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Abstract. Our initial result states that, in a certain class of Banach al-
gebras which includes C∗-algebras and group algebras of locally compact
groups, every commutator lies in the closed linear span of square-zero el-
ements. The proof relies on the theory of Banach algebras with property
B. We then study several variations and extensions of this result. For
instance, we show that in a von Neumann algebra every commutator is
actually a finite sum of square zero elements. We also consider the com-
mutator ideal and the existence of some special square-zero elements.

1. Introduction

A complex Banach algebra A is said to have property B if, for every
continuous bilinear map f : A × A → X where X is an arbitrary Banach
space, the condition that for all x, y ∈ A,

(1) xy = 0 =⇒ f(x, y) = 0,

implies that

(2) f(xy, z) = f(x, yz) for all x, y, z ∈ A.

This concept was introduced in [1] and has since turned out to be applicable
to a variety of problems; see for example [1, 2, 3, 27] and references therein.
The main message of [1] is that the class of Banach algebras with property
B is quite large, in particular it includes C∗-algebras and group algebras of
arbitrary locally compact groups.

The starting point of this paper is the observation that every commutator
in a Banach algebra A with property B which also satisfies A2 = A (this
is fulfilled in C∗-algebras and group algebras of locally compact groups) is
contained in the closed linear span of square-zero elements (Theorem 2.1).
The proof is fairly easy, but the result itself is perhaps a bit surprising. In
particular it generalizes and unifies two classical results: the one by Ka-
plansky stating that a C∗-algebra A has a nonzero nilpotent element if and
only if A is noncommutative (see, e.g., [19, p. 292]), and the one by Behncke
stating that the group algebra L1(G) of a locally compact group G has a
nonzero nilpotent element if and only if G is not abelian [5]. On the other
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hand, there are several results in the literature stating that, in certain al-
gebras, every commutator lies in the (non-closed) linear span of square-zero
elements, i.e., it can be written as a finite sum of such elements. For ex-
ample, this is true in the algebra B(H) of all bounded linear operators on
an infinite-dimensional Hilbert space [14, 25]; in fact, an element in B(H)
is a commutator if and only if it can be written as the sum of 4 square-zero
elements [29]. Pearcy and Topping showed that commutators are sums of
(a certain number of) square-zero elements in some classes of von Neumann
algebras [25, 26], Kataoka established this for stable and properly infinite
C∗-algebras [21], and Marcoux for C∗-algebras containing some special pro-
jections [23, 24]. There has also been some interest in this topic in pure
algebra. Recently, Chebotar, Lee, and Puczylowski [10] showed that ev-
ery commutator in a simple ring with a nontrivial idempotent is the sum
of square-zero elements, but, on the other hand, there exists a simple ring
with zero-divisors in which this is not the case; the latter gave the answer
to a long-standing problem by Herstein [16].

The question that now presents itself is whether every commutator in
an arbitrary C∗-algebra A is a finite sum of square-zero elements in A. In
Section 3 we show that (1) does not always imply (2) if f is a discontinuous
bilinear map on a C∗-algebra, and thereby rule out the possibility to get
a positive answer to this question by using the same approach as in the
proof of Theorem 2.1. However, by using an algebraic approach based on
idempotents, we prove, in Section 4, that the answer is positive at least
for von Neumann algebras. For general C∗-algebras the question remains
open. In Section 5 we prove that, in a certain class of Banach algebras
with property B, in particular in C∗-algebras and some Banach algebras
associated with a compact group, the commutator ideal coincides with the
closed subalgebra generated by square-zero elements. Finally, in Section
6 we study the existence of some special square-zero elements in Banach
algebras with property B. It follows almost immediately from the definition
that a noncommutative unital Banach algebra with property B contains a
pair of elements a, b such that ab = 0 and ba 6= 0 (and so ba is a nonzero
square-zero element). We will establish some somewhat deeper results of a
similar type.

2. Commutators and square-zero elements in Banach algebras
with property B

Let A be an algebra. As usual, the commutator xy − yx of elements
x, y ∈ A will be denoted by [x, y]. We write [A,A] for the linear span of all
commutators in A. By a square-zero element we mean any element x ∈ A
such that x2 = 0. The centre of A will be denoted by Z(A).

A Banach algebra A is said to be essential if A2 = A (i.e., every element in
A is the limit of sums of elements of the form xy with x, y ∈ A). For example,
every Banach algebra with a (left, right) approximate identity is essential.
C∗-algebras and group algebras of locally compact groups therefore have
property B and are essential; for further examples of such Banach algebras
we refer the reader to [1].
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Theorem 2.1. Let A be an essential Banach algebra with property B. Then
every commutator in A lies in the closed linear span of square-zero elements.

Proof. Denote the closed linear span of all square-zero elements in A by V ,
and consider the map f : A × A → A/V given by f(x, y) = yx + V . Note
that f is bilinear, continuous, and satisfies the condition (1). Consequently,
f satisfies (2), meaning that [zx, y] ∈ V . Since A is essential, this implies
that V contains all commutators in A. �

We now show that, for any C∗-algebra and some Banach algebras asso-
ciated with a compact group, the square-zero elements lie in the closure of
the linear span of the commutators.

Proposition 2.2. Let A be a C∗-algebra. Then the closed linear span of all
square-zero elements in A coincides with the closure of [A,A].

Proof. As observed by Kataoka, every square-zero element x in a C∗-algebra
A is a commutator [21, Proposition 6]. The proof is as follows. We consider
the polar decomposition x = u |x| of x in the enveloping von Neumann

algebra of A. Since |x|1/2 lies in the C∗-subalgebra of A generated by |x|, it

follows that there exists a sequence (fn) of polynomials such that |x|1/2 is
the limit in norm of the sequence (|x|fn(|x|)). Consequently,

u|x|1/2 = limu|x|fn(|x|) = limxfn(|x|) ∈ A.
Since u∗x = |x|, we see that |x|u|x| = u∗x2 = 0 and therefore we have

|x|1/2u|x|1/2 = lim fn(|x|)|x|u|x|fn(|x|) = 0.

Consequently, we have x = [u |x|1/2 , |x|1/2], which is a commutator in A.
This of course implies that the closed linear span of square zero elements
is contained in the closed linear span of commutators, while the converse
inclusion follows from Theorem 2.1. �

In the remainder of this section we are concerned with a compact group
G. The Haar measure λ on G is normalized, so that λ(G) = 1, and λ is both
left and right invariant. We write

∫
G f(t) dt for the integral of f ∈ L1(G)

with respect to λ. The Banach spaces Lp(G), with 1 ≤ p ≤ ∞, and C(G)
are Banach algebras under convolution.

Let π be an irreducible continuous unitary representation ofG on a Hilbert
space Hπ. Then dπ = dim(Hπ) < ∞ and the character χπ of π is the
continuous function on G defined by

χπ(t) = trace
(
π(t)

)
(t ∈ G).

By [18, Theorem 27.24(i)], χπ ∈ Z(L1(G)). We write Tπ(G) for the linear
span of the set of continuous functions on G of the form t 7→ 〈π(t)u|v〉 as
u, v vary over Hπ. On account of [18, Theorems 27.21 and 27.24], it follows
that Tπ(G) is a minimal ideal of L1(G) isomorphic to the full matrix algebra
Mdπ(C), dπχπ is the unit of Tπ(G), and

trace
(
f ∗ dπχπ

)
=

∫
G
f(t)χπ(t) dt

for each f ∈ L1(G). We write T(G) for the linear span of the functions in
Tπ(G) as π varies over the irreducible continuous unitary representations of
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G. Functions in T(G) are called trigonometric polynomials on G. By [15,
Theorem 5.11], T(G) is dense in Lp(G) for 1 ≤ p < ∞ and C(G). Further
T(G) ∗ T(G) = T(G). These facts entail that any of the Banach algebras
Lp(G) for 1 ≤ p < ∞ and C(G) is essential and has property B (see [1,
Example 1.3.3(4)]). We will denote by X (G) the set of the characters of the
irreducible continuous unitary representations of G.

Proposition 2.3. Let G be a compact group, and let A be any of the Banach
algebras Lp(G), with 1 ≤ p < ∞, or C(G). Then the following conditions
on f ∈ A are equivalent:

(i) f lies in the closure of [A,A];
(ii) f lies in the closed linear span of all square-zero elements of A;

(iii)
∫
G f(t)χ(t) dt = 0 for each χ ∈ X (G).

Proof. Theorem 2.1 shows that (i) implies (ii).
We now assume that (ii) holds. Let π be an irreducible continuous unitary

representation of G. Then f ∗ dπχπ ∈ Tπ(G) can be thought of as a square-
zero dπ × dπ matrix and hence

0 = trace(f ∗ dπχπ) =

∫
G
f(t)χπ(t) dt,

which shows that f satisfies (iii).
Finally, we assume that f satisfies (iii). Let ε > 0. Let U denote the

family of all compact, symmetric neighbourhoods of the identity e of G that
are invariant under the inner automorphisms of G. On account of [17, The-
orem 4.9], U is a neighbourhoods base at e. For every U ∈ U , let %U be
λ(U)−1 times the characteristic function of U . By [15, Proposition 2.42],
the net (f ∗ %U )U∈U (where U is ordered by reverse inclusion) converges to
f in A. Let U ∈ U be such that ‖f ∗ %U − f‖ < 2−1ε. Since U is invariant,
[18, Theorem 28.49] shows that %U ∈ Z(L1(G)) and [15, Proposition 5.25]
now shows that there exist finitely many irreducible continuous unitary rep-
resentations π1, . . . , πn of G and α1, . . . , αn ∈ C such that∥∥∥∥∥%U −

n∑
k=1

αkχπk

∥∥∥∥∥
1

< 2−1 (1 + ‖f‖)−1 ε.

Then we have∥∥∥∥∥f −
n∑
k=1

αkf ∗ χπk

∥∥∥∥∥ ≤ ‖f − f ∗ %U‖+

∥∥∥∥∥f ∗
(
%U −

n∑
k=1

αkχπk

)∥∥∥∥∥
< 2−1ε+ ‖f‖

∥∥∥∥∥%U −
n∑
k=1

αkχπk

∥∥∥∥∥
1

< ε.

Since f ∗ χπk ∈ Tπk(G) and

trace(f ∗ χπk) = d−1
πk

∫
G
f(t)χπk(t) dt = 0,

it follows that f ∗χπk = [gk, hk] for some gk, hk ∈ Tπk(G) for k ∈ {1, . . . , n}.
Therefore

∑n
k=1 αkf ∗ χπk ∈ [A,A]. �
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3. The algebraic property B

Is the closure unnecessary in both Propositions 2.2 and 2.3, i.e., is every
commutator in A a finite sum of square-zero elements? A rather obvious
way to attack this question is to consider the algebraic version of property
B. Unfortunately, as we will see in Theorem 3.3 below, this cannot lead to
a definitive conclusion.

Let us precise what we mean by the “algebraic property B”. We will say
that an algebra A over a commutative unital ring C has property Balg if, for
every bilinear map f from A×A into an arbitrary C-module X, the condition
(1) implies the condition (2). This notion is in fact just a small modification
of the notion of a zero product determined algebra, introduced in [9] and later
discussed in a series of papers — yet mostly in the context of nonassociative
algebras. The difference in the definition is that the condition (2) is replaced
by the condition that there exists a C-linear map T : A2 → X such that
f(x, y) = T (xy) for all x, y ∈ A. It is clear that every (associative) zero
product determined algebra has property Balg, and, conversely, a unital
algebra with property Balg is zero product determined (just set z = 1 in
(2)). An example of such an algebra is Mn(B), the algebra of n×n matrices
(with n ≥ 2) over a unital algebra B [9, Theorem 2.1]. Further, every
unital algebra which is generated by its idempotents has property Balg [6,
Theorem 4.1]. The algebra Mn(B) is in fact generated by its idempotents
(see Proposition 4.2 below), so this second result is more general.

The following result is an algebraic analogue of Theorem 2.1.

Theorem 3.1. Let A be an algebra with property Balg and such that A2 = A.
Then every commutator in A is the sum of square-zero elements.

Proof. Define V as the C-module generated by all square-zero elements in
A, and proceed as in the proof of Theorem 2.1. �

Corollary 3.2. Let A be a unital algebra generated by its idempotents. Then
every commutator in A is the sum of square-zero elements.

Theorem 3.1 covers various examples of C∗-algebras. However, we will
now show that this approach has limitations.

Theorem 3.3. Let A be an infinite-dimensional, semisimple, commutative
Banach algebra. Then A does not have property Balg.

Proof. Let Ω denote the character space of A. If x ∈ A, then we write x̂
for the Gelfand transform of x and h(x) = {s ∈ Ω : x̂(s) = 0}. We think of
the algebraic tensor product A ⊗ A as a subalgebra of C0(Ω × Ω) through
the usual identification given by (x⊗ y)(s, t) = x̂(s)ŷ(t) for all s, t ∈ Ω and
x, y ∈ A.

Since dim(A) = ∞, it follows that Ω is infinite. Let Λ be a countable
infinite subset of Ω. By [11, Corollary 2.2.26], there exists u ∈ A such that
û(s) 6= 0 (s ∈ Λ) and û(s) 6= û(t) (s, t ∈ Λ, s 6= t).

We claim that

u2 ⊗ u− u⊗ u2 6∈ span
(
{x⊗ y : x, y ∈ A, xy = 0}

)
.

On the contrary, suppose that u2 ⊗ u − u ⊗ u2 =
∑n

k=1 xk ⊗ yk for some
x1, . . . , xn, y1, . . . , yn ∈ A with xkyk = 0 for each k ∈ {1, . . . , n}. We thus
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have

û(s)û(t) (û(s)− û(t)) =
n∑
k=1

x̂k(s)ŷk(t) (s, t ∈ Ω).

Since x1y1 = 0, it follows that Λ ⊂ h(x1)∪h(y1) and therefore either h(x1)∩Λ
or h(y1)∩Λ is infinite. We define Λ1 to be any of the infinite sets of the pair
{h(x1) ∩ Λ, h(y1) ∩ Λ}. Observe that x̂1(s)ŷ1(t) = 0 for all s, t ∈ Λ1. Since
x2y2 = 0, it follows that Λ1 ⊂ h(x2) ∪ h(y2) and therefore either h(x2) ∩ Λ1

or h(y2)∩Λ1 is infinite. We define Λ2 to be any of the infinite sets of the pair
{h(x2)∩Λ1, h(y2)∩Λ1}. We now observe that x̂1(s)ŷ1(t) = x̂2(s)ŷ2(t) = 0 for
all s, t ∈ Λ2. By repeating the process we get infinite sets Λ ⊃ Λ1 ⊃ . . . ⊃ Λn
such that

x̂1(s)ŷ1(t) = · · · = x̂k(s)ŷk(t) = 0 (s, t ∈ Λk, k = 1, . . . , n).

Accordingly, û(s)û(t)(û(s)− û(t)) = 0 and so û(s) = û(t) for all s, t ∈ Λn, a
contradiction.

Since u2 ⊗ u − u ⊗ u2 6∈ span
(
{x ⊗ y : x, y ∈ A, xy = 0}

)
, it may be

concluded that there exists a linear functional ϕ : A ⊗ A → C such that
ϕ(u2 ⊗ u − u ⊗ u2) 6= 0 and ϕ(x ⊗ y) = 0 whenever x, y ∈ A are such that
xy = 0. Then the bilinear functional f : A × A → C defined by f(x, y) =
ϕ(x⊗ y) for all x, y ∈ A obviously satisfies (1). Since f(u2, u) 6= f(u, u2), it
follows that f does not satisfy (2). �

We remark that the idea of the proof of this theorem was used in the
paper by the second author [7], written at about the same time as the
present paper. The main result of [7] states that a finite dimensional unital
algebra over an arbitrary field satisfies Balg (if and) only if it is generated
by idempotents.

4. Idempotents, commutators and square-zero elements in
matrix and von Neumann algebras

The ultimate goal of this section is to prove that commutators in von
Neumann algebras can be written as sums of square-zero elements. We start,
however, with a purely algebraic consideration of matrix algebras Mn(B).
Theorem 3.1 implies that commutators in these algebras are sums of square-
zero elements. We will establish this in a more explicit fashion, which will
enable the passing to von Neumann algebras.

Lemma 4.1. Let B be a unital algebra. Then every element in M2(B)
can be written as e1e2 + e3e4 − e5 − e6 for some idempotents ei ∈ M2(B)
(i = 1, . . . , 6).

Proof. We have[
a11 a12

a21 a22

]
=

[
1 a11

0 0

] [
1 0
1 0

]
+

[
0 0
a22 1

] [
0 1
0 1

]
−
[
1 −a12

0 0

]
−
[

0 0
−a21 1

]
and all matrices appearing on the right-hand side are idempotent. �

Proposition 4.2. Let B be a unital algebra, and n ≥ 2. Then every element
in Mn(B) can be written as e1e2 + e3e4 + e5e6 + e7 − e8 − e9 − e10 − e11 for
some idempotents ei ∈Mn(B) (i = 1, . . . , 11).
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Proof. If n = 2k then Mn(B) ∼= M2(Mk(B)) and we may use Lemma 4.1.
Therefore we may assume that n = 2k + 1 for some k ≥ 1.

Take a = (aij) ∈Mn(B) and set

a′ =


a11 a12 . . . a1n

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , a′′ =


0 0 . . . 0
a21 0 . . . 0
...

...
. . .

...
an1 0 . . . 0

 .
Note that

a′ =


1 a11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




1 0 . . . 0
1 0 . . . 0
...

...
. . .

...
0 0 . . . 0

−


1 −a12 . . . −a1n

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,

a′′ =


1 0 . . . 0
a21 0 . . . 0
...

...
. . .

...
an1 0 . . . 0

−


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,
and all matrices on the right-hand sides of these two identities are idem-
potent. Since a − a′ − a′′ lies in a subalgebra of Mn(B) isomorphic to
M2(Mk(B)), it satisfies the conclusion of Lemma 4.1. Thus a = (a − a′ −
a′′) + a′ + a′′ can be written in the desired form. �

Remark 4.3. Suppose B is a unital C∗-algebra and Mn(B) is endowed with
the standard C∗-norm. An inspection of the proof of Lemma 4.2 shows that
each of the idempotents ei has norm less or equal to max {2, 1 + ‖a‖}.

Following the approach from [10] we will now pass from idempotents to
square-zero elements.

Theorem 4.4. Let B be a unital algebra, and n ≥ 2. Then every commu-
tator in Mn(B) can be written as the sum of 22 square-zero elements.

Proof. If e is an idempotent and x is an arbitrary element, then the com-
mutator [e, x] is the sum of two square-zero elements, namely

[e, x] = ex(1− e) + (e− 1)xe.

If e′ is another idempotent, then [ee′, x] can be written as the sum of four
square-zero elements:

[ee′, x] = ee′x(1− e) + (e− 1)e′xe+ e′xe(1− e′) + (e′ − 1)xee′.

The desired conclusion can be now derived from Proposition 4.2. �

The number 22 could probably be lowered. In fact, from the proof of [25,
Theorem 2] is evident that every element in M2(B) is the sum of 5 square-
zero elements. However, in this paper we will not address the question about
the minimal number of summands.

Now we proceed to von Neumann algebras.

Proposition 4.5. Let A be a von Neumann algebra without abelian central
summands. Then every element in A can be written as e1e2 + e3e4 + e5e6 +
e7 − e8 − e9 − e10 − e11 for some idempotents ei ∈ A (i = 1, . . . , 11).
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Proof. We claim that A can be decomposed into a direct sum
⊕

i∈IMi(Bi),
where I ⊂ N \ {1} and Bi is a von Neumann algebra for each i ∈ I. Indeed,
by [28, Theorems V.1.19 and V.1.27], A can be decomposed into a direct sum
A1⊕A2⊕A3 of a properly infinite von Neumann algebra A1, a type II1 von
Neumann algebra A2, and a finite type I von Neumann algebra A3. Further,
A3 =

⊕
j∈JMj(Cj), where J ⊂ N and Cj is an abelian von Neumann algebra

for each j ∈ J . Since A has no abelian central summands, it follows that
1 6∈ J . On the other hand, the unity of A1, as well as the unity of A2, is
the sum of two equivalent orthogonal projections ([28, Proposition V.1.36]
and [28, Proposition V.1.35], respectively). From [28, Proposition V.1.22]
it follows that A1 = M2(D1) and A2 = M2(D2) for some von Neumann
algebras D1 and D2. If 2 ∈ J , then we take I = J , B2 = D1 ⊕ D2 ⊕ C2,
and Bi = Ci for each i ∈ I \ {2}, and otherwise we take I = J ∪ {2},
B2 = D1 ⊕D2 and Bi = Ci for each i ∈ J .

Let x ∈ A. Then x = (xi)i∈I ∈
⊕

i∈IMi(Bi) and Proposition 4.2 to-
gether with Remark 4.3 show that for each i ∈ I there are idempotents
e1,i, . . . , e11,i ∈Mi(Bi) such that

xi = e1,ie2,i + e3,ie4,i + e5,ie6,i + e7,i − e8,i − e9,i − e10,i − e11,i

and
‖e1,i‖, . . . , ‖e11,i‖ ≤ max{2, 1 + ‖xi‖} ≤ max{2, 1 + ‖x‖}.

The elements e1, . . . , e11 ∈
⊕

i∈IMi(Bi) defined by ej = (ej,i)i∈I (j =
1, . . . , 11) satisfy our requirements. �

Theorem 4.6. Let A be a von Neumann algebra. Then every commutator
in A can be written as the sum of 22 square-zero elements.

Proof. On account of [28, Theorems V.1.19 and V.1.27], A can be decom-
posed into a direct sum A1 ⊕ A2, where A1 is the type I1 part of A (and
therefore it is an abelian von Neumann algebra) and A2 is a von Neumann al-
gebra without abelian central summands. Let x, y ∈ A and write x = x1+x2

and y = y1 +y2 with x1, y1 ∈ A1 and x2, y2 ∈ A2. Then [x, y] = [x2, y2] ∈ A2

and Proposition 4.5 now shows that [x, y] can be written as the sum of 22
square-zero elements, as claimed. �

Remark 4.7. Let A be a von Neumann algebra and x ∈ A. On account of
the canonical decomposition of A and known results from the literature (see
the introduction of [12]), it follows that there exists z ∈ Z(A) such that
x − z is the sum of finitely many commutators. Theorem 4.6 then shows
that x− z is the sum of finitely many square-zero elements.

5. Square-zero elements and the commutator ideal

The purpose of this section is to apply our seminal result, Theorem 2.1, for
characterizing the commutator ideal of certain Banach algebras A. By the
commutator ideal we mean the closed ideal generated by all commutators
in A.

Lemma 5.1. Let A be a Banach algebra. Suppose that the quotient algebra
A/I is semisimple for each proper closed ideal I of A. Then the commu-
tator ideal of A coincides with the closed subalgebra of A generated by all
commutators in A.
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Proof. The proof is based on the following fact: the ideal generated by
the commutators [[A,A], A] is contained in the subalgebra B generated by
all commutators [A,A]. Let us repeat the proof given in [8, p. 2]. Given
x, y, z, w ∈ A we have

x[[y, z], w] = [x[y, z], w]− [x,w][y, z],

which shows that the left ideal generated by [[A,A], A] is contained in
B. Similarly we see that the same is true for the right ideal generated
by [[A,A], A]. Finally, from xuy = [xu, y] + (yx)u, with x, y ∈ A and
u ∈ [[A,A], A], we get the desired conclusion.

Hence we see that it suffices to show that the closed ideal of A generated by
[[A,A], A], which we denote by C ′, is equal to the commutator ideal C. That
is, we have to show that C ′ contains all commutators in A. We may assume
that C ′ 6= A. Then the quotient Banach algebra B = A/C ′ is semisimple
and satisfies the property [[B,B], B] = 0. This implies that δb(B) ⊂ Z(B)
for each b ∈ B, where δb stands for the inner derivation implemented by b.
The Singer-Wermer theorem [11, Corollary 2.7.20] now shows that δb(B) = 0
for each b ∈ B, which clearly implies that B is commutative and therefore
that [A,A] ⊂ C ′, as required. �

Let us show that Lemma 5.1 does not hold for all Banach algebras.

Example 5.2. Let A be the (complex) Grassmann algebra in three generators
x1, x2, x3. That is, A is the 8-dimensional algebra with basis

{1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}

whose multiplication is determined by x2
i = xixj + xjxi = 0 for all i, j =

1, 2, 3. Note that the commutator ideal of A is equal to

C = Cx1x2 + Cx1x3 + Cx2x3 + Cx1x2x3,

the subalgebra generated by all commutators is equal to

B = Cx1x2 + Cx1x3 + Cx2x3,

and the ideal generated by the commutators [[A,A], A] is C ′ = {0}.

Theorem 5.3. Let A be an essential Banach algebra with property B. Sup-
pose that the quotient algebra A/I is semisimple for each proper closed ideal
I of A. Then the commutator ideal of A is equal to the closed subalgebra
generated by all square-zero elements in A.

Proof. Let C denote the commutator ideal of A, and let D denote the
closed subalgebra generated by all square-zero elements. Theorem 2.1 and
Lemma 5.1 imply that C ⊆ D. The proof will be completed by showing that
every square-zero element a ∈ A lies in C. We may assume that C 6= A.
Since a+C is a square-zero element of the semisimple commutative Banach
algebra A/C, it follows that a ∈ C. �

Examples 5.4. Let us point out some basic special cases of Banach algebras
that satisfy the requirements in Theorem 5.3.

(i) Arbitrary C∗-algebras.
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(ii) For a compact group G, any of the Banach algebras Lp(G), with
1 ≤ p <∞, or C(G) (under convolution) has property B and further
[20, Theorem 15] shows that also satisfy the semisimplicity condition
of its quotient algebras. In [13, Example 3.1] it is given an example
of a non-compact, non-abelian group G for which the group algebra
L1(G) has spectral synthesis and this property, in particular, yields
the semisimplicity of its quotient algebras.

6. Square-zero elements and central elements

Once again, we return to Theorem 2.1. In particular it tells us that
a noncommutative essential Banach algebra with property B has nonzero
square-zero elements. In fact, there is no need to involve the linear span of
square-zero elements to establish this. All one has to do is to consider the
map (x, y) 7→ yx in light of the definition of property B. Let us record the
result which we obtain in this way.

Proposition 6.1. Let A be an essential Banach algebra with property B. If
A is not commutative, then there exists a, b ∈ A such that ab = 0 and ba 6= 0
(and hence A contains nonzero square-zero elements).

We will now develop further the simple idea upon which this proposition
is based. Our goal is to give two characterizations of elements from the
centre of a Banach algebra A with property B which satisfies some mild
additional assumptions. In our first result we will assume that A is both left
and right faithful, i.e., for every x ∈ A, each of the conditions xA = {0} and
Ax = {0} implies x = 0.

Proposition 6.2. Let A be a Banach algebra with property B. Suppose that
A is both left and right faithful. Then the following conditions on c ∈ A are
equivalent:

(i) c ∈ Z(A);
(ii) For all x, y ∈ A, xy = 0 implies xcy = 0.

Proof. It is enough to show that (ii) implies (i). Consider the continuous
bilinear map f : A×A→ A defined by f(x, y) = xcy for all x, y ∈ A. Then
(ii) implies that f satisfies condition (1) in the introduction. Since A has
property B, it follows that f(xy, z) = f(x, yz) and so that (xy)cz = xc(yz)
for all x, y, z ∈ A. This gives x[y, c]z = 0, and since A is both left and right
faithful, it follows that [y, c] = 0 for every y ∈ A. That is, c ∈ Z(A). �

The second result is somewhat less straightforward to prove. We will
sharpen (ii), but at the price of assuming that the algebra A is semiprime,
i.e., it does not contain nonzero nilpotent ideals (equivalently, for every x ∈
A, xAx = {0} implies x = 0). Our main examples of Banach algebras with
property B, C∗-algebras and group algebras over locally compact groups,
are semiprime.

We need two lemmas. The first one was implicitly proved in [2] and was
later used in [4] to study the orthogonality preserving linear maps on group
algebras.
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Lemma 6.3. Let A be a Banach algebra with the property B, let X be a
Banach space, and let f : A×A→ X be a continuous bilinear map such that
for all x, y ∈ A,

xy = yx = 0 ⇒ f(x, y) = 0.

Then

f(z1x2y2, z2x1y1)− f(z1x2, y2z2x1y1)

+f(y1z1x2, y2z2x1)− f(y1z1x2y2, z2x1) = 0

for all x1, x2, y1, y2, z1, z2 ∈ A.

Proof. This is exactly what is proved in the first part of the proof of [2,
Theorem 2.2] (indeed the result is stated for C∗-algebras only, but this part
of the proof obviously works for any Banach algebra with property B). �

Lemma 6.4. Let A be a semiprime algebra. Then each of the following
conditions on c ∈ A:

(i) cx ∈ Z(A) for every x ∈ A;
(ii) xc ∈ Z(A) for every x ∈ A;

(iii) [c, x] ∈ Z(A) for every x ∈ A;

implies that c ∈ Z(A).

Proof. Assuming (i) we have cxy = ycx for all x, y ∈ A. Replacing x by xz it
follows that cxzy = ycxz. However, on the other hand (ycx)z = (cxy)z, and
so comparing the last two relations we get cx[z, y] = 0 for all x, y, z ∈ A.
This clearly implies that [c, y]x[c, y] = c(yx)[c, y] − y(cx[c, y]) = 0 for all
x, y ∈ A. Since A is semiprime this yields [c, y] = 0 for every y ∈ A, i.e.,
c ∈ Z(A).

Of course, (ii) can be handled in a similar fashion. So let us assume
(iii). Then we have [c, x]c = [c, xc] ∈ Z(A) for all x ∈ A. In particular,
[[c, x]c, x] = 0. Since [c, x], as a central element, commutes with x, it follows
that [c, x]2 = 0. However, the centre of a semiprime algebra cannot contain
nonzero square-zero elements, so we obtain [c, x] = 0. �

Theorem 6.5. Let A be a semiprime Banach algebra with property B. Then
the following conditions on c ∈ A are equivalent:

(i) c ∈ Z(A);
(ii) For all x, y ∈ A, xy = yx = 0 implies xcy = 0.

Proof. Of course, it suffices to show that (ii) implies (i). As in the proof
of Proposition 6.2, we consider the continuous bilinear map f : A× A→ A
defined by f(x, y) = xcy for all x, y ∈ A. Assuming that (ii) holds, it follows
from Lemma 6.3 that

z1x2y2cz2x1y1 − z1x2cy2z2x1y1 + y1z1x2cy2z2x1 − y1z1x2y2cz2x1 = 0

for all x1, x2, y1, y2, z1, z2 ∈ A. We can rewrite this identity as

[z1x2[y2, c]z2x1, y1] = 0,

which means that z1x2[y2, c]z2x1 ∈ Z(A) for all x1, x2, y2, z1, z2 ∈ A. Using
Lemma 6.4 (i) twice it follows that z1x2[y2, c] ∈ Z(A). Similarly, using
Lemma 6.4 (ii) twice we now get that [y2, c] ∈ Z(A) for all y2 ∈ A. But then
Lemma 6.4 (iii) implies c ∈ Z(A). �
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Another way of stating Theorem 6.5 is that every non-central element
c ∈ A gives rise to a nonzero square-zero element in A of the form xcy
for some x, y ∈ A such that xy = yx = 0. We remark that this is a
generalization of the result by Magajna [22, Corollary 2.8] stating that for
every non-central element c in a C∗-algebra A there exist x, y ∈ A such that
xcy 6= 0 and (xcy)2 = 0.

Acknowledgement. The authors would like to thank the referee for
careful reading of the paper and valuable suggestions.
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