DETERMINING ELEMENTS IN C^{*}-ALGEBRAS THROUGH SPECTRAL PROPERTIES

J. ALAMINOS, M. BREŠAR, J. EXTREMERA, Š. ŠPENKO, AND A. R. VILLENA

Abstract

Let A be a unital C^{*}-algebra and $A^{\prime \prime}$ its second dual. By $\sigma(a)$ and $r(a)$ we denote the spectrum and the spectral radius of $a \in A$, respectively. The following two statements hold for arbitrary $a, b \in A$: (1) $\sigma(a c) \subseteq \sigma(b c) \cup\{0\}$ for every $c \in A$ if and only if there exists a central projection $z \in A^{\prime \prime}$ such that $a=z b$, (2) $r(a c) \leq r(b c)$ for every $c \in A$ if and only if there exists a central element z in $A^{\prime \prime}$ such that $a=z b$ and $\|z\| \leq 1$.

1. Introduction

The goal of this note is to generalize and complete the main results from the recent paper [4], to which we refer for motivation and applications concerning the conditions that we are going to study. Let us just mention here that applications are connected with the well-known problem, initiated by Kaplansky in [6], of characterizing multiplicative maps through their spectral properties. We also refer to the paper [3], which also continues the line of investigation started in [4], but in a different direction as we do here.

While the general setting of [4] are Banach algebras, the two main results concern (unital) C^{*}-algebras. The first one says that the elements a, b from a C^{*}-algebra A must be equal if $\sigma(a c)=\sigma(b c)$ holds for every $c \in A$, and the second one says that if A is a prime C^{*}-algebra, then $r(a c) \leq$ $r(b c)$ holds for every $c \in A$ if and only if there exists $\lambda \in \mathbb{C}$ such that $a=\lambda b$ and $|\lambda| \leq 1$; here, $\sigma($.$) and r($.$) stand for the spectrum and the$ spectral radius, respectively. We will generalize the first result by treating the inclusion instead of the equality of the spectra (Theorem 2.3), and extend the second result to general C^{*}-algebras (Theorem 3.6). These higher levels of generality make the problems technically quite more involved. Therefore we have to add new methods to those already used in [4].

We introduce some notation. We write $A^{\prime \prime}$ for the second dual of a C^{*} algebra A. The spectrum of $a \in A$ will be usually denoted by $\sigma(a)$, but

[^0]sometimes, when it will be appropriate to emphasize the algebra with respect to which we are considering the spectrum, by $\sigma_{A}(a)$. The center of A will be denoted by $\mathcal{Z}(A)$.

2. Spectrum

First we state a lemma which is evident from the proofs of Claims 1 and 2 of [4, Theorem 2.6].

Lemma 2.1. Let A be a unital C^{*}-algebra and let $a, b \in A$ be such that $\sigma(a c) \subseteq \sigma(b c) \cup\{0\}$ for every $c \in A$. Suppose that $b^{*}=b$. Then $a^{*}=a$ and $a b=b a$.

We continue by treating the commutative case.
Lemma 2.2. Let K be a compact Hausdorff space and let $f, g \in C(K)$ be such that $\sigma(f h) \subseteq \sigma(g h) \cup\{0\}$ for every $h \in C(K)$. Then $\operatorname{supp}(f) \subseteq \operatorname{supp}(g)$ and $f=g$ on $\operatorname{supp}(f)$.

Proof. Let $t \in K \backslash \operatorname{supp}(g)$. Then there exists $h \in C(K)$ with $h(t)=1$ and $h(\operatorname{supp}(g))=\{0\}$. Consequently, $g h=0$ and

$$
f(t)=f(t) h(t) \in \sigma(f h) \subseteq \sigma(g h) \cup\{0\}=\{0\} .
$$

We thus get $K \backslash \operatorname{supp}(g) \subseteq\{t \in K: f(t)=0\}$, which obviously implies that $\operatorname{supp}(f) \subseteq \operatorname{supp}(g)$.

We now claim that

$$
\begin{equation*}
(f(t) \overline{g(t)})^{2}=f(t) \overline{g(t)}|g(t)|^{2} \tag{2.1}
\end{equation*}
$$

for each $t \in K$. Let $h=g^{*}+i g^{*}|g|^{2}$. Then

$$
\sigma\left(f g^{*}+i f g^{*}|g|^{2}\right)=\sigma(f h) \subseteq \sigma(g h) \cup\{0\}=\sigma\left(|g|^{2}+i|g|^{4}\right) \cup\{0\} .
$$

Hence, for each $t \in K$, either $f(t) \overline{g(t)}+i f(t) \overline{g(t)}|g(t)|^{2}=0$, in which case $f(t) \overline{g(t)}=0$, or there exists $s_{t} \in K$ such that $f(t) \overline{g(t)}+i f(t) \overline{g(t)}|g(t)|^{2}=$ $\left|g\left(s_{t}\right)\right|^{2}+i\left|g\left(s_{t}\right)\right|^{4}$. Using $\sigma\left(f g^{*}\right) \subseteq \sigma\left(|g|^{2}\right) \cup\{0\} \subseteq \mathbb{R}$ and $\sigma\left(f g^{*}|g|^{2}\right) \subseteq$ $\sigma\left(|g|^{4}\right) \cup\{0\} \subseteq \mathbb{R}$ we see that in the latter case we have $f(t) \overline{g(t)}=\left|g\left(s_{t}\right)\right|^{2}$ and $f(t) \overline{g(t)}|g(t)|^{2}=\left|g\left(s_{t}\right)\right|^{4}$. This proves (2.1).

On account of (2.1), we have $f(t)=g(t)$ for each $t \in K$ with $f(t), g(t) \neq 0$. We claim that $f=g$ on $\operatorname{supp}(f)$. Of course, it suffices to prove that $f=g$ on the set $U=\{t \in K: f(t) \neq 0\}$. Pick $t \in U$. Since $\operatorname{supp}(f) \subseteq \operatorname{supp}(g)$, it follows that $t \in \operatorname{supp}(g)$ and so there exists a net $\left(t_{\lambda}\right)$ in K with $g\left(t_{\lambda}\right) \neq 0$ for every λ and $\lim t_{\lambda}=t$. Since U is a neighbourhood of t we can certainly assume that $t_{\lambda} \in U$ for each λ. Therefore $f\left(t_{\lambda}\right)=g\left(t_{\lambda}\right)$ for each λ, which gives $f(t)=\lim f\left(t_{\lambda}\right)=\lim g\left(t_{\lambda}\right)=g(t)$.

Theorem 2.3. Let A be a unital C^{*}-algebra and let $a, b \in A$. Then the following properties are equivalent.
(1) $\sigma(a c) \subseteq \sigma(b c) \cup\{0\}$ for every $c \in A$.
(2) There exists a central projection $z \in A^{\prime \prime}$ such that $a=z b$.

Proof. We begin by assuming that (1) holds. By applying the hypothesis with c replaced by $b^{*} c$ we arrive at

$$
\sigma\left(a b^{*} c\right) \subseteq \sigma\left(b b^{*} c\right) \cup\{0\} \quad(c \in A)
$$

Lemma 2.1 then shows that $a b^{*}=b a^{*}$ commutes with $b b^{*}$. We now apply the hypothesis with c replaced by $a^{*} c$ to get

$$
\sigma\left(a a^{*} c\right) \subseteq \sigma\left(b a^{*} c\right) \cup\{0\} \quad(c \in A)
$$

Since we already know that $b a^{*}$ is self-adjoint, Lemma 2.1 now shows that $b a^{*}$ commutes with $a a^{*}$. Moreover, the preceding inclusions yield

$$
\sigma\left(a a^{*} c\right) \subseteq \sigma\left(b b^{*} c\right) \cup\{0\} \quad(c \in A)
$$

and Lemma 2.1 then shows that $a a^{*}$ commutes with $b b^{*}$. Consequently, the C^{*}-subalgebra B of A generated by $\mathbf{1}, a a^{*}, a b^{*}=b a^{*}$, and $b b^{*}$ is commutative. Further, we have

$$
\sigma_{B}\left(a a^{*} c\right) \subseteq \sigma_{B}\left(a b^{*} c\right) \cup\{0\} \subseteq \sigma_{B}\left(b b^{*} c\right) \cup\{0\} \quad(c \in B)
$$

On account of Lemma 2.2, we have

$$
\operatorname{supp}\left(a a^{*}\right) \subseteq \operatorname{supp}\left(a b^{*}\right) \subseteq \operatorname{supp}\left(b b^{*}\right)
$$

$a a^{*}=a b^{*}$ on $\operatorname{supp}\left(a a^{*}\right)$, and $a b^{*}=b b^{*}$ on $\operatorname{supp}\left(a b^{*}\right)$. Let e be the projection in $A^{\prime \prime}$ corresponding to the characteristic function of the set $\operatorname{supp}\left(a a^{*}\right)$. It is immediate to check that $(a-e b)(a-e b)^{*}=0$, which implies

$$
\begin{equation*}
a=e b \tag{2.2}
\end{equation*}
$$

Let s be a self-adjoint element in A. Then $\sigma\left(a s b^{*} c\right) \subseteq \sigma\left(b s b^{*} c\right) \cup\{0\}$ for each $c \in A$. Since $b s b^{*}$ is self-adjoint, Lemma 2.1 shows that $a s b^{*}=b s a^{*}$. This clearly implies that $a c b^{*}=b c a^{*}$ for each $c \in A$ and therefore that $a x b^{*}=b x a^{*}$ for each $x \in A^{\prime \prime}$. On account of (2.2), we have

$$
e b x b^{*}=b x b^{*} e \quad\left(x \in A^{\prime \prime}\right)
$$

and this clearly gives

$$
(1-e) b A^{\prime \prime} b^{*} e=\{0\}
$$

Therefore, there exists a a central projection $z \in A^{\prime \prime}$ such that $z b^{*} e=b^{*} e$ and $z(1-e) b=0$ (see for example [2, Proposition III.1.1.7]). The first
identity now yields $z e b=e b=a$, while the second one gives $z e b=z b$. Consequently, $a=z b$, as required.

Finally, assume that (2) holds. Let $c \in A$. Since $\sigma_{A^{\prime \prime}}(z) \subseteq\{0,1\}$, it follows that

$$
\sigma(a c)=\sigma_{A^{\prime \prime}}(a c) \subseteq \sigma_{A^{\prime \prime}}(z) \sigma_{A^{\prime \prime}}(b c) \subseteq \sigma_{A^{\prime \prime}}(b c) \cup\{0\}=\sigma(b c) \cup\{0\} .
$$

3. Spectral radius

Let a be an element in a von Neumann algebra \mathcal{M}. The smallest projection p in \mathcal{M} such that $p a=a(a p=a)$ is the left support (resp. right support) of a. If a is self-adjoint, then both supports coincide and this common projection, called the support of a, is denoted by $s(a)$. We refer the reader to [7, Section 1.10] for the basic properties of the support.

We continue with a series of technical lemmas.
Lemma 3.1. Let \mathcal{M} be a von Neumann algebra and let $b, w \in \mathcal{M}$. Suppose that $b^{*}=b$ and that $w b u b^{2} u b=$ bubwbub for every self-adjoint element $u \in \mathcal{M}$. Then $w s(b) x s(b)=s(b) x w s(b)$ for each $x \in \mathcal{M}$.

Proof. Replacing u by $u+v$ with both u and v self-adjoint elements in \mathcal{M} it follows that

$$
w b u b^{2} v b+w b v b^{2} u b=b u b w b v b+b v b w b u b .
$$

Since every element in \mathcal{M} is a linear combination of two self-adjoint elements, it follows that

$$
\begin{equation*}
w b x b^{2} y b+w b y b^{2} x b=b x b w b y b+b y b w b x b \quad(x, y \in \mathcal{M}) . \tag{3.1}
\end{equation*}
$$

On account of [7, Proposition 1.10.4], $s(b)$ belongs to the von Neumann subalgebra of \mathcal{M} generated by b. Consequently, there is a net $\left(P_{i}\right)_{i \in I}$ of polynomials with $P_{i}(0)=0(i \in I)$ such that $s(b)$ is the limit with respect to the weak ${ }^{*}$ topology on \mathcal{M} of the net $\left(P_{i}(b)\right)$. For each $i \in I$ we write $P_{i}(\lambda)=\lambda Q_{i}(\lambda)$ for some polynomial Q_{i}. Replacing x by $Q_{i}(b) x$ in (3.1) it follows that
(3.2) $w P_{i}(b) x b^{2} y b+w b y b P_{i}(b) x b=P_{i}(b) x b w b y b+b y b w P_{i}(b) x b(x, y \in \mathcal{M})$.

Taking the limit with respect to the weak*-topology on \mathcal{M} in (3.2) and taking into account the separate weak*-continuity of the product we arrive at

$$
w s(b) x b^{2} y b+w b y b x b=s(b) x b w b y b+b y b w s(b) x b \quad(x, y \in \mathcal{M}) .
$$

The same reasoning starting with x replaced by $x Q_{i}(b)$ gives
$w s(b) x b y b+w b y b x s(b)=s(b) x s(b) w b y b+b y b w s(b) x s(b) \quad(x, y \in \mathcal{M})$.

We now apply this argument once again, with respect to y instead of x, to obtain

$$
w s(b) x s(b) y b+w s(b) y b x s(b)=s(b) x s(b) w s(b) y b+s(b) y b w s(b) x s(b)
$$

and then
$w s(b) x s(b) y s(b)+w s(b) y s(b) x s(b)=s(b) x s(b) w s(b) y s(b)+s(b) y s(b) w s(b) x s(b)$ for all $x, y \in \mathcal{M}$.

Taking $y=s(b)$ we get the identity

$$
2 w s(b) x s(b)=s(b) x s(b) w s(b)+s(b) w s(b) x s(b) \quad(x \in \mathcal{M})
$$

Taking $x=s(b)$ in the preceding identity we arrive at $w s(b)=s(b) w s(b)$. We now use this property in the previous identity to get $2 w s(b) x s(b)=$ $s(b) x w s(b)+w s(b) x s(b)$ and therefore $w s(b) x s(b)=s(b) x w s(b)$ for each $x \in \mathcal{M}$, as required.

Lemma 3.2. Let \mathcal{M} be a von Neumann algebra, let w be a normal element in \mathcal{M}, and let p be a projection in \mathcal{M}. Suppose that $w p x p=p x p w$ for each $x \in \mathcal{M}$. Then there exists $z \in \mathcal{Z}(\mathcal{M})$ such that $z p=w p$ and $\|z\| \leq\|w\|$.

Proof. Let \mathcal{E} be the spectral measure on $\sigma(w)$ such that

$$
w=\int_{\sigma(w)} \lambda d \mathcal{E}(\lambda)
$$

Since $w p x p=p x p w$ for all $x \in \mathcal{M}$, it follows that

$$
\begin{equation*}
\mathcal{E}(\Delta) p x p=p x p \mathcal{E}(\Delta) \quad(x \in \mathcal{M}) \tag{3.3}
\end{equation*}
$$

and, in particular, we have $\mathcal{E}(\Delta) p=p \mathcal{E}(\Delta)$ for each Borel subset Δ of $\sigma(w)$.
Every projection q in \mathcal{M} has a central carrier, the smallest projection $\theta(q)$ in $\mathcal{Z}(\mathcal{M})$ majorizing q. We refer the reader to [2, Section III.1.1] and [7, Section 1.10] for the basic facts about the central carrier. For every Borel subset Δ of $\sigma(w)$ we define

$$
\mathcal{F}(\Delta)=\theta(\mathcal{E}(\Delta) p)
$$

Let Δ be a Borel subset Δ of $\sigma(w)$. We claim that $\mathcal{F}(\Delta) \in \theta(p) \mathcal{Z}(\mathcal{M})$. It is clear that $\mathcal{E}(\Delta) p \leq \theta(\mathcal{E}(\Delta)) \theta(p) \in \mathcal{Z}(\mathcal{M})$ and so $\theta(\mathcal{E}(\Delta) p) \leq \theta(\mathcal{E}(\Delta)) \theta(p)$. According to [2, Proposition II.3.3.1], we have

$$
\begin{aligned}
& \mathcal{F}(\Delta)=\theta(\mathcal{E}(\Delta) p)=\theta(\mathcal{E}(\Delta) p)(\theta(\mathcal{E}(\Delta)) \theta(p)) \\
& \quad=(\theta(\mathcal{E}(\Delta) p) \theta(\mathcal{E}(\Delta))) \theta(p) \in \mathcal{Z}(\mathcal{M}) \theta(p)
\end{aligned}
$$

Our next objective is to show that if Δ_{1} and Δ_{2} are disjoint Borel subsets of $\sigma(w)$, then

$$
\begin{equation*}
\mathcal{F}\left(\Delta_{1}\right) \mathcal{F}\left(\Delta_{2}\right)=0 \tag{3.4}
\end{equation*}
$$

On account of (3.3), we have $\mathcal{E}\left(\Delta_{1}\right) p x \mathcal{E}\left(\Delta_{2}\right) p=0$ and [7, Proposition 1.10.7] then gives (3.4).

Let $\left(\Delta_{n}\right)$ be a sequence of pairwise disjoint Borel subsets of $\sigma(w)$. Then

$$
\mathcal{F}\left(\bigcup_{n=1}^{\infty} \Delta_{n}\right)=\theta\left(\mathcal{E}\left(\bigcup_{n=1}^{\infty} \Delta_{n}\right) p\right)=\theta\left(\sum_{n=1}^{\infty} \mathcal{E}\left(\Delta_{n}\right) p\right) .
$$

Since $\left(\mathcal{E}\left(\Delta_{n}\right) p\right)$ is a sequence of pairwise orthogonal projections and, according to (3.4), the sequence $\left(\theta\left(\mathcal{E}\left(\Delta_{n}\right) p\right)\right)$ also consists of pairwise orthogonal projections, [5, Propositions 2.5.8 and 5.5.3] show that

$$
\theta\left(\sum_{n=1}^{\infty} \mathcal{E}\left(\Delta_{n}\right) p\right)=\sum_{n=1}^{\infty} \theta\left(\mathcal{E}\left(\Delta_{n}\right) p\right)
$$

We thus get

$$
\mathcal{F}\left(\bigcup_{n=1}^{\infty} \Delta_{n}\right)=\sum_{n=1}^{\infty} \mathcal{F}\left(\Delta_{n}\right)
$$

Consequently, \mathcal{F} is a spectral measure on $\sigma(w)$ with range in the von Neumann algebra $\theta(p) \mathcal{Z}(\mathcal{M})$.

We now define

$$
z=\int_{\sigma(w)} \lambda d \mathcal{F}(\lambda)
$$

Then $z \in \mathcal{Z}(\mathcal{M})$ and it is immediate to check that $\|z\| \leq\|w\|$. Our final goal is to show that $z p=w p$. To this end it suffices to show that $\mathcal{F}(\Delta) p=\mathcal{E}(\Delta) p$ for each Borel subset Δ of $\sigma(w)$. Let Δ be a Borel subset of $\sigma(w)$. On the one hand, we have $\mathcal{E}(\Delta) p \leq \mathcal{F}(\Delta)$ and hence

$$
\begin{equation*}
\mathcal{F}(\Delta)(\mathcal{E}(\Delta) p)=\mathcal{E}(\Delta) p \tag{3.5}
\end{equation*}
$$

On the other hand, on account of (3.4) and (3.5) (with Δ replaced by $\sigma(w) \backslash$ Δ), we have

$$
\begin{equation*}
\mathcal{F}(\Delta)(\mathcal{E}(\sigma(w) \backslash \Delta) p)=\mathcal{F}(\Delta) \mathcal{F}(\sigma(w) \backslash \Delta)(\mathcal{E}(\sigma(w) \backslash \Delta) p)=0 \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) we deduce that

$$
\mathcal{F}(\Delta) p=\mathcal{F}(\Delta)(\mathcal{E}(\Delta) p+\mathcal{E}(\sigma(w) \backslash \Delta) p)=\mathcal{E}(\Delta) p
$$

as required.
Lemma 3.3. Let A be a unital C^{*}-algebra and let $a, b \in A$ be such that $r(a c) \leq r(b c)$ for every $c \in A$. Suppose that $b^{*}=b$. Then a is normal and $a c=c a$ for every $c \in A$ such that $b c=c b$.

Proof. Let $B=\{u \in A: b u=u b\}$. Then B is a C^{*}-algebra containing b. Define $\varphi: B \times B \rightarrow A$ by $\varphi(u, v)=u a v$ for all $u, v \in B$. Suppose that $u, v \in B$ are such that $u v=0$. Then $u b v=b u v=0$ and [4, Lemma 3.2] then yields $u a v=0$. On account of [1, Theorem 2.11 and Example 1.3.2], we have $\varphi(u v, w)=\varphi(u, v w)$ for all $u, v, w \in B$. By taking $u=w=\mathbf{1}$ we get $v a=a v$ for each $v \in B$, as claimed.

Since $b \in B$ it follows that $a b=b a$ and therefore $b a^{*}=a^{*} b$. This shows that $a^{*} \in B$ and therefore $a a^{*}=a^{*} a$.

Lemma 3.4. Let K be a compact Hausdorff space and let $f, g \in C(K)$ be such that $r(f h) \leq r(g h)$ for each $h \in C(K)$. Then $|f| \leq|g|$.

Proof. On the contrary, suppose that $\left|f\left(t_{0}\right)\right|>\left|g\left(t_{0}\right)\right|$ for some $t_{0} \in K$. Then $U=\left\{t \in K:|g(t)|<\left|f\left(t_{0}\right)\right|\right\}$ is an open neighbourhood of t_{0}. We take a continuous function $h: K \rightarrow[0,1]$ with $\operatorname{supp}(h) \subseteq U$ and $h\left(t_{0}\right)=1$. Then $|(g h)(t)|<\left|f\left(t_{0}\right)\right|=\left|(f h)\left(t_{0}\right)\right|$, which shows that $r(g h)<r(f h)$, a contradiction.

Lemma 3.5. Let A be a unital C^{*}-algebra and let $a, b \in A$ such that $r(a c) \leq$ $r(b c)$ for each $c \in A$. Suppose that $b^{*}=b$. Then there exists $z \in \mathcal{Z}\left(A^{\prime \prime}\right)$ such that $a=z b$ and $\|z\| \leq 1$.

Proof. Let B be the C^{*}-subalgebra of A generated by 1, a, and b. By Lemma 3.3, the algebra B is commutative so that it can be identified with $C(K)$ for some compact Hausdorff space K. From Lemma 3.4 it follows that $|a(t)| \leq|b(t)|$ for each $t \in K$. We now define $w \in A^{\prime \prime}$ by $w(t)=a(t) / b(t)$ whenever $t \in K$ is such that $b(t) \neq 0$ and $w(t)=0$ elsewhere. Then $a=w b$ and $\|w\| \leq 1$. Our purpose is to show that w can be replaced by an appropriate element in $\mathcal{Z}\left(A^{\prime \prime}\right)$.

Pick a self-adjoint element $u \in A$. Replacing c by $u b c$ in $r(w b c) \leq r(b c)$ we get $r(w b u b c) \leq r(b u b c)$ for each $c \in A$. Since $b u b$ is self-adjoint, Lemma 3.3 shows that $(w b u b)(b u b)=(b u b)(w b u b)$. Lemma 3.1 now yields $w s(b) x s(b)=$ $s(b) x w s(b)$ for every $x \in A^{\prime \prime}$. We now observe that $w s(b)=s(b) w$ and therefore Lemma 3.2 gives $z \in \mathcal{Z}\left(A^{\prime \prime}\right)$ such that $z s(b)=w s(b)$ and $\|z\| \leq$ $\|w\| \leq 1$. Finally, we observe that

$$
z b=z(s(b) b)=(z s(b)) b=(w s(b)) b=w(s(b) b)=w b=a .
$$

Theorem 3.6. Let A be a unital C^{*}-algebra and let $a, b \in A$. Then the following properties are equivalent.
(1) $r(a c) \leq r(b c)$ for every $c \in A$.
(2) There exists $z \in \mathcal{Z}\left(A^{\prime \prime}\right)$ such that $a=z b$ and $\|z\| \leq 1$.

Proof. Assume that (1) holds. Then

$$
\begin{equation*}
r\left(a^{*} c\right) \leq r\left(b^{*} c\right) \quad(c \in A) \tag{3.7}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
r\left(a^{*} c\right) & =r\left(c a^{*}\right)=r\left(\left(a c^{*}\right)^{*}\right)=r\left(a c^{*}\right) \\
& \leq r\left(b c^{*}\right)=r\left(\left(c b^{*}\right)^{*}\right)=r\left(c b^{*}\right)=r\left(b^{*} c\right) .
\end{aligned}
$$

Taking $b^{*} c$ for c in (1) we get

$$
r\left(a b^{*} c\right) \leq r\left(b b^{*} c\right) \quad(c \in A)
$$

Since $b b^{*}$ is self-adjoint, Lemma 3.5 yields $z \in \mathcal{Z}\left(A^{\prime \prime}\right)$ such that $a b^{*}=z b b^{*}$ and $\|z\| \leq 1$. Our goal is to show that $a=z b$.

By (3.7)

$$
r\left(a a^{*} c\right) \leq r\left(b a^{*} c\right)=r\left(a^{*} c b\right) \leq r\left(b^{*} c b\right)=r\left(b b^{*} c\right)
$$

and Lemma 3.5 now gives $w \in \mathcal{Z}\left(A^{\prime \prime}\right)$ such that $a a^{*}=w b b^{*}$ and $\|w\| \leq 1$.
Take a self-adjoint element $u \in A$. Replacing c by $u b c$ in (3.7) we get $r\left(a^{*} u b c\right) \leq r\left(b^{*} u b c\right)$ for each $c \in A$. Since $b^{*} u b$ is self-adjoint, Lemma 3.3 shows that $\left(a^{*} u b\right)\left(b^{*} u b\right)=\left(b^{*} u b\right)\left(a^{*} u b\right)$. Linearizing this identity we get $a^{*} u b b^{*} v b+a^{*} v b b^{*} u b=b^{*} u b a^{*} v b+b^{*} v b a^{*} u b$ for all self-adjoint elements $u, v \in$ A. This obviously implies that $a^{*} c b b^{*} d b+a^{*} d b b^{*} c b=b^{*} c b a^{*} d b+b^{*} d b a^{*} c b$ for all $c, d \in A$, which gives

$$
a^{*} x b b^{*} y b+a^{*} y b b^{*} x b=b^{*} x b a^{*} y b+b^{*} y b a^{*} x b \quad\left(x, y \in A^{\prime \prime}\right) .
$$

Taking into account that $a b^{*}=z b b^{*}$ we arrive at

$$
a^{*} x b b^{*} y b+a^{*} y b b^{*} x b=b^{*} x z^{*} b b^{*} y b+b^{*} y z^{*} b b^{*} x b \quad\left(x, y \in A^{\prime \prime}\right)
$$

and therefore

$$
(a-z b)^{*} x b b^{*} y b+(a-z b)^{*} y b b^{*} x b=0 \quad\left(x, y \in A^{\prime \prime}\right) .
$$

In particular, we have

$$
(a-z b)^{*} x b b^{*} x b=0 \quad\left(x \in A^{\prime \prime}\right) .
$$

The last two identities yield

$$
\begin{aligned}
\left((a-z b)^{*} x b b^{*}\right) y\left((a-z b)^{*} x b b^{*}\right) & =(a-z b)^{*} x b b^{*}\left(y(a-z b)^{*} x\right) b b^{*} \\
& =-(a-z b)^{*}\left(y(a-z b)^{*} x\right) b b^{*} x b b^{*} \\
& =-(a-z b)^{*} y\left((a-z b)^{*} x b b^{*} x b\right) b^{*} \\
& =0
\end{aligned}
$$

for all $x, y \in A^{\prime \prime}$. By taking $y=\left((a-z b)^{*} x b b^{*}\right)^{*}$ with $x \in A^{\prime \prime}$ we arrive at

$$
\left((a-z b)^{*} x b b^{*}\right)\left((a-z b)^{*} x b b^{*}\right)^{*}\left((a-z b)^{*} x b b^{*}\right)=0
$$

and multiplying by $\left((a-z b)^{*} x b b^{*}\right)^{*}$ on the right we obtain

$$
\left(\left((a-z b)^{*} x b b^{*}\right)\left((a-z b)^{*} x b b^{*}\right)^{*}\right)^{2}=0
$$

This implies that $(a-z b)^{*} x b b^{*}=0$ for each $x \in A^{\prime \prime}$. Equivalently,

$$
\left(b b^{*}\right) x(a-z b)=0 \quad\left(x \in A^{\prime \prime}\right)
$$

Suppose that $a \neq z b$. Then there exists an irreducible representation π of $A^{\prime \prime}$ on a Hilbert space with $\pi(a-z b) \neq 0$. Since

$$
\pi\left(b b^{*}\right) \pi\left(A^{\prime \prime}\right) \pi(a-z b)=0
$$

and $\pi\left(A^{\prime \prime}\right)$ is prime, it follows that $\pi\left(b b^{*}\right)=0$ and hence that $\pi(b)=0$. Since $a a^{*}=w b b^{*}$, it follows that $\pi\left(a a^{*}\right)=0$ and hence that $\pi(a)=0$. This shows that $\pi(a-z b)=0$, a contradiction.

Conversely, assume that (2) holds. Since z is central, it follows that

$$
r(a c)=r(z b c) \leq r(z) r(b c) \leq r(b c)
$$

References

[1] J. Alaminos, M. Brešar, J. Extremera, and A. R. Villena, Maps preserving zero products, Studia Math. 193 (2009), 131-159.
[2] B. Blackadar, Operator algebras. Theory of C^{*}-algebras and von Neumann algebras. Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and Noncommutative Geometry, III. Springer-Verlag, Berlin, 2006. xx+517 pp.
[3] M. Brešar, B. Magajna and Š. Špenko, Identifying derivations through the spectra of their values, Integr. Eq. Oper. Th. 73 (2012), 395-411.
[4] M. Brešar and Š. Špenko, Determining elements in Banach algebras through spectral properties, J. Math. Anal. Appl. 393 (2012), no. 1, 144-150.
[5] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I. Elementary theory. Pure and Applied Mathematics, 100. Academic Press, Inc., New York, 1983. xv+398 pp.
[6] I. Kaplansky, Algebraic and analytic aspects of operator algebras, Regional Conference Series in Mathematics 1, Amer. Math. Soc., 1970.
[7] S. SakaI, C ${ }^{*}$-algebras and W^{*}-algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. Springer-Verlag, New York-Heidelberg, 1971. xii+253 pp.
J. Alaminos, J. Extremera, and A. R. Villena, Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, Granada, Spain

E-mail address: alaminos@ugr.es, jlizana@ugr.es, avillena@ugr.es
M. Brešar, Faculty of Mathematics and Physics, University of Ljubljana, and Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

E-mail address: matej.bresar@fmf.uni-lj.si

Š. Špenko, Institute of Mathematics, Physics, and Mechanics, Luubljana, Slovenia

E-mail address: spela.spenko@imfm.si

[^0]: 2010 Mathematics Subject Classification. 46L05.
 Key words and phrases. C^{*}-algebra, spectrum, spectral radius.
 The first, the third, and the fifth named authors were supported by MICINN Grant MTM2012-31755 and Junta de Andalucía Grants FQM-185 and P09-FQM-4911. The second and the fourth named authors were supported by ARRS Grant P1-0288.

