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Abstract. Let Mn, n ≥ 2, be the algebra of all n × n matrices over
a field F of characteristic not 2, and let Φ be a bilinear map from
Mn ×Mn into an arbitrary vector space X over F . Our main result
states that if φ(e, f) = 0 whenever e and f are orthogonal rank one
idempotents, then there exist linear maps Φ1,Φ2 : Mn → X such that
φ(a, b) = Φ1(ab) + Φ2(ba) for all a, b ∈ Mn. This is applicable to some
linear preserver problems.

1. Introduction

Over the last couple of years several papers characterizing bilinear maps
on algebras through their action on elements whose product is zero were
written. Some of them are linear algebraic [4, 6, 7], and the other ones are
analytic [1, 2, 3]. Although technically completely different, the philosophy
in these two series of papers is similar: certain classical problems concerning
linear maps that preserve zero products, commutativity etc., can be some-
times effectively solved by considering bilinear maps that preserve certain
zero product properties. Somewhat surprisingly, the more complicated set-
ting of bilinear maps has turned out to be more suitable than the original
setting of linear ones. On the other hand, we believe that these problems
with bilinear maps are of some interest in their own right, and might have
some other applications that are yet to be found.

In the recent paper [3] the following problem arose: Given an algebra
A, a linear space X, and a bilinear map φ : A × A → X, does it follow
that φ must be of the form φ(a, b) = Φ1(ab) + Φ2(ba) for some linear maps
Φ1,Φ2 : A → X in case φ(a, b) = 0 whenever a, b ∈ A satisfy ab = ba = 0?
Even for the simplest algebras A this question seems to be nontrivial. In
[3] we have answered it in the affirmative only for the algebra A = Mn(C).
The proof, however, is involved and uses C*-algebra techniques.

Here we shall give a direct proof of a more general result. We will consider
the algebra A = Mn(F ), where F is any field of characteristic not 2, and
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derive the same conclusion φ(a, b) = Φ1(ab) + Φ2(ba) under the assumption
that φ(e, f) = 0 whenever e and f are rank one idempotents that are orthog-
onal, i.e., they satisfy ef = fe = 0. A partial motivation for treating this
problem is coming from a different area: maps preserving rank one idem-
potents (and projections) have been studied extensively in different areas.
An account on this topic is given in the recent monograph by L. Molnár [8].
At the end of the paper we will present applications of the main theorem to
some linear preserver problems.

From the technical point of view there is nothing too surprising in this
short article. The proofs are based on elementary calculations with matrix
units. Our main goal has been to point out a new type of results that can
be obtained, and to indicate their usefulness.

2. The main result

Let us fix the notation. By F we denote a field of characteristic not 2,
and by Mn = Mn(F ) the algebra of all n × n matrices over F . The linear
span of all commutators [a, b] = ab− ba in Mn, i.e., the set of matrices with
zero trace, will be denoted by [Mn,Mn]. As usual, matrix units in Mn will
be denoted by eij . By 1 we denote the identity matrix. Finally, by X we
denote an arbitrary linear space over F ; it will play just a formal role in this
paper.

We shall need the following result which is a special case of [6, Theorem
2.1]. Its proof uses elementary tools.

Proposition 2.1. Let ψ : Mn ×Mn → X, n ≥ 2, be a skew-symmetric
bilinear map. Suppose that for all i, j, k, l ∈ {1, 2, . . . , n} we have

(a) ψ(eij , ekl) = 0 whenever j 6= k and i 6= l,
(b) ψ(eij , ejl) = ψ(eik, ekl) whenever i 6= l,
(c) ψ(eji, eij) + ψ(eik, eki) + ψ(ekj , ejk) = 0.

Then there exists a linear operator Ψ : [Mn,Mn]→ X such that

ψ(a, b) = Ψ([a, b]) (a, b ∈Mn).

We are now in a position to prove the main theorem.

Theorem 2.2. Let φ : Mn ×Mn → X, n ≥ 2, be a bilinear map such that
φ(e, f) = 0 whenever e and f are orthogonal rank one idempotents. Then
there exist linear operators Φ1,Φ2 : Mn → X such that

φ(a, b) = Φ1(ab) + Φ2(ba) (a, b ∈Mn).

Proof. Our first goal is to prove that φ satisfies the condition (a) of Propo-
sition 2.1, i.e.,

(1) φ(eij , ekl) = 0 whenever j 6= k and i 6= l.

If i = j and k = l then (1) clearly follows from our assumption. Further,
if i = j but k 6= l, then ekk + ekl and ekk are both rank one idempotents
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orthogonal to eii, and so

φ(eii, ekl) = φ(eii, ekk + ekl)− φ(eii, ekk) = 0.

Similarly we deal with the case where i 6= j and k = l. So let i 6= j and k 6= l.
Assume further that i 6= k. Then eii + eij and ekk + ekl are orthogonal rank
one idempotents, which, making use of what was already proved, readily
yields (1). Similarly we consider the case where j 6= l. Thus it remains
to consider the case where i = k and j = l, that is, we have to show that
φ(eij , eij) = 0 if i 6= j. Noting that eii−eij and ejj +eij are orthogonal rank
one idempotents it follows that φ(eii−eij , ejj+eij) = 0. Since φ(eii, ejj) = 0,
this can be rewritten as

φ(eii, eij)− φ(eij , ejj)− φ(eij , eij) = 0.

On the other hand, eii + eij and ejj − eij are also orthogonal rank one
idempotents, from which we infer

−φ(eii, eij) + φ(eij , ejj)− φ(eij , eij) = 0.

Comparing both identities we get φ(eij , eij) = 0, and so the proof of (1) is
now complete. On the other hand, we have also showed that

(2) φ(eii, eij) = φ(eij , ejj).

In a similar fashion, by considering eii + eji and ejj − eji, we obtain

(3) φ(eii, eji) = φ(eji, ejj).

We claim that (2) and (3) can be generalized to

(4) φ(eik, ekj) = φ(eil, elj) whenever i 6= j

and

(5) φ(eki, ejk) = φ(eli, ejl) whenever i 6= j.

In view of (2), (4) will be proved by showing that φ(eik, ekj) = φ(eij , ejj) for
every k such that k 6= i and k 6= j. This follows from noting that eii+eik+eij
and ejj − ekj are orthogonal rank one idempotents, forcing

φ(eii + eik + eij , ejj − ekj) = 0,

and hence we get the desired relation by making use of (1). Similarly, by
considering orthogonal rank one idempotents eii + eki + eji and ejj − ejk, we
establish (5).

Now pick and distinct i, j, k, and note that

e = eii + eij + eik − eji − ejj − ejk + eki + ekj + ekk

and

f = 2eii + 2eij − eji − ejj − eki − ekj
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are orthogonal rank one idempotents, so that φ(e, f) = 0. Expanding this
identity and using (1) we get

2φ(eii, eii) + 2φ(eii, eij)− φ(eii, eji)− φ(eii, eki)

+ 2φ(eij , eii)− φ(eij , eji)− φ(eij , ejj)− φ(eij , eki)

+ 2φ(eik, eii)− φ(eik, eji)− φ(eik, eki)− φ(eik, ekj)

− 2φ(eji, eii)− 2φ(eji, eij) + φ(eji, ejj) + φ(eji, ekj)

− 2φ(ejj , eij) + φ(ejj , eji) + φ(ejj , ejj) + φ(ejj , ekj)

− 2φ(ejk, eij) + φ(ejk, ejj) + φ(ejk, eki) + φ(ejk, ekj)

+ 2φ(eki, eii) + 2φ(eki, eij)

− φ(ekj , eji)− φ(ekj , ejj)

− φ(ekk, eki)− φ(ekk, ekj) = 0.

Applying (4) and (5) this identity reduces to

2φ(eii, eii)− φ(eij , eji)− φ(eik, eki)

−2φ(eji, eij) + φ(ejj , ejj) + φ(ejk, ekj) = 0.(6)

Further, one can check that 2eii+eij−2eji−ejj and −eii−eij +2eji+2ejj
are orthogonal rank one idempotents for any i 6= j, and so

φ(2eii + eij − 2eji − ejj ,−eii − eij + 2eji + 2ejj) = 0.

Expanding and applying (4) and (5) one obtains

(7) φ(eij , eji) + φ(eji, eij) = φ(eii, eii) + φ(ejj , ejj).

Using this in (6) it follows that

φ(eii, eii) + φ(ejk, ekj) = φ(eji, eij) + φ(eik, eki).

Further, since

φ(ejk, ekj) = φ(ejj , ejj) + φ(ekk, ekk)− φ(ekj , ejk)

by (7), we finally obtain

φ(eii, eii) + φ(ejj , ejj) + φ(ekk, ekk)

= φ(eji, eij) + φ(eik, eki) + φ(ekj , ejk).(8)

Note that (8) holds for any i, j, k, no matter whether they are distinct or
not.

We now have enough information about φ. Let us define a bilinear map
ψ : Mn ×Mn → X by

ψ(a, b) = φ(1, ab)− φ(a, b).

Our goal is to show that ψ satisfies the conditions of Proposition 2.1. First
we have to prove that ψ is skew-symmetric. It is enough to show that
ψ(eij , ekl) = −ψ(ekl, eij) for all i, j, k, l, that is,

(9) φ(1, eijekl + ekleij) = φ(eij , ekl) + φ(ekl, eij).
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If j 6= k and i 6= l, then (9) follows from (1). Assume that j = k and i 6= l.
We have φ(1, eijejl +ejleij) = φ(1, eil). Writing 1 as e11 +e22 + . . .+enn and
using (1) we see that this is further equal to φ(eii, eil) + φ(ell, eil), which in
turn is equal to φ(eij , ejl) +φ(ejl, eij) by (4) and (5). Thus (9) holds in this
case. Similarly we consider the the case when j 6= k and i = l. Finally, let
j = k and i = l. Noting that φ(1, eii + ejj) = φ(eii, eii) + φ(ejj , ejj) we see
that in this case (9) follows from (7). Thus (9) holds in every case, and so
ψ is skew-symmetric.

Since φ satisfies the condition (a), i. e. (1) holds, it readily follows that
ψ also satisfies (a). By (5) we see that ψ satisfies (b), and by (8) we see
that ψ satisfies (c). Thus we may use Proposition 2.1, and conclude that
ψ(a, b) = Φ2([a, b]) for some linear operator Φ2 : [Mn,Mn] → X. Without
loss of generality we may assume that Φ2 is defined on Mn (just choose any
x ∈ X and extend Ψ2 to Mn by setting Φ2(e11) = x). Accordingly,

φ(a, b) = φ(1, ab)− Φ2(ab− ba) = Φ1(ab) + Φ2(ba)

where Φ1 : Mn → X is defined by Φ1(a) = φ(1, a)− Φ2(a). �

Let us add that Φ1 and Φ2 are not uniquely determined. This is clear
from the proof. Namely, Φ2(e11) can be chosen arbitrarily. However, Φ1 and
Φ2 are uniquely determined on [Mn,Mn].

An analogous results for bilinear maps preserving zero products of rank
one idempotents can be easily derived from Theorem 2.2.

Corollary 2.3. Let φ : Mn×Mn → X be a bilinear map such that φ(e, f) =
0 whenever e and f are rank one idempotents such that ef = 0. Then there
exists a linear operator Φ : Mn → X such that

φ(a, b) = Φ(ab) (a, b ∈Mn).

Proof. By Theorem 2.2 we know that φ(a, b) = Φ1(ab)+Φ2(ba), and we only
have to show that Φ2 = 0. As it is clear from the above comments, there is
no loss of generality in assuming that Φ2(e11) = 0. Picking any i 6= j we see
that e = ejj + eij and f = eii are rank one idempotents satisfying ef = 0,
and so Φ2(eij) = Φ2(fe) = φ(e, f) = 0. Similarly, for any i 6= 1 we consider
e′ = 1

2(e11 + e1i + ei1 + eii), f
′ = e11 − ei1, and obtain Φ2(f ′e′) = 0, that

is, Φ2(e11 + e1i − ei1 − eii) = 0. Since Φ2(e11) = Φ2(e1i) = Φ2(ei1) = 0 it
follows that Φ2(eii) = 0. But then Φ2 = 0. �

3. Applications to linear preserver problems

In the next corollaries we shall try to illustrate the usefulness of Theorem
2.2. One might regard the results that we shall obtain just as technical
improvements of known results; however, the approach based on Theorem
2.2 yields new proofs of some of them, and moreover, it makes it possible
for us to cover various preserver conditions simultaneously.

Corollary 3.1. Let T : Mn → Mn, n ≥ 3, be a linear map such that
[T (e), T (f)] = 0 whenever e and f are orthogonal rank one idempotents.
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Then either the range of T is commutative or T is of the form T (a) =
λΦ(a) + f(a)1 for all a ∈ Mn, where λ is a non-zero scalar, Φ is an au-
tomorphism or an antiautomorphism of the algebra Mn, and f is a linear
functional on Mn.

Proof. Define φ : Mn ×Mn → Mn by φ(a, b) = [T (a), T (b)] for all a, b ∈ A.
Obviously φ satisfies the conditions of Theorem 2.2. Thus there exist linear
maps Φ1,Φ2 : Mn → Mn such that φ(a, b) = Φ1(ab) + Φ2(ba). However,
since φ is skew-symmetric it is easy to see that Φ2 = −Φ1. So we have
[T (a), T (b)] = Φ1([a, b]) for all a, b ∈ A. In particular, [T (a), T (a2)] = 0 for
each a ∈ A. The result now follows immediately from [6, Theorem 4.11]. �

The condition treated in Corollary 3.1 covers three conditions that have
been treated thoroughly in the literature: the condition that T preserves
commutativity, the condition that T preserves zero products, and the condi-
tion that T preserves idempotents (see e.g. [5]). Perhaps this is not entirely
obvious for the last condition. But in fact it is very easy to see this: If T pre-
servers idempotents, then for every orthogonal idempotents e and f we have
that e+f is also an idempotent, hence T (e), T (f), and T (e+f) = T (e)+T (f)
are idempotents, which is possible only when T (e)T (f) = 0 = T (f)T (e).

We remark that Corollary 3.1 holds only for maps T from Mn into itself,
in general it does not hold for maps from Mn into, say, Mm with m > n.
Under a stronger assumption we can obtain a conclusion also for maps from
Mn into any other algebra B.

Corollary 3.2. If T : Mn → B is a linear map such that T (e)T (f) = 0
whenever e and f are orthogonal rank one idempotents, then T (1) commutes
with every T (a), a ∈Mn, and T satisfies

T (1)T (ab+ ba) = T (a)T (b) + T (b)T (a) (a, b ∈Mn).

Proof. Define φ : Mn ×Mn → B by φ(a, b) = T (a)T (b) for all a, b ∈ Mn.
Using Theorem 2.2 it follows that T (a)T (b) = Φ1(ab) + Φ2(ba) for all a, b ∈
Mn, where Φ1,Φ2 : Mn → B are linear operators. Letting first a = 1, and
then b = 1, we see that T (1) indeed commutes with every T (a), and that
T (1)T (a) = (Φ1 + Φ2)(a). Accordingly,

T (a)T (b)+T (b)T (a) = Φ1(ab)+Φ2(ba)+Φ1(ba)+Φ2(ab) = T (1)T (ab+ba).

�

If c = T (1) is invertible in B, then then we can represent T as T (a) =
cΦ(a) where Φ is a Jordan homomorphism. In general, however, c may not
be invertible, and T cannot be represented through Jordan homomorphisms.
For example, any map T such that T (a)T (b) = 0 for all a, b ∈ Mn trivially
satisfies the conditions of Corollary 3.2.

We remark that Corollary 3.2 extends [5, Theorem 2.1] which states that
a linear map from Mn into B that preserves idempotents is necessarily a
Jordan homomorphism.
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Arguing in a similar way as in the proof of Corollary 3.2, only that we
use Corollary 2.3 instead of Theorem 2.2, we get the following result.

Corollary 3.3. If T : Mn → B is a linear map such that T (e)T (f) = 0
whenever e and f are rank one idempotents satisfying ef = 0, then T (1)
commutes with every T (a), a ∈Mn, and T satisfies

T (1)T (ab) = T (a)T (b) (a, b ∈Mn).
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[6] M. Brešar and P. Šemrl, On bilinear maps on matrices with application to com-
mutativity preserves, J. Algebra 301 (2006), 803-837.
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