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Abstract. We give short proofs, based only on basic properties of the ex-

tended centroid of a prime ring, of Martindale’s theorem on prime GPI-rings
and (a strengthened version of) Posner’s theorem on prime PI-rings.

1. Introduction

In the recent paper [7] the author has exposed a rather simple and direct approach
to the structure theory of prime PI-rings. Unlike the standard approach which
combines various tools, this one basically rests upon only one concept: the extended
centroid of a prime ring. It was remarked in the paper that the method of the proof
is also applicable to generalized polynomial identities.

The present paper is an expanded version of [7], which, in particular, also covers
generalized polynomial identities. It is organized as follows. Section 2 gives a short
survey of the symmetric Martindale ring of quotients and the extended centroid
of a prime ring. Section 3 reveals the essence of our approach. Its sole goal is
an elementary lemma treating a special functional identity. In Section 4 we give
a new proof of Martindale’s theorem on prime GPI-rings [15]. Finally, in Section
5 we derive the structure theorem on prime PI-rings from Martindale’s theorem.
The idea to apply generalized polynomial identities to polynomial identities is not
new. Already in [15] Martindale noticed that Posner’s theorem on prime PI-rings
can be derived from his result. However, we will be able to recover a significant
strengthening of Posner’s theorem, established by Rowen [19] and others. It is
worthwhile mentioning that our arguments also yield a nonconstructive proof of
the existence of central polynomials for matrices over infinite fields.

2. The symmetric Martindale ring of quotients and the extended
centroid

By a ring we mean an associative ring, not necessarily with 1. Let R be a
prime ring. Then one can construct the symmetric Martindale ring of quotients
Q = Qs(R) of R, which is, up to isomorphism, characterized by the following four
properties:

(a) R is a subring of Q;
(b) for every q ∈ Q there exists a nonzero ideal I of R such that qI ∪ Iq ⊆ R;
(c) if I is a nonzero ideal of R and 0 6= q ∈ Q, then qI 6= 0 and Iq 6= 0;
(d) if I is a nonzero ideal of R, f : I → R is a right R-module homomorphism,

and g : I → R is a left R-module homomorphism such that xf(y) = g(x)y
for all x, y ∈ I, then there exists q ∈ Q such that f(y) = qy and g(x) = xq
for all x, y ∈ I.
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Remark 2.1. Note that (b) can be extended as follows: If q1, . . . , qn ∈ Q, then there
exist a nonzero ideal I of R such that qiI

⋃
Iqi ⊆ R for every i = 1, . . . , n. Indeed,

if Ii is a nonzero ideal of R such that qiIi
⋃
Iiqi ⊆ R, then I = I1

⋂
. . .
⋂
In is

nonzero since R is prime and obviously satisfies the desired condition.

For details and some illustrative examples we refer the reader to [5] and [14]. We
will be primarily interested in the center C of Q, called the extended centroid of R.
It is a field containing the center Z of R. We remark that Z has no zero divisors,
and therefore, provided it is nonzero, one can form its field of fractions. This is
a subfield of C; examples where it is a proper subfield can be easily constructed.
For example, if R is the ring of all countably infinite complex matrices of the form
A+ λ, where A is a matrix with only finitely many nonzero entries and λ is a real
scalar matrix, then Z ∼= R and C ∼= C.

We may consider Q as an algebra over C. The subalgebra of Q generated by R
is called the central closure of R. We will denote it by A. Both Q and A are prime
rings. The extended centroid of A, as well as of any nonzero ideal of A, is nothing
but C. If C ⊆ A, i.e., if A is unital, then C is the center of A.

The main property of C that we need is given in the following theorem. It is one
of the cornerstones of the theory of generalized polynomial identities as well as of
the theory of functional identities. Its original version was proved by Martindale in
[15]. The version that we state is, as one can see from [8, Theorem A.4], a special
case of [8, Theorem A.7].

Theorem 2.2. Let R be a prime ring with extended centroid C, and let I be
a nonzero ideal of R. Assume that ai, bi, cj , dj ∈ Qs(R) satisfy

∑n
i=1 aixbi =∑m

j=1 cjxdj for all x ∈ I. If a1, . . . , an are linearly independent over C, then each

bi is a linear combination of d1, . . . , dm. (In particular, bi = 0 if the dj’s are 0.)

We have thereby gathered together all prerequsities that we need. The proofs of
the aforementioned results are self-contained and quite simple. See [5, Chapter 2]
for a detailed, and [8, Appendix A] for an informal survey on this subject.

3. A lemma on functional identities

The theory of functional identities deals with identities on rings that involve ar-
bitrary functions. A functional identity is formally more general than a polynomial
identity, but in practice the theory of functional identities is most often comple-
mentary to the theory of polynomial identities, rather than being its generalization.
For a full account on functional identities and their applications we refer the reader
to the book [8]. See also [3, 4] for some of the most recent applications.

The next lemma treats a special functional identity by elementary means. It is
independent of the general theory from [8] (at least technically, if not philosophi-
cally).

Lemma 3.1. Let S be a set, Q be a ring with 1, and F be a set of functions from
S into Q. For every π in the symmetric group Sn, n ≥ 2, we write

{x1, . . . , xn}π =
∑
i

F iπ1(xπ(1))F
i
π2(xπ(2)) . . . F

i
πn(xπ(n)),

where F iπk ∈ F . If∑
π∈Sn

{x1, . . . , xn}π = 0 for all x1, . . . , xn ∈ S,

then one of the following assertions holds:

(a) For every π ∈ Sn we have {x1, . . . , xn}π = 0 for all x1, . . . , xn ∈ S, or
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(b) There exist ak, bk, ck, dl, el, fl ∈ Q and Fk, Gk, Hl,Kl ∈ F such that

ϕ(x, y) :=
∑
k

akFk(x)bkGk(y)ck =
∑
l

dlHl(y)elKl(x)fl for all x, y ∈ S,

and ϕ(s1, s2) 6= 0 for some s1, s2 ∈ S.

Proof. Let us set

Φ(x1, . . . , xn) :=
∑
π∈Sn,

π−1(1)<π−1(2)

{x1, . . . , xn}π.

Suppose there exist s1, . . . , sn ∈ S such that Φ(s1, . . . , sn) 6= 0. Let us define
ϕ(x, y) = Φ(x, y, s3, . . . , sn), and note that ϕ(x, y) consists of summands of the
form aF iπk(x)bF iπl(y)c where a, b, c are either equal to 1 or are products of elements
from F(si), i ≥ 3. On the other hand, since, by our assumption,

Φ(x1, . . . , xn) = −
∑
π∈Sn,

π−1(2)<π−1(1)

{x1, . . . , xn}π,

we see that ϕ(x, y) can be also represented as a sum of summands of the form
dF iπk(y)eF iπl(x)f . As ϕ(s1, s2) 6= 0, (b) holds.

We may therefore assume that Φ(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ S, and also
that n ≥ 3. Now we set

Ψ(x1, . . . , xn) :=
∑
π∈Sn,

π−1(1)<π−1(2),

π−1(2)<π−1(3)

{x1, . . . , xn}π = −
∑
π∈Sn,

π−1(1)<π−1(2),

π−1(3)<π−1(2)

{x1, . . . , xn}π.

If Ψ(t1, . . . , tn) 6= 0 for some t1, . . . , tn ∈ S, then one shows, just as in the preceding
paragraph, that ϕ(x, y) = Ψ(t1, x, y, t4, . . . , tn) gives rise to (b). Thus we may
assume that Ψ(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ S. We can now continue this
procedure by considering the summation over permutations π that additionally
satisfy π−1(3) < π−1(4). Assuming that it is nonzero we arrive at (b), otherwise
we make another step. If (b) does not hold we finally arrive at π−1(1) < π−1(2) <
. . . < π−1(n), which, of course, holds only for π = 1. Thus, if (b) is not true then
{x1, . . . , xn}1 = 0 for all x1, . . . , xn ∈ S. Analogously we see that {x1, . . . , xn}π = 0
for every π ∈ Sn if (b) does not hold. �

A special case of this lemma, where F consists of scalar multiples of the identity
map (so that the identity treated can be interpreted as a multilinear polynomial
identity), indirectly appeared in [7]. In what follows we will need another special
case where F consists of two-sided multiplications (which corresponds to a multi-
linear generalized polynomial identity). Perhaps the lemma shall turn out to be
useful in some other instances.

4. Prime GPI-rings

Let R be a prime ring with extended centroid C and symmetric Martindale ring
of quotients Q = Qs(R). By QC〈X1, X2, . . .〉 we denote the coproduct of the C-
algebra Q and the free algebra C〈X1, X2, . . .〉. Informally we can consider elements
in QC〈X1, X2, . . .〉 as sums of “monomials” of the form a0Xi1a1Xi2a2 . . . an−1Xinan
with ai ∈ Q. We say that f = f(X1, . . . , Xn) ∈ QC〈X1, X2, . . .〉 is a generalized
polynomial identity (GPI) on R if f(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R. If there
exists a nonzero GPI on R, then R is said to be a GPI-ring. We refer to [5] for a
full treatise of GPI’s.

Let A be any algebra. For a, b ∈ A we define La, Rb : A→ A by La(x) = ax and
Rb(x) = xb. Clearly, Laa′ = LaLa′ , Rbb′ = Rb′Rb, and LaRb = RbLa. By M(A) we
denote the algebra of all operators of the form

∑
i LaiRbi , ai, bi ∈ A.
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The fundamental result in the theory of GPI-rings is the following theorem by
Martindale from 1969 [15]. (The condition (ii) is usually not stated in the theorem,
but in our opinion it does deserve a special attention.)

Theorem 4.1. (Martindale) Let R be a prime ring with extended centroid C and
central closure A. The following statements are equivalent:

(i) R is a GPI-ring.
(ii) M(A) contains a nonzero finite rank operator.
(iii) A contains an idempotent e such that Ae is a minimal left ideal of A and

eAe is a finite dimensional division algebra over C.

Proof. (i)=⇒(ii). By a standard linearization process we see that R satisfies a
multilinear generalized polynomial identity f = f(X1, . . . , Xn) ∈ QC〈X1, X2, . . .〉,
f 6= 0. We can write f =

∑
π∈Sn

fπ where fπ consists of summands of the form

a0Xπ(1)a1Xπ(2)a2 . . . an−1Xπ(n)an, ai ∈ Q.

Since f 6= 0, at least one of the fπ’s is not 0. We may assume that

f1 =
∑
i

a0iX1a1iX2a2i . . . an−1iXnani 6= 0.

We claim that f1 cannot be a generalized polynomial identity of R. We proceed by
induction on n. The case where n = 0, i.e., f = a0 with a0 ∈ Q, is trivial. We may
therefore assume that our claim is true for all nonnegative integers smaller than n.
Let us write f1 as f1 =

∑
i a0iX1hi where hi = hi(X2, . . . , Xn). There is no loss of

generality in assuming that the set of the elements a0i is linearly independent, since
otherwise we can choose its maximal linearly independent subset, write each a0i as a
linear combination of elements from this subset, and accordingly rewrite f1 as f1 =∑
i a
′
0iX1h

′
i where the set of the elements a′0i now is linearly independent. If f1 was a

generalized polynomial identity of R, we would have
∑
i ai0x1hi(x2, . . . , xn) = 0 for

all x1, . . . , xn ∈ R, hence hi(x2, . . . , xn) = 0 by Theorem 2.2, and so, by induction
assumption, hi = 0 as an element of QC〈X1, X2, . . .〉. This contradicts f1 6= 0.

The identity
∑
π∈Sn

fπ(x1, . . . , xn) = 0 makes it possible for us to apply Lemma
3.1 to the case where F consists of maps from R into Q of the form x 7→ axb,
a, b ∈ Q. As the possibility (a) has been ruled out in the preceding paragraph, (b)
must hold. Note that this can be interpreted as follows: There exist pi, qj ∈ Q and
Fi, Gj ∈M(Q) such that

ϕ(x, y) :=
∑
i

pixFi(y) =
∑
j

Gi(y)xqj for all x, y ∈ R

and ϕ(s1, s2) 6= 0 for some s1, s2 ∈ R. A similar argument as in the preceding
paragraph shows that without loss of generality we may assume that the elements
pi are linearly independent. We may also assume that F1 6= 0. Theorem 2.2 tells us
that F1(y) ∈

∑
j Cqj for every y ∈ R, implying that F1(A) is a finite dimensional

space, as desired. The only problem is that F1 lies in M(Q) rather than in M(A).
But we can easily remedy this. We have F1(y) =

∑
l slytl with sl, tl ∈ Q. By

Remark 2.1 there exists a nonzero ideal I of R such that Isl
⋃
tlI ⊆ R for every

l. Of course, IF1(R)I 6= 0, so that there are u, v ∈ I and y0 ∈ R such that
uF1(y0)v 6= 0. Define F (y) :=

∑
l uslytlv. Since usl, tlv ∈ R ⊆ A, we can consider

F as an element of M(A). Clearly, F (A) = uF1(A)v is a finite dimensional space.
(ii)=⇒(iii). Let W =

∑n
i=1 LaiRbi be a nonzero finite rank operator in M(A).

Without loss of generality we may assume that the set {a1, . . . , an} is linearly in-
dependent and that b1 6= 0.

Suppose first that n = 1. Let us write a for a1 and b for b1. Thus, 1 ≤ dimC aAb <
∞. If L0 is nonzero left ideal of A with L0 ⊆ Ab, and R0 is a nonzero right ideal of
A with R0 ⊆ aA, then 0 6= R0L0 ⊆ aAb and hence 1 ≤ dimC R0L0 <∞. Choose L0
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and R0 so that R0L0 is of minimal dimension. We claim that AR0L0 is a minimal
left ideal of A. Let L1 be a left ideal such that 0 6= L1 ⊆ AR0L0. Then L1 ⊆ L0,
hence R0L1 ⊆ R0L0, and so R0L1 = R0L0 in view of the dimension assumption.
Consequently, L1 ⊇ AR0L1 = AR0L0 which proves that AR0L0 is indeed minimal.
As it is well-known (see, e.g., [5, Proposition 4.3.3]), this implies the existence of an
idempotent e ∈ A such that Ae = AR0L0 and eAe is a division algebra. Moreover,
since e ∈ AR0L0 ⊆ AaAb it follows that dimC eAe <∞.

Now let n > 1. If each bi, i ≥ 2, is a scalar multiple of b1, then we are back to
the n = 1 case. We may therefore assume that b2 and b1 are linearly independent.
By Theorem 2.2 there exists c ∈ A such that b1cb2 6= b2cb1. Define W ′ ∈ M(A)
by W ′ = WRb1c − Rcb1W . Obviously, W ′ has finite rank, and we have W ′ =∑n
i=2 LaiRci where ci = b1cbi−bicb1. Since a2, . . . , an are linearly independent and

c2 6= 0, Theorem 2.2 shows that W ′ 6= 0. By induction, the proof is complete.
(iii)=⇒(i). Let d = dimC eAe. Then the elements ex1e, . . . , exd+1e are linearly

dependent for each x ∈ R, so that Std+1(eX1e, . . . , eXd+1e), where Std+1 is the
standard polynomial in d+ 1 variables, is a GPI on R. �

The essence of the theorem is that the central closure A of a prime GPI-ring
has minimal left ideals Ae, so A is a primitive algebra having a particularly nice
structure; moreover, the corresponding division algebra eAe is finite dimensional.

The main novelty is the proof of (i)=⇒(ii), although, of course, it is based on
ideas from [7]. The proof of (ii)=⇒(iii) is similar to those from [15] and [5], yet
some modifications taken from [10] were used.

5. Prime PI-rings

It is convenient to define that a prime ring R is a PI-ring if a nonzero polynomial
in C〈X1, X2, . . .〉, where C is the extended centroid of R, is a polynomial identity
of R. The structure of prime PI-rings was first described in 1960 by Posner [17].
Later, after the discovery of central polynomials in the 1970’s, Posner’s theorem
was sharpened by Rowen and others (cf. [19]) as follows.

Theorem 5.1. (Posner) Let R be a prime PI-ring with extended centroid C and
central closure A. Then:

(a) A is a finite-dimensional central simple algebra over C.
(b) Every nonzero ideal of R intersects the center Z of R nontrivially.
(c) C is the field of fractions of Z.

Accordingly, every element in A is of the form z−1r with 0 6= z ∈ Z and r ∈ R
(thus, A = S−1R where S = Z \ {0}).

Proof. (a) Let U be a nonzero ideal of A. Since A is clearly a prime PI-ring (as it
satisfies the same multilinear identities as R), so is U . Let f = f(X1, . . . , Xn) be a
multilinear polynomial identity of U of minimal degree n. Write

f = gXn +
∑
i

giXnhi

where each hi is a monomial of degree≥ 1 and with leading coefficient 1, and g and gi
are multilinear polynomials. We may assume that g 6= 0. As the degree of g is n−1,
g is not an identity of U . Pick u1, . . . , un−1 ∈ U so that u = g(u1, . . . , un−1) 6= 0.
The identity f(u1, . . . , un) = 0 shows that ux1 = ux =

∑
vixwi for all x ∈ U ,

where vi ∈ A + C ⊆ Qs(A) and wi ∈ U . Hence Theorem 2.2 tells us that 1 lies in
the C-linear span of the w′is. This in particular shows that 1 ∈ A, hence C ⊆ A,
and so 1 ∈

∑
Cwi ⊆ U . Thus A is a simple algebra over its center C.

By Theorem 4.1 there exist a, b ∈ A such that V = aAb is a finite dimensional
space (we may take a = b = e = e2, but we do not need this). Since A is simple,
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we have
∑
j ajabj =

∑
k ckbdk = 1 for some aj , bj , ck, dk ∈ A. Consequently,

x = 1x1 =
(∑

j

ajabj

)
x
(∑

k

ckbdk

)
∈
∑
j,k

ajV dk

for every x ∈ A. Therefore dimC A <∞.

(b) Let {a1, . . . , ad} be a basis of A. Suppose
∑d
i,j=1 λijLaiRaj = 0 for some

λij ∈ C. Rewriting this as
∑d
i=1 Lai

(∑d
j=1 λijRaj

)
= 0 we see, by using Theorem

2.2, that
∑d
j=1 λijRaj = 0, which in turn yields λij = 0 for all i, j. Therefore

dimCM(A) = d2 = dimC EndC(A), and so M(A) = EndC(A). Consequently, given
a nonzero C-linear functional ζ on A there exists T ∈M(A) such that T (x) = ζ(x)1
for all x ∈ A. Let pi, qi ∈ A be such that T =

∑m
i=1 LpiRqi with {p1, . . . , pm}

linearly independent and q1 6= 0. Let J be a nonzero ideal of R such that piJ
⋃
Jqi ⊆

R, i = 1, . . . ,m (Remark 2.1). Now take an arbitrary nonzero ideal I of R. Then
I ′ = JIJ is again a nonzero ideal of R, and note that T (I ′) ⊆ I ∩ C. Theorem 2.2
shows that T (I ′) 6= 0, and so I∩C 6= 0. Since I ⊆ R we actually have I∩C = I∩Z.

(c) Let λ ∈ C. Choose a nonzero ideal I of R such that λI ⊆ R. Picking
0 6= z ∈ I ∩ Z, we thus have λz ∈ R ∩ C = Z. Therefore λ = z−1z′ with z, z′ ∈ Z.

Finally, we now know that every element in a ∈ A can be written as a =
∑
i z
−1
i ri

for some zi ∈ Z \ {0} and ri ∈ R. Hence a = (Πizi)
−1r with r ∈ R. �

The usual proof of Theorem 5.1, as given in several graduate algebra textbooks
(e.g., in [2, 16, 20]), is a beautiful illustration of the power and applicability of the
classical structure theory of rings. Its main appeal lies in a surprising combination
of different tools and concepts. On the other hand, the proof we gave is more
streamlined. In particular, it completely avoids representing elements in our rings
as matrices or linear operators. One of its main advantages is that it does not
depend on two classical results that the usual proof uses, Kaplansky’s theorem
on primitive PI-rings [12] and the existence of central polynomials for matrices
[11, 18]. As we will indicate in the next two paragraphs, these two results can be
easily derived from Theorem 5.1. Therefore our approach leads to a shortcut to the
basic structure theory of PI-rings.

Kaplansky’s theorem says that a primitive PI-ring R is a finite dimensional cen-
tral simple algebra over its center. Proving the simplicity is an easy application of
the Jacobson Density Theorem; see the first paragraph of the proof of [20, Theorem
23.31]. Now, if R is simple, then its center is a field, and so the desired conclusion
follows immediately from Theorem 5.1.

It is easy to see that the algebra of generic n × n matrices is a prime ring;
see, e.g., [20, Corollary 23.52] (i.e., this is easier than showing that it is actually
a domain). Therefore its center is nonzero by Theorem 5.1, which immediately
implies the existence of central polynomials for Mn(K) with K an infinite field.
The author is thankful to L. Rowen and A. Braun for pointing out this simple fact
to him. He is also thankful to L. Rowen and (resp.) V. Drensky for drawing his
attention to the papers by Braun [6] and (resp.) Kharchenko [13], which also contain
nonconstructive proofs of the existence of central polynomials. These proofs are in
fact similar to our proof of the assertion (b) in Theorem 5.1. However, they use
a version of Posner’s theorem for domains, proved by Amitsur already in 1955 [1],
i.e., before the discovery of central polynomials by Formanek and Razmyslov in the
early 1970’s. At any rate, it seems interesting in its own right that a consideration
of abstract rings leads to a nontrivial result on matrices.

A downside of nonconstructive proofs of the existence of central polynomials is
the limitation to infinite fields. But this can be remedied. In the most recent short
note [9] it is shown, by elementary combinatorial methods, that, given an infinite
field K of positive characteristic p and a central polynomial c for Mn(K), there
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exists a multihomogeneous polynomial c0 with coefficients in the prime field Fp
such that, for an arbitrary (possibly finite) field F of characteristic p, c0 is central
for Mn(F ).
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