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Abstract. A Banach algebra A is said to be zero Lie product deter-
mined if every continuous bilinear functional ϕ : A × A → C with the
property that ϕ(a, b) = 0 whenever a and b commute is of the form
ϕ(a, b) = τ(ab − ba) for some τ ∈ A∗. In the first part of the paper we
give some general remarks on this class of algebras. In the second part
we consider amenable Banach algebras and show that all group algebras
L1(G) with G an amenable locally compact group are zero Lie product
determined.

1. Introduction

Let A be a Banach algebra and let ϕ : A × A → C be a continuous
bilinear functional satisfying

(1.1) a, b ∈ A, [a, b] = 0 =⇒ ϕ(a, b) = 0

(here and subsequently, [a, b] stands for the commutator ab − ba). This is
certainly fulfilled if ϕ is of the form

(1.2) ϕ(a, b) = τ([a, b]) (a, b ∈ A)

for some τ in A∗, the dual of A. We will say that A is a zero Lie prod-
uct determined Banach algebra if, for every continuous bilinear functional
ϕ : A × A → C satisfying (1.1), there exists τ ∈ A∗ such that (1.2) holds.
This is an analytic analogue of the purely algebraic notion of a zero Lie
product determined algebra, first indirectly considered in [8] and, slightly
later, more systematically in [7] (see also subsequent papers [10, 15]). Fur-
ther, the concept of a zero Lie product determined Banach algebra can be
seen as the Lie version of the notion of a Banach algebra having property
B (see [1]), which will also play an important role in this paper. Another
motivation for us for studying this concept is the similarity with the group-
theoretic notion of triviality of Bogomolov multiplier (see, e.g., [13]), which
made us particularly interested in considering it in the context of group
algebras.
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The paper is organized as follows. In Section 2 we provide motivating
examples. Firstly, by applying a result by Goldstein [9] we show that C∗-
algebras are zero Lie product determined Banach algebras. Secondly, we
find a Banach algebra, even a finite dimensional one, that is not zero Lie
product determined. In Section 3 we prove that in the definition of a zero
Lie product determined Banach algebra one can replace the role of C by
any Banach space. The bulk of the paper is Section 4 in which we show
that the group algebra L1(G) of any amenable locally compact group G is
a zero Lie product determined Banach algebra. We actually obtain this as
a byproduct of the result concerning the condition

(1.3) a, b ∈ A, ab = ba = 0 =⇒ ϕ(a, b) = 0,

where A is an amenable Banach algebras with property B. We remark
that (1.3) has also been already studied in the literature, but definitive
results were so far obtained only for finite dimensional algebras [3, 12].

2. Examples

The goal of this section is to provide examples indicating the nontriviality
of the concept of a zero Lie product determined Banach algebra.

Proposition 2.1. Every C∗-algebra is a zero Lie product determined Ba-
nach algebra.

Proof. Let A be a C∗-algebra, and let ϕ : A × A → C be a continuous
bilinear functional satisfying (1.1). Then the map ψ : A × A → C defined
by ψ(a, b) = ϕ(a, b∗) for all a, b ∈ A is a continuous sesquilinear functional.
Further, if a, b ∈ A are self-adjoint and ab = 0, then ba = 0, which in
turn implies that [a, b] = 0 and therefore ψ(a, b) = ϕ(a, b) = 0. This shows
that ψ is orthogonal in the sense of [9] (see [9, Definition 1.1]). By [9,
Theorem 1.10], A is C-stationary, which means ([9, Definition 1.5]) that
there exist τ1, τ2 ∈ A∗ such that ψ(a, b) = τ1(ab∗) + τ2(b∗a) for all a, b ∈ A
( see also [11, Section 3]). Consequently, we have

(2.1) ϕ(a, b) = τ1(ab) + τ2(ba) (a, b ∈ A).

On the other hand, if a ∈ A, then [a, a] = 0 and therefore ϕ(a, a) = 0.
Hence ϕ is skew-symmetric and taking into account (2.1) we get

(2.2) ϕ(a, b) = −ϕ(b, a) = −τ1(ba)− τ2(ab) (a, b ∈ A).

Adding (2.1) and (2.2), we obtain

2ϕ(a, b) = τ1([a, b])− τ2([a, b]) (a, b ∈ A),
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which shows that ϕ is of the form (1.2), where τ ∈ A∗ is defined by τ =
1
2
(τ1 − τ2). �

We will now give an example of a finite dimensional Banach algebra that
is not zero Lie product determined. This is of interest also from a purely
algebraic viewpoint. Namely, so far only examples of infinite dimensional
algebras that are not zero Lie product determined were found [7] (since bi-
linear functionals are automatically continuous in finite dimension, in this
framework there is no difference between “zero Lie product determined Ba-
nach algebra” and “zero Lie product determined algebra”). The algebra from
the next proposition can be thought of as the Grassmann algebra with four
generators to which we add another relation.

Proposition 2.2. The 10-dimensional Banach algebra

A = C
〈
x1, x2, x3, x4 |x1x2 = x3x4, x

2
i = 0, xixj = −xjxi, i, j = 1, 2, 3, 4

〉
is not zero Lie product determined.

Proof. It is easy to check that the elements

1, x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4

form a basis of A (so that dimCA = 10). Note that 1 and all xixj lie in Z,
the center of A.

Define a bilinear functional ϕ : A× A→ C by

ϕ(x1, x2) = −ϕ(x2, x1) = 1

and

ϕ(u, v) = 0

for all other pairs of elements from our basis. Take a pair of commuting
elements a, b ∈ A. We can write

a =
4∑
i=1

λixi + z and b =
4∑
j=1

µjxj + w,

where λi, µj ∈ C and z, w ∈ Z. Our goal is to show that ϕ(a, b) = λ1µ2−λ2µ1

is 0. From [a, b] = 0 we obtain

[ 4∑
i=1

λixi,
4∑
j=1

µjxj

]
= 0,
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which yields (
(λ1µ2 − λ2µ1) + (λ3µ4 − λ4µ3)

)
x1x2

+(λ1µ3 − λ3µ1)x1x3 + (λ2µ3 − λ3µ2)x2x3

+(λ1µ4 − λ4µ1)x1x4 + (λ2µ4 − λ4µ2)x2x4 = 0.

Consequently,

(2.3) (λ1µ2 − λ2µ1) + (λ3µ4 − λ4µ3) = 0,

(2.4) λ1µ3 = λ3µ1, λ2µ3 = λ3µ2,

(2.5) λ1µ4 = λ4µ1, λ2µ4 = λ4µ2.

Note that (2.4) yields

(λ1µ2 − λ2µ1)µ3 = 0.

and, similarly, (2.5) yields

(λ1µ2 − λ2µ1)µ4 = 0.

But then we infer from (2.3) that λ1µ2 − λ2µ1 = 0, as desired. We have
thereby proved that ϕ satisfies (1.1). However, since ϕ(x1, x2) 6= ϕ(x3, x4),
we see from [x1, x2] = [x3, x4] that ϕ does not satisfy (1.2). �

3. An alternative definition

From now on, we write [A,A] for the linear span of all commutators of
the Banach algebra A.

Proposition 3.1. Let A be a Banach algebra. Then the following properties
are equivalent:

(1) the algebra A is a zero Lie product determined Banach algebra,
(2) for each Banach space X, every continuous bilinear map ϕ : A×A→

X with the property that ϕ(a, b) = 0 whenever a, b ∈ A are such that
[a, b] = 0 is of the form ϕ(a, b) = T ([a, b]) (a, b ∈ A) for some
continuous linear map T : [A,A]→ X.

Proof. Suppose that (1) holds. Let X be a Banach space and let ϕ : A×A→
X be a continuous bilinear map with the property that ϕ(a, b) = 0 whenever
a, b ∈ A are such that [a, b] = 0. For each ξ ∈ X∗, the continuous bilinear
functional ξ ◦ ϕ : A×A→ C satisfies (1.1). Therefore there exists a unique
τ(ξ) ∈ [A,A]∗ such that ξ(ϕ(a, b)) = τ(ξ)([a, b]) for all a, b ∈ A. It is clear
that the map τ : X∗ → [A,A]∗ is linear. We next show that τ is continuous.
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Let (ξn) be a sequence in X∗ with lim ξn = 0 and lim τ(ξn) = ξ for some
ξ ∈ [A,A]∗. For each a, b ∈ A, we have

0 = lim ξn(ϕ(a, b)) = lim τ(ξn)([a, b]) = ξ([a, b]).

We thus have ξ = 0, and the closed graph theorem yields the continuity of
τ .

For all a1, . . . , an, b1, . . . , bn ∈ A and ξ ∈ X∗ we have

(3.1)

ξ
( n∑
k=1

ϕ(ak, bk)
)

=
n∑
k=1

ξ
(
ϕ(ak, bk)

)
=

n∑
k=1

τ(ξ)([ak, bk])

= τ(ξ)
( n∑
k=1

[ak, bk]
)
.

Consequently, if a1, . . . , an, b1, . . . , bn ∈ A are such that
∑n

k=1[ak, bk] = 0,
then ξ

(∑n
k=1 ϕ(ak, bk)

)
= 0 for each ξ ∈ X∗, and hence

∑n
k=1 ϕ(ak, bk) = 0.

We thus can define a linear map T : [A,A]→ X by

T
( n∑
k=1

[ak, bk]
)

=
n∑
k=1

ϕ(ak, bk)

for all a1, . . . , an, b1, . . . , bn ∈ A. Of course, ϕ(a, b) = T ([a, b]) for all a, b ∈ A.
Our next concern is the continuity of T . Let a1, . . . , an, b1, . . . , bn ∈ A. Then
there exists ξ ∈ X∗ such that

ξ
( n∑
k=1

ϕ(ak, bk)
)

=
∥∥∥ n∑
k=1

ϕ(ak, bk)
∥∥∥.

On account of (3.1), we have∥∥∥T( n∑
k=1

[ak, bk]
)∥∥∥ =

∥∥∥ n∑
k=1

ϕ(ak, bk)
∥∥∥ = ξ

( n∑
k=1

ϕ(ak, bk)
)

=
∣∣∣τ(ξ)

( n∑
k=1

[ak, bk]
)∣∣∣ ≤ ‖τ(ξ)‖

∥∥∥ n∑
k=1

[ak, bk]
∥∥∥

≤ ‖τ‖
∥∥∥ n∑
k=1

[ak, bk]
∥∥∥,

which shows the continuity of T , and hence that property (2) holds.
We now assume that (2) holds. Let ϕ : A × A → C be a continuous

bilinear functional satisfying (1.1). By applying property (2) with X = C,
we get τ ∈ [A,A]∗ such that ϕ(a, b) = τ([a, b]) (a, b ∈ A). The functional
τ can be extended to a continuous linear functional on A so that (1) is
obtained. �
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4. Amenable Banach algebras with property B

We say that a Banach algebra A has property B if for every continuous
bilinear functional ϕ : A× A→ C, the condition

(4.1) a, b ∈ A, ab = 0 ⇒ ϕ(a, b) = 0

implies the condition

(4.2) ϕ(ab, c) = ϕ(a, bc) (a, b, c ∈ A).

According to [5, Remark 2.1], this definition agrees with the one given in the
seminal paper [1], i.e., the Banach algebra A has property B if and only if for
each Banach space X and for each continuous bilinear map ϕ : A×A→ X

the condition (4.1) implies the condition (4.2). We remark that if A has
a bounded approximate identity, (4.2) is equivalent to the condition that
ϕ(a, b) = τ(ab) for some τ ∈ A∗ (see [1, Lemma 2.3]). In [1] it was shown
that many important examples of Banach algebras, including C∗-algebras,
group algebras on arbitrary locally compact groups, and the algebra A(X)

of all approximable operators on any Banach space X, have property B,
and that this property can be applied to a variety of problems. Since then,
a number of papers treating property B have been published; see the last
paper in the series [4] and references therein.

The class of amenable Banach algebras is of great significance. We refer
the reader to [14] for the necessary background on amenability. There are
different characterizations of amenable Banach algebras. The seminal one
comes from B. E. Johnson: vanishing of a certain cohomology group. For our
purposes here, the best way to introduce the amenability is the following.
Let A be a Banach algebra. The projective tensor product A⊗̂A becomes a
Banach A-bimodule for the products defined by

a · (b⊗ c) = (ab)⊗ c

and
(b⊗ c) · a = b⊗ (ca)

for all a, b, c ∈ A. There is a unique continuous linear map π : A⊗̂A → A

such that
π(a⊗ b) = ab

for all a, b ∈ A. The map π is the projective induced product map, and
it is an A-bimodule homomorphism. An approximate diagonal for A is a
bounded net (uλ)λ∈Λ in A⊗̂A such that, for each a ∈ A, we have

(4.3) lim
λ∈Λ

(a · uλ − uλ · a) = 0
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and

(4.4) lim
λ∈Λ

π(uλ)a = a.

We point out that (4.3) together with (4.4) implies that also lim aπ(uλ) = a

for each a ∈ A. Consequently, the net (π(uλ))λ∈Λ is a bounded approximate
identity for A. The Banach algebra A is amenable if and only if A has an
approximate diagonal.

Throughout this section we are notably interested in amenable Banach
algebras having property B. According to [14], the following are examples
of amenable Banach algebras (which we already know to have property
B): nuclear C∗-algebras, the group algebra L1(G) for each amenable locally
compact group G, and the algebra A(X) for Banach spaces with certain
approximation properties (this includes the Banach space C0(Ω) for each
locally compact Hausdorff space Ω and the Banach space Lp(µ) for each
measure space (Ω,Σ, µ) and each p ∈ [1,∞]).

We begin with a lemma whose version appears also in [2].

Lemma 4.1. Let A be a Banach algebra with property B and having a
bounded approximate identity, let X be a Banach space, and let ϕ : A×A→
X be a continuous bilinear map satisfying the condition:

a, b ∈ A, ab = ba = 0 ⇒ ϕ(a, b) = 0.

Then

(4.5) ϕ(ab, cd)− ϕ(a, bcd) + ϕ(da, bc)− ϕ(dab, c) = 0 (a, b, c, d ∈ A)

and there exists a continuous linear operator S : A→ X such that

(4.6) ϕ(ab, c)− ϕ(b, ca) + ϕ(bc, a) = S(abc) (a, b, c ∈ A).

Proof. Let B2(A;X) denote the Banach space of all continuous bilinear maps
from A×A to X, and let B2

0(A;X) denote the closed subspace of B2(A;X)

consisting of those bilinear maps ϕ which satisfy (4.1). We define

ψ : A× A→ B2(A;X)

by
ψ(a, b)(s, t) = ϕ(bs, ta) (a, b, s, t ∈ A).

It is immediate to check that ψ(a, b) ∈ B2
0(A;X) whenever a, b ∈ A are such

that ab = 0. Consequently, the continuous bilinear map

ψ̃ : A× A→ B2(A;X)/B2
0(A;X)

defined by
ψ̃(a, b) = ψ(a, b) + B2

0(A;X) (a, b ∈ A)
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satisfies (4.1). Property B then gives

ψ(ab, c)− ψ(a, bc) ∈ B2
0(A;X) (a, b, c ∈ A).

For each a, b, c ∈ A, property B now yields(
ψ(ab, c)− ψ(a, bc)

)
(rs, t) =

(
ψ(ab, c)− ψ(a, bc)

)
(r, st)

for all r, s, t ∈ A. Hence

(4.7) ϕ(crs, tab)− ϕ(bcrs, ta)− ϕ(cr, stab) + ϕ(bcr, sta) = 0

for all a, b, c, r, s, t ∈ A.
Let (ρλ)λ∈Λ be an approximate identity of A of bound C. For each a, b,

c, r, s ∈ A, we apply (4.7) with the element t replaced by ρλ (λ ∈ Λ) and
then we take the limit to arrive at

(4.8) ϕ(crs, ab)− ϕ(bcrs, a)− ϕ(cr, sab) + ϕ(bcr, sa) = 0.

We now replace r by ρλ (λ ∈ Λ) in (4.8) and take the limit to get

ϕ(cs, ab)− ϕ(bcs, a)− ϕ(c, sab) + ϕ(bc, sa) = 0,

which gives (4.5).
By applying (4.5) with the element c replaced by ρλ (λ ∈ Λ) we see that

the net ϕ(dab, ρλ)λ∈Λ is convergent and by taking the limit in (4.5) we arrive
at

(4.9)
ϕ(ab, d)− ϕ(a, bd) + ϕ(da, b)− lim

λ∈Λ
ϕ(dab, ρλ)

= lim
λ∈Λ

(
ϕ(ab, ρλd)− ϕ(a, bρλd) + ϕ(da, bρλ)− ϕ(dab, ρλ)

)
= 0

for all a, b, d ∈ A. By Cohen’s factorization theorem (see [6, Corollary 11
in §11]), each c ∈ A can be written in the form c = dab with a, b, d ∈ A,
and hence the net (ϕ(c, ρλ))λ∈Λ is convergent. We can thus define a linear
operator S : A→ X by

S(a) = lim
λ∈Λ

ϕ(a, ρλ)

for each a ∈ A. Since ‖ϕ(a, ρλ)‖ ≤ C‖ϕ‖‖a‖ for all a ∈ A and λ ∈ Λ, it
follows that ‖S(a)‖ ≤ C‖ϕ‖‖a‖ for each a ∈ A, which implies that S is
continuous. Further, (4.9) gives (4.6). �

Lemma 4.2. Let A be an amenable Banach algebra, let X be a Banach
space, and let ϕ : A × A → X be a continuous bilinear map. Suppose that
there exists a continuous linear operator S : A→ X such that

(4.10) ϕ(ab, c)− ϕ(b, ca) + ϕ(bc, a) = S(abc) (a, b, c ∈ A).

Then there exist continuous linear operators Φ: [A,A]→ X and Ψ: A→ X

such that
ϕ(a, b) = Φ([a, b]) + Ψ(a ◦ b) (a, b ∈ A).
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Here and subsequently, a ◦ b stands for ab+ ba.

Proof. Let (uλ)λ∈Λ be an approximate diagonal for A of bound C, and let
U be an ultrafilter on Λ refining the order filter. On account of the Banach-
Alaoglu theorem, each bounded subset of the bidual X∗∗ of X is relatively
compact with respect to the weak∗-topology. Consequently, each bounded
net (xλ)λ∈Λ in X has a unique limit in X∗∗ with respect to the weak∗-
topology along the ultrafilter U , and we write lim

U
xλ for this limit.

Let ϕ̂ : A⊗̂A→ X be the unique continuous linear map such that

ϕ̂(a⊗ b) = ϕ(a, b)

for all a, b ∈ A. We define T : A→ X∗∗ by

T (a) = lim
U
ϕ̂(uλ · a)

for each a ∈ A. For each a ∈ A, we have

(4.11) ‖ϕ̂(uλ · a)‖ ≤ ‖ϕ̂‖‖uλ‖‖a‖ ≤ C‖ϕ‖‖a‖ (λ ∈ Λ).

Hence the net (ϕ̂(uλ · a))λ∈Λ is bounded and the map T is well-defined. The
linearity of the limit along an ultrafilter on a topological linear space gives
the linearity of T . Further, from (4.11) we deduce that ‖T (a)‖ ≤ C‖ϕ‖‖a‖
for each a ∈ A, which gives the continuity of T .

We now claim that

(4.12) ϕ̂(u · a) = ϕ̂(a · u) + ϕ̂(π(u)⊗ a)− S(aπ(u))

for all a ∈ A and u ∈ A⊗̂A. Of course, it suffices to prove (4.12) for the
simple tensor products u = b⊗ c with b, c ∈ A. Observe that (4.10) can be
written as

ϕ̂(a · (b⊗ c))− ϕ̂((b⊗ c) · a) + ϕ̂(π(b⊗ c)⊗ a) = S(aπ(b⊗ c))

and this gives (4.12).
For each λ ∈ Λ, we apply (4.12) with u replaced by uλ · a and a replaced

by b to get the following

ϕ̂(uλ · (ab)) = ϕ̂((uλ · a) · b)

= ϕ̂(b · uλ · a) + ϕ̂(π(uλ · a)⊗ b)− S(bπ(uλ · a))

= ϕ̂(b · uλ · a) + ϕ̂((π(uλ)a)⊗ b)− S(bπ(uλ)a).

We thus have

(4.13)

ϕ̂(uλ · (ab))− ϕ̂(uλ · (ba))

=ϕ̂(b · uλ · a)− ϕ̂(uλ · (ba)) + ϕ̂((π(uλ)a)⊗ b)− S(bπ(uλ)a)

=ϕ̂((b · uλ − uλ · b) · a) + ϕ̂((π(uλ)a)⊗ b)− S(bπ(uλ)a).
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On account of (4.3), we have limλ∈Λ(b · uλ − uλ · b) = 0 and therefore
limλ∈Λ(b·uλ−uλ ·b)·a = 0, which implies that limλ∈Λ ϕ̂((b·uλ−uλ ·b)·a) = 0.
Since U refines the order filter on Λ, it follows that limU ϕ̂((b·uλ−uλ ·b)·a) =

0.
According to (4.4), we have limλ∈Λ π(uλ)a = a. Hence

lim
λ∈Λ

(π(uλ)a)⊗ b = a⊗ b and lim
λ∈Λ

bπ(uλ)a = ba.

The continuity of both ϕ̂ and S then gives

lim
λ∈Λ

ϕ̂((π(uλ)a)⊗ b) = ϕ̂(a⊗ b) and lim
λ∈Λ

S(bπ(uλ)a) = S(ba).

Since U refines the order filter on Λ, we conclude that

lim
U
ϕ̂((π(uλ)a)⊗ b) = ϕ̂(a⊗ b) and lim

U
S(bπ(uλ)a) = S(ba).

We now prove that

(4.14) ϕ(a, b) = T ([a, b]) + S(ba) (a, b ∈ A).

Indeed, by taking the limit along U in (4.13) we arrive at

T ([a, b]) = T (ab)− T (ba) = lim
U
ϕ̂(uλ · (ab))− lim

U
ϕ̂(uλ · (ba))

= lim
U

(ϕ̂(uλ · (ab))− ϕ̂(uλ · (ba)))

= lim
U
ϕ̂((b · uλ − uλ · b) · a) + lim

U
ϕ̂((π(uλ)a)⊗ b)

− lim
U
S(bπ(uλ)a)

= ϕ̂(a⊗ b)− S(ba) = ϕ(a, b)− S(ba).

Define Φ: [A,A]→ X∗∗ and Ψ: A→ X by

Φ(a) = (T − 1
2
S)(a) (a ∈ [A,A])

and
Ψ = 1

2
S.

Note that, on account of (4.14), T maps [A,A] into X and therefore Φ does
not map merely into X∗∗, but actually into X. From (4.14) we see that
ϕ(a, b) = Φ([a, b]) + Ψ(a ◦ b) for all a, b ∈ A. �

Theorem 4.3. Let A be an amenable Banach algebra with property B, let
X be a Banach space, and let ϕ : A×A→ X be a continuous bilinear map
satisfying the condition:

a, b ∈ A, ab = ba = 0 ⇒ ϕ(a, b) = 0.

Then there exist continuous linear operators Φ: [A,A]→ X and Ψ: A→ X

such that
ϕ(a, b) = Φ([a, b]) + Ψ(a ◦ b)
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for all a, b ∈ A.

Proof. A straightforward consequence of Lemmas 4.1 and 4.2. �

Corollary 4.4. If A is an amenable Banach algebra with property B, then
A is a zero Lie product determined Banach algebra.

Proof. Let ϕ : A×A→ C be a continuous bilinear functional satisfying (1.1).
If a, b ∈ A are such that ab = ba = 0, then [a, b] = 0 and therefore ϕ(a, b) =

0. Consequently, the functional ϕ satisfies the condition in Theorem 4.3.
Hence there exist continuous linear functionals τ1 : [A,A]→ C and τ2 : A→
C such that

(4.15) ϕ(a, b) = τ1([a, b]) + τ2(a ◦ b) (a, b ∈ A).

Of course, the functional τ1 extends to a continuous linear functional on
A. On the other hand, if a ∈ A, then [a, a] = 0 and therefore ϕ(a, a) = 0.
Hence ϕ is skew-symmetric and (4.15) yields

(4.16)
ϕ(a, b) = −ϕ(b, a) = −τ1([b, a])− τ2(b ◦ a)

= τ1([a, b])− τ2(a ◦ b) (a, b ∈ A).

Adding (4.15) and (4.16), we obtain

ϕ(a, b) = τ1([a, b]) (a, b ∈ A),

which shows that ϕ is of the form (1.2). �

Since the group algebra L1(G) has property B for each locally compact
group G and further it is amenable exactly in the case when G is amenable,
the following result follows.

Theorem 4.5. Let G be an amenable locally compact group. Then the group
algebra L1(G) is a zero Lie product determined Banach algebra.

It should be pointed out that we do not know whether or not Theorem
4.5 fails to be true without the assumption of amenability.
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