , am} contains an element c which
is invertible in MN(F ). However, since we are in finite dimensions, c−1 is a polynomial
in c. Thus, c is invertible in A. �

Using the standard homomorphism construction we will now see that Theorem 5.1
can be used for showing that all derivations from R into any R-bimodule M are inner
(in accordance with the conventions mentioned at the very beginning of the paper, we
assume that our bimodules are unital). This is, of course, a well-known result. Another
way of stating it is that central simple algebras are separable.

Corollary 5.2. Every derivation from a central simple algebra R into an arbitrary
R-bimodule M is inner.

Proof. Let d : R → M be a derivation. As a finite-dimensional subspace of M , d(R)
generates a finite-dimensional subbimodule of M . Therefore, there is no loss of gener-
ality in assuming that M itself is finite-dimensional.

Let Ã be the set of all matrices of the form [ x u
0 x ], where x ∈ R and u ∈ M . Note

that Ã is a (finite-dimensional!) algebra under the standard matrix operations. Let R̃

be its subalgebra consisting of all matrices of the form [ x 0
0 x ], x ∈ R. Of course, R̃ ∼= R.

Define ϕ : R̃→ Ã by

ϕ

([
x 0
0 x

])
=

[
x d(x)
0 x

]
.

One immediately checks that ϕ is a homomorphism. By Theorem 5.1 there exists an

invertible element c = [ t v
0 t ] ∈ Ã such that ϕ(x̃) = cx̃c−1 for all x̃ ∈ R̃. Consequently,

ϕ(x̃)c = cx̃, that is, [
x d(x)
0 x

]
·
[
t v
0 t

]
=

[
t v
0 t

]
·
[
x 0
0 x

]
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for all x ∈ R. This yields

xt = tx and xv + d(x)t = vx

for all x ∈ R. Since R is central, the first identity shows that t ∈ F . Moreover, t 6= 0
for c is invertible. Hence w = t−1v satisfies d(x) = wx− xw by the second identity. �

6. Domains

In this section we give classes of domains which are SN algebras. For instance, free
algebras and UFDs are SN algebras (Corollaries 6.3 and 6.5).

As the coordinate ring of an elliptic curve demonstrates (see Example 6.6), not every
commutative domain is an SN algebra. However, the following proposition shows that
every domain S embedded into a division algebra satisfies a certain weaker condition.

Proposition 6.1. Let R be a central simple algebra, and let an algebra S be a domain
which can be embedded into a division algebra D. If ϕ is a homomorphism from R into
R⊗ S, then there exists c ∈ R⊗ S which is invertible in R⊗D, in fact

c−1 = (1⊗ s−1)b ∈ R⊗D

for some nonzero s ∈ S and b ∈ R⊗ S, such that

ϕ(x) = cxc−1

for all x ∈ R. Moreover, if {r1, . . . , rd} is a basis of R, b =
∑d

k=1 rk ⊗ sk for some

sk ∈ S, and c =
∑d

l=1 rl ⊗ tl for some tl ∈ S, then

tls
−1sk ∈ S

for all k and l.

Proof. Not every ck from Lemma 4.1 can be 0 (in view of (c)), and so skl 6= 0 for some
k and l. Set c = ck and s = skl. By the lemma we have ϕ(x)c = cx for all x ∈ R and
bc = 1⊗ s for some b ∈ R ⊗ S. Of course, s is invertible in D. Therefore (1⊗ s−1)b is
a left inverse of c in R ⊗D. By [Mon83, Theorem 1], a left inverse in R ⊗D is also a
right inverse, so c−1 = (1⊗ s−1)b.

Not take a basis {r1, . . . , rd} of R, and let us write b =
∑d

k=1 rk ⊗ sk and c =∑d
l=1 rl ⊗ tl. Then

ϕ(x) = cxc−1 =
d∑

k=1

d∑
l=1

rlxrk ⊗ tls−1sk.



14 M. BREŠAR, I. KLEP, AND J. VOLČIČ

for all x ∈ R. Pick wj, zj ∈ R satisfying (2.1). We have∑
j

wjϕ(zj) =
∑
j

d∑
k=1

d∑
l=1

wjrlzjrk ⊗ tls−1sk

=
d∑

k=1

d∑
l=1

(∑
j

wjrlzj

)
rk ⊗ tls−1sk

=
d∑

k=1

rk ⊗ t1s−1sk.

Since the left hand side, i.e.
∑

j wjϕ(zj), lies in R ⊗ S, so does the right hand side.

This readily yields that t1s
−1sk ∈ S. �

Let S be an arbitrary ring. The inner rank of A ∈ Sm×n is the least r such that
A = BC for some B ∈ Sm×r and C ∈ Sr×n. We write ρA = r. We say that S is a
Sylvester domain [Coh06, Section 5.5] if for any P ∈ S`×m and Q ∈ Sm×n such that
PQ = 0, it follows that ρP + ρQ ≤ m.

We say that an element s ∈ S right divides a ∈ S if a = a′s for some a′ ∈ S. If S
is a domain and a, b ∈ S \ {0}, then s is a highest common right factor (HCRF)
of a and b if s right divides a, b and every s′ ∈ S that right divides a, b also right
divides s. We say that S is an HCRF domain if every pair of nonzero elements in
S admits a HCRF. Special examples of HCRF domains are filtered rings satisfying the
2-term weak algorithm [Coh06, Section 2.8] or more generally, 2-firs with right ACC1

(ascending chain condition on principal right ideals) [Coh06, Exercise 3.2.1].

Theorem 6.2. If S is an HCRF domain and a Sylvester domain, then S is an SN
algebra.

Proof. Since S is a Sylvester domain, it admits a universal skew field of fractions D
and this embedding preserves the inner rank by [Coh06, Theorem 7.5.13]. Let R be a
central simple algebra and ϕ : R→ R⊗ S a homomorphism. By Proposition 6.1 there
exists c ∈ R⊗S invertible in R⊗D such that ϕ(x) = cxc−1 for all x ∈ R. Furthermore,
if {r1, . . . , rd} is a basis of R and

c =
∑
i

ri ⊗ ti, c−1 =
∑
i

ri ⊗ ui

for ti ∈ S and ui ∈ D, then tiuj = si,j ∈ S for all 1 ≤ i, j ≤ d. Since S is an HCRF
domain, we can assume that {t1, . . . , td} are right coprime in S (otherwise they have
a nontrivial HCRF e and we can replace c with ce−1). Fix j such that uj 6= 0. Then
(uj,−1)t ∈ D2 belongs to the right kernel of the matrixt1 s1,j

...
...

td sd,j

 ∈ Sd×2
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which is therefore of rank 1 over D. Since the embedding S ⊆ D is rank preserving,
this matrix is also of inner rank 1 over S, sot1 s1,j

...
...

td sd,j

 =

v1...
vd

(w1 w2

)
for some vi, wj ∈ S. Since w1 right divides ti for every i and the entries of c are right
coprime, we conclude that w1 is invertible in S. By taking some ti 6= 0 we get

uj = t−1i si,j = w−11 v−1i viw2 = w−11 w2 ∈ S.

Consequently c−1 ∈ R⊗ S. �

Corollary 6.3. Every free algebra F 〈X〉 is an SN algebra.

Proof. A free algebra is a filtered ring with a weak algorithm [Coh06, Theorem 2.5.3],
so it is a HCRF domain and a fir (free ideal ring) by [Coh06, Theorem 2.4.6] and hence
a Sylvester domain by [Coh06, Proposition 5.5.1]. �

Theorem 6.2 has the following form for commutative rings.

Corollary 6.4. Every Bézout domain is an SN algebra.

Proof. Every Bézout domain is a GCD domain, which is just a commutative HCRF
domain. Moreover, by [Coh06, Proposition 2.3.17] it is also a semifir and hence a
Sylvester domain by [Coh06, Proposition 5.5.1]. Therefore Theorem 6.2 applies. �

The assumptions of Theorem 6.2 are quite strong because embeddings of noncom-
mutative domains into division rings can be ill-behaved or nonexistent. On the other
hand, this is not problematic in the commutative setting, so we can derive a stronger
result.

Corollary 6.5. Every UFD is an SN algebra.

Proof. Let S be a UFD and let R, ϕ, b, c, s, sk, tl be as in Proposition 6.1. Without loss
of generality we can assume that t1, . . . , td have no non-trivial common divisor. Then
it suffices to prove that s−1sk ∈ S for every k. Since tls

−1sk ∈ S for every k, l, we see
that s divides tlsk for every l, k. Let p be a prime such that pn divides s. Suppose that
pn does not divide sk0 for some k0. Since pn divides tlsk0 for every l, we conclude that p
divides tl for every l, which contradicts the assumption about tl being coprime. Hence
s divides sk for every k. �

In the next example we present a domain that is not an SN algebra; cf. [RZ61,
Theorem 15].

Example 6.6. Let S = F [x, y]/(y2 − x3 − x). Then S is a domain,

a =

(
y x
x2 y

)
∈M2(S)
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is invertible as a matrix over the field of fractions of S and

a−1 =

(
− y

x
1

x − y
x

)
.

Since every product of an entry in a and an entry in a−1 lies in S, it follows that

ϕ : M2(F )→M2(F )⊗ S, x 7→ axa−1

is a well-defined homomorphism. Suppose there exists c ∈ M2(S) such that ϕ(x) =
cxc−1 for all x ∈ M2(F ). Then γ = det(c) is invertible in S and it is easy to see that
this implies γ ∈ F \ {0}. Since c−1a commutes with every x ∈M2(F ) by the definition
of ϕ, we have c−1a = fI2 for some f ∈ S. But then

γf 2 = γ det(c−1a) = det a = x

contradicts the irreducibility of x in S.

7. Polynomial algebras and formal power series

The aim of this section is to show that the property of being an SN algebra transfers
from S to the polynomial algebra S[ξ] and the formal power series algebra S[[ξ]].

Theorem 7.1. For an algebra S the following are equivalent:

(i) S is an SN algebra;
(ii) S[ξ] is an SN algebra;
(iii) S[[ξ]] is an SN algebra.

Proof. We start by establishing (i) ⇒ (iii). Let R be a central simple algebra and let
ϕ : R→ R⊗ S[[ξ]] be a homomorphism. Since R is finite-dimensional, we can identify
R⊗ S[[ξ]] with (R⊗ S)[[ξ]] and write

ϕ(x) = ϕ0(x) + ϕ1(x)ξ + ϕ2(x)ξ2 + . . .

where ϕi : R → R ⊗ S. Note that ϕ0 is an algebra homomorphism. By assumption,
there exists an invertible element a ∈ R ⊗ S such that ϕ0(x) = axa−1 for all x ∈ R.
Considering the map x 7→ a−1ϕ(x)a we see that without loss of generality we may
assume that ϕ0(x) = x for all x ∈ R, so that

(7.1) ϕ(x) = x+ ϕ1(x)ξ + ϕ2(x)ξ2 + . . .

Now apply Lemma 4.1. Thus, let {r1, . . . , rd} be a basis of R and let c1, . . . , cd ∈
R⊗ S[[ξ]] be such that

(7.2)
d∑

k=1

ckrk = 1 and ϕ(x)ck = ckx

for all x ∈ R and all k. Writing

ck =
∞∑
j=0

ckjξ
j,
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where ckj ∈ R⊗ S, it follows from (7.1) and (7.2) that

(7.3) xck0 = ck0x

for all x ∈ R. Let us write ck0 =
∑

j pkj⊗ skj with the skj’s linearly independent. From

(7.3) we infer that ∑
j

(xpkj − pkjx)⊗ skj = 0

for all x ∈ R, yielding xpkj − pkjx = 0. Since R is central this means that each pkj
is a scalar multiple of 1. Accordingly, each ck0 is of the form 1 ⊗ tk for some tk ∈ S.
From the first identity in (7.2) one easily deduces that

∑d
k=1 rk ⊗ tk = 1 ⊗ 1. Writing

1 =
∑d

k=1 λkrk, where λk ∈ F , it follows that tk = λk1. We may assume that λ1 6= 0.
Accordingly, c10 is a nonzero scalar multiple of unity of R ⊗ S, implying that c1 is
invertible in (R⊗ S)[[ξ]]. Applying (7.2) we arrive at ϕ(x) = c1xc

−1
1 for all x ∈ R.

Next, we turn out attention to (iii) ⇒ (ii). Let R be a central simple algebra and
let ϕ : R → R ⊗ S[ξ] be a homomorphism. Since R is finite dimensional, there exists
` ≥ 0 such that ϕ(x) is a polynomial of degree at most ` in ξ for every x ∈ R. By
extending the codomain of ϕ to R ⊗ S[[ξ]], assumption (iii) implies that ϕ(x) = cxc−1

for all x ∈ R and some invertible c ∈ (R⊗ S)[[ξ]]. Write

c =
∞∑
j=0

cjξ
j, c̃ = c−1 =

∞∑
j=0

c̃jξ
j

and

cj =
∑
i

ri ⊗ sij, c̃j =
∑
i

ri ⊗ s̃ij,

where r1, . . . , rd is a basis of R and sij, s̃ij ∈ S. By assumption we have

cxc̃ ∈
∑̀
i=0

(R⊗ S)ξi

for every x ∈ R. The coefficient of ξm in cxc̃ equals

(7.4)
∑

j1+j2=m

∑
i1,i2

ri1xri2 ⊗ si1j1 s̃i2j2 .

Since {
Lri1

Rri2
: 1 ≤ i1, i2 ≤ d

}
is a basis of EndF (R) and the coefficient of ξm in cxc̃ is zero for every x ∈ R and m > `,
(7.4) implies si1j1 s̃i2j2 = 0 for all j1 + j2 > ` and i1, i2. Therefore cj1 c̃j2 = 0 for every
j1 + j2 > `. Since c0 and c̃0 are invertible in R ⊗ S, we conclude that cj = c̃j = 0 for
every j > `, so c, c−1 ∈ (R⊗ S)[ξ] = R⊗ S[ξ].

Finally, (ii) ⇒ (i) is straightforward. More generally, the SN property is clearly
preserved by retractions. Here an algebra S ′ is a retract of S if S ′ ⊂ S and there exists
a homomorphism π : S → S ′ that restricts to the identity map on S ′. �
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