
AN ELEMENTARY APPROACH TO WEDDERBURN’S

STRUCTURE THEORY

MATEJ BREŠAR
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1. Introduction

One hundred years have passed since J. H. M. Wedderburn published the paper
on the structure of algebras [1]. In particular he proved that a finite dimensional
simple algebra is isomorphic to a matrix algebra over a division algebra. Versions
of this result appear in countless graduate algebra textbooks, often on their first
pages. Standard proofs are based on the concept of a module over an algebra. The
module-theoretic approach is certainly elegant and efficient, and moreover it gives a
basis for developing various more general theories. However, Wedderburn’s theorem
has a very simple formulation which does not involve modules. Therefore it seems
natural to seek for more direct approaches. The goal of this article is to present
a proof which uses only the most elementary tools. It is short, but so are some
module-theoretic proofs. Its main advantage is the conceptual simplicity. It cannot
replace standard proofs if one has a development of a more sophisticated theory in
mind. But it might be more easily accessible to students. Wedderburn’s theorem
is a typical graduate level topic, but using this approach it could be included in
an undergraduate algebra course. Students often find an introduction to algebra
somewhat dry and formal, and therefore enliven it with colorful theorems might
make them more interested. We wish to show that Wedderburn’s beautiful and
important theorem is one such option.

2. Wedderburn’s theorem

Besides some standard algebraic notions, the only prerequisites needed for our
proof of Wedderburn’s theorem are two simple lemmas. Both of them are well
known. Nevertheless, we will give the proofs to make the paper self-contained.

First we introduce the notation and terminology. By an “algebra” we shall mean
an associative algebra over a fixed, but arbitrary field F. The unity of an algebra
A will be denote by 1A; until further notice we assume that all our algebras have a
unity. If e is an idempotent in A, then eAe is a subalgebra of A with 1eAe = e.

Let n be a positive integer. Elements eij ∈ A, i, j = 1, . . . , n, are called matrix
units if e11 + . . . + enn = 1A and eijekl = δjkeil for all i, j, k, l (here, δjk is the
“Kronecker delta”). In particular, eii are idempotents such that eiiejj = 0 if i 6= j.
Note that each eij 6= 0. If C is any algebra, then A = Mn(C), the algebra of all n×n
matrices over C, has matrix units. Indeed, the standard (but not the only) example
is the following: eij is the matrix whose (i, j)-entry is 1C and all other entries are
0. In our first lemma we show that Mn(C) is also the only example of an algebra
with matrix units.

Lemma 2.1. If an algebra A contains matrix units eij, i, j = 1, . . . n, then A ∼=
Mn(ettAett) for each t = 1, . . . , n.

Proof. For every a ∈ A we set aij = etiaejt. We can also write aij = ettetiaejtett and
so aij ∈ ettAett. Now define ϕ : A → Mn(ettAett) by ϕ(a) = (aij). We claim that
ϕ is an algebra isomorphism. Clearly, ϕ is linear and preserves unities. The (i, j)-
entry of ϕ(a)ϕ(b) is equal to

∑n
k=1 etiaektetkbejt = etia(

∑n
k=1 ekk)bejt = etiabejt,

which is the (i, j)-entry of ϕ(ab). Thus, ϕ(ab) = ϕ(a)ϕ(b). If aij = 0 for all i, j,
then eiiaejj = eitaijetj = 0, and so a = 0 since the sum of all eii is 1A. Thus ϕ
is injective. Note that ϕ(eitaetj) is the matrix whose (i, j)-entry is ettaett and all
other entries are 0. This implies the surjectivity of ϕ. �

Recall that an algebra A is said to be prime if for all a, b ∈ A, aAb = {0} implies
a = 0 or b = 0. If D is a division algebra, then Mn(D) is a prime algebra for every
n ≥ 1. Indeed, one easily checks that if a, b ∈ Mn(D) are such that aeijb = 0 for
all standard matrix units eij , then a = 0 or b = 0. Next, an algebra A is said
to be semiprime if for all a ∈ A, aAa = {0} implies a = 0. Obviosuly, prime
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algebras are semiprime. The direct product A1 × A2 of semiprime algebras A1

and A2 is a semiprime, but not a prime algebra. The semiprimeness of A can be
equivalently defined through the condition that A does not have nonzero nilpotent
ideals. Similarly, A is prime if and only if the product of any two nonzero ideals of
A is nonzero. But we shall not need these alternative definitions.

If A is a simple algebra and a, b are its nonzero elements, then aAb 6= {0} since
the ideals generated by a and b are equal to A. Thus, simple algebras are prime.
The converse is not true in general. For example, the polynomial algebra F[X]
is prime but not simple. In the finite dimensional context, however, the notions
of primeness and simplicity coincide. This is well known and also follows from
our version of Wedderburn’s theorem. The reason for dealing with prime algebras
instead of with (more common but less general) simple ones in this version is not
because of seeking for a greater level of generality, but because the proofs run more
smoothly in this setting. For similar reason we consider semiprime algebras instead
of semisimple ones.

Before stating the next lemma we mention an illustrative example. If ett is a
standard matrix unit of Mn(D), then ettMn(D)ett consists of all matrices whose
(t, t)-entry is an arbitrary element in D and all other entries are 0. Therefore
ettMn(D)ett ∼= D.

Lemma 2.2. If A is a nonzero finite dimensional semiprime algebra, then there
exists an idempotent e ∈ A such that eAe is is a division algebra.

Proof. Pick a nonzero left ideal L of minimal dimension, i.e., dimF L ≤ dimF J for
every nonzero left ideal J of A. Obviously, {0} is then the only left ideal that is
properly contained in L. Let 0 6= x ∈ L. Since A is semiprime, there exists a ∈ A
such that xax 6= 0. As y = ax ∈ L, we have found x, y ∈ L with xy 6= 0. In
particular, Ly 6= {0}. But Ly is a left ideal of A contained in L, and so Ly = L.
Accordingly, as y ∈ L we have ey = y for some e ∈ L. This implies that e2−e belongs
to the set J = {z ∈ L | zy = 0}. Clearly, J is again a left ideal of A contained in
L. Since x ∈ L \ J , this time we conclude that J = {0}. In particular, e2 = e.
As e ∈ L, we have Ae ⊆ L, and since 0 6= e ∈ Ae it follows that L = Ae. Now
consider the subalgebra eAe of A. Let c ∈ A be such that ece 6= 0. The lemma will
be proved by showing that ece is invertible in eAe. We have {0} 6= Aece ⊆ Ae = L,
and so Aece = L. Therefore there is b ∈ A such that bece = e, and hence also
(ebe)(ece) = e. Now, ebe is again a nonzero element in eAe, and so by the same
argument there is c′ ∈ A such that (ec′e)(ebe) = e. But then (ece)−1 = ebe. �

We remark that the finite dimensionality of A was used only for finding a minimal
left ideal, i.e., a left ideal that does not properly contain any other nonzero left ideal.

We are now in a position to prove Wedderburn’s theorem. Let us first outline
the concept of the proof to help the reader not to get lost in an (inevitably) te-
dious notation in the formal proof. By Lemma 2.1 it is enough to show that the
algebra A in question contains matrix units eij such that ettAett is a division al-
gebra for some t. Lemma 2.2 yields the existence of an idempotent e such that
eAe is a divison algebra. Think of e as enn. A simple argument based on the
induction on dimFA shows that the algebra (1A − e)A(1A − e) contains matrix
units e11, e12, . . . , en−1,n−1 with ettAett being division algebras. It remains to find
en1, . . . , en,n−1 and e1n, . . . , en−1,n. Finding e1n and en1 is the heart of the proof;
here we make use of the fact that e11Ae11 and ennAenn are division algebras.
The remaining matrix units can be then just directly defined as enj = en1e1j and
ejn = ej1e1n, j = 2, . . . , n − 1; checking that they satisfy all desired identities is
straightforward.
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Theorem 2.3. (Wedderburn’s theorem) Let A be a finite dimensional algebra.
Then A is prime if and only if there exist a positive integer n and a division algebra
D such that A ∼= Mn(D).

Proof. We have already mentioned that the algebra Mn(D) is prime. Therefore we
only have to prove the “only if” part. The proof is by induction on N = dimFA.

If N = 1, then A = F1A is a field and the result trivially holds (with n = 1 and
D = F). We may therefore assume that N > 1. By Lemma 2.2 there exists an
idempotent e ∈ A such that eAe is a division algebra. If e = 1A, then the desired
result holds (with n = 1). Assume therefore that e is a nontrivial idempotent, and

set Â = (1A−e)A(1A−e). Note that Â is a prime algebra with unity 1A−e. Further,

we have eÂ = Âe = {0}, and so e /∈ Â. Therefore dimF Â < N . Using the induction

assumption it follows that Â contains matrix units eij , i, j = 1, . . . ,m, for some

m ≥ 1, such that eiiÂeii is a division algebra for each i. Since eii = (1A − e)eii =

eii(1A − e), we actually have eiiÂeii = eiiAeii. Our goal is to extend these matrix

units of Â to matrix units of A. We begin by setting n = m+ 1 and enn = e. Then
e11+. . .+en−1,n−1+enn = (1A−e)+e = 1A. Using the definition of primeness twice
we see that e11aenna

′e11 6= 0 for some a, a′ ∈ A. As e11Ae11 is a division algebra
with unity e11, it follows that (e11aenna

′e11)(e11a
′′e11) = e11 for some a′′ ∈ A.

Thus, e11aennbe11 = e11 where b = a′e11a
′′. Let us set e1n = e11aenn and en1 =

ennbe11, so that e1nen1 = e11. Since en1 ∈ ennAe11, we have en1 = ennen1 and
en1 = en1e11 = en1e1nen1. Comparing both relations we get (enn− en1e1n)en1 = 0.
The element enn−en1e1n lies in the division algebra ennAenn. If it is nonzero, then
we can multiply the last identity from the left-hand side by its inverse, which gives
ennen1 = 0, and hence en1 = 0 - a contradiction. Therefore enn = en1e1n. Finally
we set enj = en1e1j and ejn = ej1e1n for j = 2, . . . , n − 1. Note that eij = ei1e1j

then holds for all i, j = 1, . . . , n. Consequently, for all i, j, k, l = 1, . . . , n we have
eijekl = ei1e1jek1e1l = δjkei1e11e1l = δjkei1e1l = δjkeil. Thus eij , i, j = 1, . . . , n,
are indeed matrix units of A. Therefore Lemma 2.1 tells us that A ∼= Mn(D) where
D = ettAett (for any t). As we know, D is a division algebra. �

Theorem 2.3 can be extended in myriad ways. In appendices we will consider
two important improvements. The first one is that assuming the existence of 1A is
actually redundant, and the second one is a generalization to semiprime algebras.
The proofs will be, just as the above one, by induction on the dimension of A. We
will give them in a somewhat loose manner, but filling in the details is supposed to
be an easy task.

From now on we do not assume anymore that our algebras should have a unity.
The definitions of prime and semiprime algebras remain unchanged in this more
general setting. Also, Lemma 2.2 still holds as we can see from its proof.

Appendix A. Let A be a nonzero finite dimensional prime algebra. We will show
that A necessarily has a unity (and hence A ∼= Mn(D) by Theorem 2.3). We proceed
by induction on N = dimFA. The N = 1 case is trivial, so let N > 1. Lemma 2.2
implies that A has a nonzero idempotent e. We may assume that e 6= 1A. Because
of the absence of 1A now we cannot introduce the algebra (1A − e)A(1A − e); but
we can simulate it. Let us write â = a − ea − ae + eae for each a ∈ A, and set

Â = {â | a ∈ A}. Clearly, eÂ = Âe = {0}. This readily implies that Â is a prime

algebra with e /∈ Â. If Â was {0}, it would follow that (a−ae)b(c−ec) = ab̂c = 0 for
all a, b, c ∈ A. Using the primeness of A it is easy to see that this contradicts e 6= 1A.

Thus Â 6= {0}. By induction assumption we may now conclude that Â has a unity.
Set f = 1Â. Then ef = fe = 0 and hence faf = fâf = âf = (a − ea)f . Thus,
((e+f)a−a)f = 0 for all a ∈ A. Replacing a by ab we get ((e+f)a−a)bf = 0, and
therefore (e+ f)a = a. Similarly we derive a(e+ f) = a. Accordingly, e+ f = 1A.
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Appendix B. The semiprime (or, equivalently, semisimple) version of Wed-
derburn’s theorem reads as follows. A nonzero finite dimensional algebra A is
semiprime if and only if there exist positive integers n1, . . . , nr and division alge-
bras D1, . . . ,Dr such that A ∼= Mn1

(D1)× . . .×Mnr
(Dr). (Incidentally, this implies

that semiprime algebras also have a unity). The “if” part is trivial, while the “only
if” can be easily derived from Theorem 2.3, as we will show in the next paragraph.
Our argument will also demonstrate the advantage of not assuming a priori that
algebras must have a unity.

Let A be a nonzero finite dimensional semiprime algebra. Again we will derive
the desired conclusion by induction on N = dimFA. In view of Theorem 2.3 and
Appendix A we may assume that A is not prime. Therefore there exists 0 6=
a ∈ A such that I = {x ∈ A | aAx = {0}} is not {0}. Note that I is an ideal
of A, and hence I is also a semiprime algebra. Since a /∈ I, we may use the
induction assumption and conclude that I is a direct product of matrix algebras
over division algebras. In particular, I has a unity e = 1I . Consequently, e is a
central idempotent in A, and A ∼= I×J where J is the ideal consisting of elements
a− ea, a ∈ A. We may now use the induction assumption also on J and the result
follows.

Concluding remarks. Our aim was to write an expository article presenting
a shortcut from elementary definitions to a substantial piece of mathematics. The
proof of Wedderburn’s theorem given is certainly pretty direct. But how original is
it? To be honest, we do not know. We did not find such a proof when searching the
literature. But on the other hand, it is not based on some revolutionary new idea.
So many mathematicians have known this theory for so many years that one hardly
imagines that something essentially new can be invented. After a closer look at [1]
we have realized that a few details in our construction of matrix units are some-
what similar to those used by Wedderburn himself. Thus, some of these ideas have
been around for a hundred years. Or maybe even more. We conclude this article
by quoting Wedderburn [1, page 78]: “Most of the results contained in the present
paper have already been given, chiefly by Cartan and Frobenius, for algebras whose
coefficients lie in the field of rational numbers; and it is probable that many of the
methods used by these authors are capable of direct generalisation to any field. It is
hoped, however, that the methods of the present paper are, in themselves and apart
from the novelty of the results, sufficiently interesting to justify its publication.”

Acknowledgement. The author would like to thank Igor Klep, Lajos Molnar,
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