A UNIFIED APPROACH TO THE STRUCTURE THEORY OF PI-RINGS AND GPI-RINGS

MATEJ BREŠAR
Dedicated to Yuri Bahturin on his 65th birthday

Abstract

We give short proofs, based only on basic properties of the ex tended centroid of a prime ring, of Martindale's theorem on prime GPI-rings and (a strengthened version of) Posner's theorem on prime PI-rings.

1. Introduction

In the recent paper [7] the author has exposed a rather simple and direct approach to the structure theory of prime PI-rings. Unlike the standard approach which combines various tools, this one basically rests upon only one concept: the extended centroid of a prime ring. It was remarked in the paper that the method of the proof is also applicable to generalized polynomial identities.

The present paper is an expanded version of [7], which, in particular, also covers generalized polynomial identities. It is organized as follows. Section 2 gives a short survey of the symmetric Martindale ring of quotients and the extended centroid of a prime ring. Section 3 reveals the essence of our approach. Its sole goal is an elementary lemma treating a special functional identity. In Section 4 we give a new proof of Martindale's theorem on prime GPI-rings [15]. Finally, in Section 5 we derive the structure theorem on prime PI-rings from Martindale's theorem. The idea to apply generalized polynomial identities to polynomial identities is not new. Already in [15] Martindale noticed that Posner's theorem on prime PI-rings can be derived from his result. However, we will be able to recover a significant strengthening of Posner's theorem, established by Rowen [19] and others. It is worthwhile mentioning that our arguments also yield a nonconstructive proof of the existence of central polynomials for matrices over infinite fields.

2. The symmetric Martindale ring of quotients and the extended CENTROID

By a ring we mean an associative ring, not necessarily with 1 . Let R be a prime ring. Then one can construct the symmetric Martindale ring of quotients $Q=Q_{s}(R)$ of R, which is, up to isomorphism, characterized by the following four properties:
(a) R is a subring of Q;
(b) for every $q \in Q$ there exists a nonzero ideal I of R such that $q I \cup I q \subseteq R$;
(c) if I is a nonzero ideal of R and $0 \neq q \in Q$, then $q I \neq 0$ and $I q \neq 0$;
(d) if I is a nonzero ideal of $R, f: I \rightarrow R$ is a right R-module homomorphism, and $g: I \rightarrow R$ is a left R-module homomorphism such that $x f(y)=g(x) y$ for all $x, y \in I$, then there exists $q \in Q$ such that $f(y)=q y$ and $g(x)=x q$ for all $x, y \in I$.

[^0]Remark 2.1. Note that (b) can be extended as follows: If $q_{1}, \ldots, q_{n} \in Q$, then there exist a nonzero ideal I of R such that $q_{i} I \bigcup I q_{i} \subseteq R$ for every $i=1, \ldots, n$. Indeed, if I_{i} is a nonzero ideal of R such that $q_{i} I_{i} \bigcup I_{i} q_{i} \subseteq R$, then $I=I_{1} \bigcap \ldots \bigcap I_{n}$ is nonzero since R is prime and obviously satisfies the desired condition.

For details and some illustrative examples we refer the reader to [5] and [14]. We will be primarily interested in the center C of Q, called the extended centroid of R. It is a field containing the center Z of R. We remark that Z has no zero divisors, and therefore, provided it is nonzero, one can form its field of fractions. This is a subfield of C; examples where it is a proper subfield can be easily constructed. For example, if R is the ring of all countably infinite complex matrices of the form $A+\lambda$, where A is a matrix with only finitely many nonzero entries and λ is a real scalar matrix, then $Z \cong \mathbb{R}$ and $C \cong \mathbb{C}$.

We may consider Q as an algebra over C. The subalgebra of Q generated by R is called the central closure of R. We will denote it by A. Both Q and A are prime rings. The extended centroid of A, as well as of any nonzero ideal of A, is nothing but C. If $C \subseteq A$, i.e., if A is unital, then C is the center of A.

The main property of C that we need is given in the following theorem. It is one of the cornerstones of the theory of generalized polynomial identities as well as of the theory of functional identities. Its original version was proved by Martindale in [15]. The version that we state is, as one can see from [8, Theorem A.4], a special case of [8, Theorem A.7].

Theorem 2.2. Let R be a prime ring with extended centroid C, and let I be a nonzero ideal of R. Assume that $a_{i}, b_{i}, c_{j}, d_{j} \in Q_{s}(R)$ satisfy $\sum_{i=1}^{n} a_{i} x b_{i}=$ $\sum_{j=1}^{m} c_{j} x d_{j}$ for all $x \in I$. If a_{1}, \ldots, a_{n} are linearly independent over C, then each b_{i} is a linear combination of d_{1}, \ldots, d_{m}. (In particular, $b_{i}=0$ if the d_{j} 's are 0 .)

We have thereby gathered together all prerequsities that we need. The proofs of the aforementioned results are self-contained and quite simple. See [5, Chapter 2] for a detailed, and [8, Appendix A] for an informal survey on this subject.

3. A LEMMA ON FUNCTIONAL IDENTITIES

The theory of functional identities deals with identities on rings that involve arbitrary functions. A functional identity is formally more general than a polynomial identity, but in practice the theory of functional identities is most often complementary to the theory of polynomial identities, rather than being its generalization. For a full account on functional identities and their applications we refer the reader to the book [8]. See also $[3,4]$ for some of the most recent applications.

The next lemma treats a special functional identity by elementary means. It is independent of the general theory from [8] (at least technically, if not philosophically).

Lemma 3.1. Let S be a set, Q be a ring with 1 , and \mathcal{F} be a set of functions from S into Q. For every π in the symmetric group $S_{n}, n \geq 2$, we write

$$
\left\{x_{1}, \ldots, x_{n}\right\}_{\pi}=\sum_{i} F_{\pi 1}^{i}\left(x_{\pi(1)}\right) F_{\pi 2}^{i}\left(x_{\pi(2)}\right) \ldots F_{\pi n}^{i}\left(x_{\pi(n)}\right)
$$

where $F_{\pi k}^{i} \in \mathcal{F}$. If

$$
\sum_{\pi \in S_{n}}\left\{x_{1}, \ldots, x_{n}\right\}_{\pi}=0 \quad \text { for all } x_{1}, \ldots, x_{n} \in S
$$

then one of the following assertions holds:
(a) For every $\pi \in S_{n}$ we have $\left\{x_{1}, \ldots, x_{n}\right\}_{\pi}=0$ for all $x_{1}, \ldots, x_{n} \in S$, or
(b) There exist $a_{k}, b_{k}, c_{k}, d_{l}, e_{l}, f_{l} \in Q$ and $F_{k}, G_{k}, H_{l}, K_{l} \in \mathcal{F}$ such that

$$
\begin{aligned}
& \varphi(x, y):=\sum_{k} a_{k} F_{k}(x) b_{k} G_{k}(y) c_{k}=\sum_{l} d_{l} H_{l}(y) e_{l} K_{l}(x) f_{l} \quad \text { for all } x, y \in S, \\
& \quad \text { and } \varphi\left(s_{1}, s_{2}\right) \neq 0 \text { for some } s_{1}, s_{2} \in S .
\end{aligned}
$$

Proof. Let us set

$$
\Phi\left(x_{1}, \ldots, x_{n}\right):=\sum_{\substack{\pi \in S_{n}, \pi^{-1}(1)<\pi^{-1}(2)}}\left\{x_{1}, \ldots, x_{n}\right\}_{\pi}
$$

Suppose there exist $s_{1}, \ldots, s_{n} \in S$ such that $\Phi\left(s_{1}, \ldots, s_{n}\right) \neq 0$. Let us define $\varphi(x, y)=\Phi\left(x, y, s_{3}, \ldots, s_{n}\right)$, and note that $\varphi(x, y)$ consists of summands of the form $a F_{\pi k}^{i}(x) b F_{\pi l}^{i}(y) c$ where a, b, c are either equal to 1 or are products of elements from $\mathcal{F}\left(s_{i}\right), i \geq 3$. On the other hand, since, by our assumption,

$$
\Phi\left(x_{1}, \ldots, x_{n}\right)=-\sum_{\substack{\pi \in S_{n}, \pi^{-1}(2)<\pi^{-1}(1)}}\left\{x_{1}, \ldots, x_{n}\right\}_{\pi}
$$

we see that $\varphi(x, y)$ can be also represented as a sum of summands of the form $d F_{\pi k}^{i}(y) e F_{\pi l}^{i}(x) f$. As $\varphi\left(s_{1}, s_{2}\right) \neq 0$, (b) holds.

We may therefore assume that $\Phi\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in S$, and also that $n \geq 3$. Now we set

$$
\Psi\left(x_{1}, \ldots, x_{n}\right):=\sum_{\substack{\pi \in S_{n}, \pi^{-1}(1)<\pi^{-1}(2), \pi^{-1}(2)<\pi^{-1}(3)}}\left\{x_{1}, \ldots, x_{n}\right\}_{\pi}=-\sum_{\substack{\pi \in S_{n}, \pi^{-1}(1)<\pi^{-1}(2), \pi^{-1}(3)<\pi^{-1}(2)}}\left\{x_{1}, \ldots, x_{n}\right\}_{\pi}
$$

If $\Psi\left(t_{1}, \ldots, t_{n}\right) \neq 0$ for some $t_{1}, \ldots, t_{n} \in S$, then one shows, just as in the preceding paragraph, that $\varphi(x, y)=\Psi\left(t_{1}, x, y, t_{4}, \ldots, t_{n}\right)$ gives rise to (b). Thus we may assume that $\Psi\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in S$. We can now continue this procedure by considering the summation over permutations π that additionally satisfy $\pi^{-1}(3)<\pi^{-1}(4)$. Assuming that it is nonzero we arrive at (b), otherwise we make another step. If (b) does not hold we finally arrive at $\pi^{-1}(1)<\pi^{-1}(2)<$ $\ldots<\pi^{-1}(n)$, which, of course, holds only for $\pi=1$. Thus, if (b) is not true then $\left\{x_{1}, \ldots, x_{n}\right\}_{1}=0$ for all $x_{1}, \ldots, x_{n} \in S$. Analogously we see that $\left\{x_{1}, \ldots, x_{n}\right\}_{\pi}=0$ for every $\pi \in S_{n}$ if (b) does not hold.

A special case of this lemma, where \mathcal{F} consists of scalar multiples of the identity map (so that the identity treated can be interpreted as a multilinear polynomial identity), indirectly appeared in [7]. In what follows we will need another special case where \mathcal{F} consists of two-sided multiplications (which corresponds to a multilinear generalized polynomial identity). Perhaps the lemma shall turn out to be useful in some other instances.

4. Prime GPI-rings

Let R be a prime ring with extended centroid C and symmetric Martindale ring of quotients $Q=Q_{s}(R)$. By $Q_{C}\left\langle X_{1}, X_{2}, \ldots\right\rangle$ we denote the coproduct of the C algebra Q and the free algebra $C\left\langle X_{1}, X_{2}, \ldots\right\rangle$. Informally we can consider elements in $Q_{C}\left\langle X_{1}, X_{2}, \ldots\right\rangle$ as sums of "monomials" of the form $a_{0} X_{i_{1}} a_{1} X_{i_{2}} a_{2} \ldots a_{n-1} X_{i_{n}} a_{n}$ with $a_{i} \in Q$. We say that $f=f\left(X_{1}, \ldots, X_{n}\right) \in Q_{C}\left\langle X_{1}, X_{2}, \ldots\right\rangle$ is a generalized polynomial identity (GPI) on R if $f\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in R$. If there exists a nonzero GPI on R, then R is said to be a GPI-ring. We refer to [5] for a full treatise of GPI's.

Let A be any algebra. For $a, b \in A$ we define $L_{a}, R_{b}: A \rightarrow A$ by $L_{a}(x)=a x$ and $R_{b}(x)=x b$. Clearly, $L_{a a^{\prime}}=L_{a} L_{a^{\prime}}, R_{b b^{\prime}}=R_{b^{\prime}} R_{b}$, and $L_{a} R_{b}=R_{b} L_{a}$. By $M(A)$ we denote the algebra of all operators of the form $\sum_{i} L_{a_{i}} R_{b_{i}}, a_{i}, b_{i} \in A$.

The fundamental result in the theory of GPI-rings is the following theorem by Martindale from 1969 [15]. (The condition (ii) is usually not stated in the theorem, but in our opinion it does deserve a special attention.)

Theorem 4.1. (Martindale) Let R be a prime ring with extended centroid C and central closure A. The following statements are equivalent:
(i) R is a GPI-ring.
(ii) $M(A)$ contains a nonzero finite rank operator.
(iii) A contains an idempotent e such that $A e$ is a minimal left ideal of A and $e A e$ is a finite dimensional division algebra over C.

Proof. (i) \Longrightarrow (ii). By a standard linearization process we see that R satisfies a multilinear generalized polynomial identity $f=f\left(X_{1}, \ldots, X_{n}\right) \in Q_{C}\left\langle X_{1}, X_{2}, \ldots\right\rangle$, $f \neq 0$. We can write $f=\sum_{\pi \in S_{n}} f_{\pi}$ where f_{π} consists of summands of the form

$$
a_{0} X_{\pi(1)} a_{1} X_{\pi(2)} a_{2} \ldots a_{n-1} X_{\pi(n)} a_{n}, \quad a_{i} \in Q
$$

Since $f \neq 0$, at least one of the f_{π} 's is not 0 . We may assume that

$$
f_{1}=\sum_{i} a_{0 i} X_{1} a_{1 i} X_{2} a_{2 i} \ldots a_{n-1 i} X_{n} a_{n i} \neq 0
$$

We claim that f_{1} cannot be a generalized polynomial identity of R. We proceed by induction on n. The case where $n=0$, i.e., $f=a_{0}$ with $a_{0} \in Q$, is trivial. We may therefore assume that our claim is true for all nonnegative integers smaller than n. Let us write f_{1} as $f_{1}=\sum_{i} a_{0 i} X_{1} h_{i}$ where $h_{i}=h_{i}\left(X_{2}, \ldots, X_{n}\right)$. There is no loss of generality in assuming that the set of the elements $a_{0 i}$ is linearly independent, since otherwise we can choose its maximal linearly independent subset, write each $a_{0 i}$ as a linear combination of elements from this subset, and accordingly rewrite f_{1} as $f_{1}=$ $\sum_{i} a_{0 i}^{\prime} X_{1} h_{i}^{\prime}$ where the set of the elements $a_{0 i}^{\prime}$ now is linearly independent. If f_{1} was a generalized polynomial identity of R, we would have $\sum_{i} a_{i 0} x_{1} h_{i}\left(x_{2}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$, hence $h_{i}\left(x_{2}, \ldots, x_{n}\right)=0$ by Theorem 2.2 , and so, by induction assumption, $h_{i}=0$ as an element of $Q_{C}\left\langle X_{1}, X_{2}, \ldots\right\rangle$. This contradicts $f_{1} \neq 0$.

The identity $\sum_{\pi \in S_{n}} f_{\pi}\left(x_{1}, \ldots, x_{n}\right)=0$ makes it possible for us to apply Lemma 3.1 to the case where \mathcal{F} consists of maps from R into Q of the form $x \mapsto a x b$, $a, b \in Q$. As the possibility (a) has been ruled out in the preceding paragraph, (b) must hold. Note that this can be interpreted as follows: There exist $p_{i}, q_{j} \in Q$ and $F_{i}, G_{j} \in M(Q)$ such that

$$
\varphi(x, y):=\sum_{i} p_{i} x F_{i}(y)=\sum_{j} G_{i}(y) x q_{j} \quad \text { for all } x, y \in R
$$

and $\varphi\left(s_{1}, s_{2}\right) \neq 0$ for some $s_{1}, s_{2} \in R$. A similar argument as in the preceding paragraph shows that without loss of generality we may assume that the elements p_{i} are linearly independent. We may also assume that $F_{1} \neq 0$. Theorem 2.2 tells us that $F_{1}(y) \in \sum_{j} C q_{j}$ for every $y \in R$, implying that $F_{1}(A)$ is a finite dimensional space, as desired. The only problem is that F_{1} lies in $M(Q)$ rather than in $M(A)$. But we can easily remedy this. We have $F_{1}(y)=\sum_{l} s_{l} y t_{l}$ with $s_{l}, t_{l} \in Q$. By Remark 2.1 there exists a nonzero ideal I of R such that $I s_{l} \bigcup t_{l} I \subseteq R$ for every l. Of course, $I F_{1}(R) I \neq 0$, so that there are $u, v \in I$ and $y_{0} \in R$ such that $u F_{1}\left(y_{0}\right) v \neq 0$. Define $F(y):=\sum_{l} u s_{l} y t_{l} v$. Since $u s_{l}, t_{l} v \in R \subseteq A$, we can consider F as an element of $M(A)$. Clearly, $F(A)=u F_{1}(A) v$ is a finite dimensional space.
(ii) \Longrightarrow (iii). Let $W=\sum_{i=1}^{n} L_{a_{i}} R_{b_{i}}$ be a nonzero finite rank operator in $M(A)$. Without loss of generality we may assume that the set $\left\{a_{1}, \ldots, a_{n}\right\}$ is linearly independent and that $b_{1} \neq 0$.

Suppose first that $n=1$. Let us write a for a_{1} and b for b_{1}. Thus, $1 \leq \operatorname{dim}_{C} a A b<$ ∞. If L_{0} is nonzero left ideal of A with $L_{0} \subseteq A b$, and R_{0} is a nonzero right ideal of A with $R_{0} \subseteq a A$, then $0 \neq R_{0} L_{0} \subseteq a A b$ and hence $1 \leq \operatorname{dim}_{C} R_{0} L_{0}<\infty$. Choose L_{0}
and R_{0} so that $R_{0} L_{0}$ is of minimal dimension. We claim that $A R_{0} L_{0}$ is a minimal left ideal of A. Let L_{1} be a left ideal such that $0 \neq L_{1} \subseteq A R_{0} L_{0}$. Then $L_{1} \subseteq L_{0}$, hence $R_{0} L_{1} \subseteq R_{0} L_{0}$, and so $R_{0} L_{1}=R_{0} L_{0}$ in view of the dimension assumption. Consequently, $L_{1} \supseteq A R_{0} L_{1}=A R_{0} L_{0}$ which proves that $A R_{0} L_{0}$ is indeed minimal. As it is well-known (see, e.g., [5, Proposition 4.3.3]), this implies the existence of an idempotent $e \in A$ such that $A e=A R_{0} L_{0}$ and $e A e$ is a division algebra. Moreover, since $e \in A R_{0} L_{0} \subseteq A a A b$ it follows that $\operatorname{dim}_{C} e A e<\infty$.

Now let $n>1$. If each $b_{i}, i \geq 2$, is a scalar multiple of b_{1}, then we are back to the $n=1$ case. We may therefore assume that b_{2} and b_{1} are linearly independent. By Theorem 2.2 there exists $c \in A$ such that $b_{1} c b_{2} \neq b_{2} c b_{1}$. Define $W^{\prime} \in M(A)$ by $W^{\prime}=W R_{b_{1} c}-R_{c b_{1}} W$. Obviously, W^{\prime} has finite rank, and we have $W^{\prime}=$ $\sum_{i=2}^{n} L_{a_{i}} R_{c_{i}}$ where $c_{i}=b_{1} c b_{i}-b_{i} c b_{1}$. Since a_{2}, \ldots, a_{n} are linearly independent and $c_{2} \neq 0$, Theorem 2.2 shows that $W^{\prime} \neq 0$. By induction, the proof is complete.
(iii) $\Longrightarrow(\mathrm{i})$. Let $d=\operatorname{dim}_{C} e A e$. Then the elements $e x_{1} e, \ldots, e x_{d+1} e$ are linearly dependent for each $x \in R$, so that $S t_{d+1}\left(e X_{1} e, \ldots, e X_{d+1} e\right)$, where $S t_{d+1}$ is the standard polynomial in $d+1$ variables, is a GPI on R.

The essence of the theorem is that the central closure A of a prime GPI-ring has minimal left ideals $A e$, so A is a primitive algebra having a particularly nice structure; moreover, the corresponding division algebra $e A e$ is finite dimensional.

The main novelty is the proof of $(\mathrm{i}) \Longrightarrow$ (ii), although, of course, it is based on ideas from [7]. The proof of $(\mathrm{ii}) \Longrightarrow(\mathrm{iii})$ is similar to those from [15] and [5], yet some modifications taken from [10] were used.

5. Prime PI-Rings

It is convenient to define that a prime ring R is a PI-ring if a nonzero polynomial in $C\left\langle X_{1}, X_{2}, \ldots\right\rangle$, where C is the extended centroid of R, is a polynomial identity of R. The structure of prime PI-rings was first described in 1960 by Posner [17]. Later, after the discovery of central polynomials in the 1970's, Posner's theorem was sharpened by Rowen and others (cf. [19]) as follows.

Theorem 5.1. (Posner) Let R be a prime PI-ring with extended centroid C and central closure A. Then:
(a) A is a finite-dimensional central simple algebra over C.
(b) Every nonzero ideal of R intersects the center Z of R nontrivially.
(c) C is the field of fractions of Z.

Accordingly, every element in A is of the form $z^{-1} r$ with $0 \neq z \in Z$ and $r \in R$ (thus, $A=S^{-1} R$ where $S=Z \backslash\{0\}$).

Proof. (a) Let U be a nonzero ideal of A. Since A is clearly a prime PI-ring (as it satisfies the same multilinear identities as R), so is U. Let $f=f\left(X_{1}, \ldots, X_{n}\right)$ be a multilinear polynomial identity of U of minimal degree n. Write

$$
f=g X_{n}+\sum_{i} g_{i} X_{n} h_{i}
$$

where each h_{i} is a monomial of degree ≥ 1 and with leading coefficient 1 , and g and g_{i} are multilinear polynomials. We may assume that $g \neq 0$. As the degree of g is $n-1$, g is not an identity of U. Pick $u_{1}, \ldots, u_{n-1} \in U$ so that $u=g\left(u_{1}, \ldots, u_{n-1}\right) \neq 0$. The identity $f\left(u_{1}, \ldots, u_{n}\right)=0$ shows that $u x 1=u x=\sum v_{i} x w_{i}$ for all $x \in U$, where $v_{i} \in A+C \subseteq Q_{s}(A)$ and $w_{i} \in U$. Hence Theorem 2.2 tells us that 1 lies in the C-linear span of the $w_{i}^{\prime} s$. This in particular shows that $1 \in A$, hence $C \subseteq A$, and so $1 \in \sum C w_{i} \subseteq U$. Thus A is a simple algebra over its center C.

By Theorem 4.1 there exist $a, b \in A$ such that $V=a A b$ is a finite dimensional space (we may take $a=b=e=e^{2}$, but we do not need this). Since A is simple,
we have $\sum_{j} a_{j} a b_{j}=\sum_{k} c_{k} b d_{k}=1$ for some $a_{j}, b_{j}, c_{k}, d_{k} \in A$. Consequently,

$$
x=1 x 1=\left(\sum_{j} a_{j} a b_{j}\right) x\left(\sum_{k} c_{k} b d_{k}\right) \in \sum_{j, k} a_{j} V d_{k}
$$

for every $x \in A$. Therefore $\operatorname{dim}_{C} A<\infty$.
(b) Let $\left\{a_{1}, \ldots, a_{d}\right\}$ be a basis of A. Suppose $\sum_{i, j=1}^{d} \lambda_{i j} L_{a_{i}} R_{a_{j}}=0$ for some $\lambda_{i j} \in C$. Rewriting this as $\sum_{i=1}^{d} L_{a_{i}}\left(\sum_{j=1}^{d} \lambda_{i j} R_{a_{j}}\right)=0$ we see, by using Theorem 2.2, that $\sum_{j=1}^{d} \lambda_{i j} R_{a_{j}}=0$, which in turn yields $\lambda_{i j}=0$ for all i, j. Therefore $\operatorname{dim}_{C} M(A)=d^{2}=\operatorname{dim}_{C} \operatorname{End}_{C}(A)$, and so $M(A)=\operatorname{End}_{C}(A)$. Consequently, given a nonzero C-linear functional ζ on A there exists $T \in M(A)$ such that $T(x)=\zeta(x) 1$ for all $x \in A$. Let $p_{i}, q_{i} \in A$ be such that $T=\sum_{i=1}^{m} L_{p_{i}} R_{q_{i}}$ with $\left\{p_{1}, \ldots, p_{m}\right\}$ linearly independent and $q_{1} \neq 0$. Let J be a nonzero ideal of R such that $p_{i} J \bigcup J q_{i} \subseteq$ $R, i=1, \ldots, m$ (Remark 2.1). Now take an arbitrary nonzero ideal I of R. Then $I^{\prime}=J I J$ is again a nonzero ideal of R, and note that $T\left(I^{\prime}\right) \subseteq I \cap C$. Theorem 2.2 shows that $T\left(I^{\prime}\right) \neq 0$, and so $I \cap C \neq 0$. Since $I \subseteq R$ we actually have $I \cap C=I \cap Z$.
(c) Let $\lambda \in C$. Choose a nonzero ideal I of R such that $\lambda I \subseteq R$. Picking $0 \neq z \in I \cap Z$, we thus have $\lambda z \in R \cap C=Z$. Therefore $\lambda=z^{-1} z^{\prime}$ with $z, z^{\prime} \in Z$.

Finally, we now know that every element in $a \in A$ can be written as $a=\sum_{i} z_{i}^{-1} r_{i}$ for some $z_{i} \in Z \backslash\{0\}$ and $r_{i} \in R$. Hence $a=\left(\Pi_{i} z_{i}\right)^{-1} r$ with $r \in R$.

The usual proof of Theorem 5.1, as given in several graduate algebra textbooks (e.g., in $[2,16,20]$), is a beautiful illustration of the power and applicability of the classical structure theory of rings. Its main appeal lies in a surprising combination of different tools and concepts. On the other hand, the proof we gave is more streamlined. In particular, it completely avoids representing elements in our rings as matrices or linear operators. One of its main advantages is that it does not depend on two classical results that the usual proof uses, Kaplansky's theorem on primitive PI-rings [12] and the existence of central polynomials for matrices $[11,18]$. As we will indicate in the next two paragraphs, these two results can be easily derived from Theorem 5.1. Therefore our approach leads to a shortcut to the basic structure theory of PI-rings.

Kaplansky's theorem says that a primitive PI-ring R is a finite dimensional central simple algebra over its center. Proving the simplicity is an easy application of the Jacobson Density Theorem; see the first paragraph of the proof of [20, Theorem 23.31]. Now, if R is simple, then its center is a field, and so the desired conclusion follows immediately from Theorem 5.1.

It is easy to see that the algebra of generic $n \times n$ matrices is a prime ring; see, e.g., [20, Corollary 23.52] (i.e., this is easier than showing that it is actually a domain). Therefore its center is nonzero by Theorem 5.1, which immediately implies the existence of central polynomials for $M_{n}(K)$ with K an infinite field. The author is thankful to L. Rowen and A. Braun for pointing out this simple fact to him. He is also thankful to L. Rowen and (resp.) V. Drensky for drawing his attention to the papers by Braun [6] and (resp.) Kharchenko [13], which also contain nonconstructive proofs of the existence of central polynomials. These proofs are in fact similar to our proof of the assertion (b) in Theorem 5.1. However, they use a version of Posner's theorem for domains, proved by Amitsur already in 1955 [1], i.e., before the discovery of central polynomials by Formanek and Razmyslov in the early 1970's. At any rate, it seems interesting in its own right that a consideration of abstract rings leads to a nontrivial result on matrices.

A downside of nonconstructive proofs of the existence of central polynomials is the limitation to infinite fields. But this can be remedied. In the most recent short note [9] it is shown, by elementary combinatorial methods, that, given an infinite field K of positive characteristic p and a central polynomial c for $M_{n}(K)$, there
exists a multihomogeneous polynomial c_{0} with coefficients in the prime field \mathbb{F}_{p} such that, for an arbitrary (possibly finite) field F of characteristic p, c_{0} is central for $M_{n}(F)$.

References

[1] S. A. Amitsur, On rings with identities, J. London Math. Soc. 30 (1955), 464-470.
[2] Yu. Bahturin, Basic structures of modern algebra, Kluwer, 1993.
[3] Yu. Bahturin, M. Brešar, I. Shestakov, Jordan gradings on associative algebras, Algebras Repr. Th. 14 (2011),113-129.
[4] Yu. Bahturin, M. Brešar, Š. Špenko, Lie superautomorphisms on associative algebras, II, Algebras Repr. Th., to appear.
[5] K. I. Beidar, W.S. Martindale 3rd, A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, 1996.
[6] A. Braun, On Artin's theorem and Azumaya algebras, J. Algebra 77 (1982), 223-332.
[7] M. Brešar, An alternative approach to the structure theory of PI-rings, Expositiones Math. 29 (2011), 159-164.
[8] M. Brešar, M. A. Chebotar, W. S. Martindale 3rd, Functional identities, Birkhäuser, 2007.
[9] M. Brešar, V. Drensky, Central polynomials for matrices over finite fields, preprint.
[10] M. Brešar, D. Eremita, The lower socle and finite rank elementary operators, Comm. Algebra 31 (2003), 1485-1497.
[11] E. Formanek, Central polynomials for matrix rings, J. Algebra 23 (1972), 129-132.
[12] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), 575-580.
[13] V.K. Kharchenko, A remark on central polynomials (Russian), Mat. Zametki 26 (1979), 345-346. Translation: Math. Notes 26 (1979), p. 665.
[14] T. Y. Lam, Lectures on modules and rings, Springer, 1999.
[15] W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[16] J. C. McConnell, J. C. Robson, Noncommutative Noetherian rings, John Wiley \& Sons, 1987.
[17] E. C. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc. 11 (1960), 180-183.
[18] Y. P. Razmyslov, A certain problem of Kaplansky, Izv. Acad. Nauk SSSR Ser. Mat. $\mathbf{3 7}$ (1973), 67-74.
[19] L. H. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223.
[20] L. H. Rowen, Graduate algebra: noncommutative view, American Mathematical Society, 2008.
Faculty of Mathematics and Physics, University of Ljubljana, and Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

E-mail address: matej.bresar@fmf.uni-lj.si

[^0]: 2010 Math. Subj. Class. 16R20, 16R50, 16R60, 16N60.
 Supported by the Slovenian Research Agency (program No. P1-0288).
 Key words: polynomial identity, generalized polynomial identity, functional identity, prime ring, extended centroid, symmetric Martindale ring of quotients.

