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Abstract. Let A be a unital C∗-algebra and A′′ its second dual. By

σ(a) and r(a) we denote the spectrum and the spectral radius of a ∈ A,

respectively. The following two statements hold for arbitrary a, b ∈ A:

(1) σ(ac) ⊆ σ(bc) ∪ {0} for every c ∈ A if and only if there exists a

central projection z ∈ A′′ such that a = zb, (2) r(ac) ≤ r(bc) for every

c ∈ A if and only if there exists a central element z in A′′ such that

a = zb and ‖z‖ ≤ 1.

1. Introduction

The goal of this note is to generalize and complete the main results from

the recent paper [4], to which we refer for motivation and applications con-

cerning the conditions that we are going to study. Let us just mention here

that applications are connected with the well-known problem, initiated by

Kaplansky in [6], of characterizing multiplicative maps through their spec-

tral properties. We also refer to the paper [3], which also continues the line

of investigation started in [4], but in a different direction as we do here.

While the general setting of [4] are Banach algebras, the two main results

concern (unital) C∗-algebras. The first one says that the elements a, b from

a C∗-algebra A must be equal if σ(ac) = σ(bc) holds for every c ∈ A,

and the second one says that if A is a prime C∗-algebra, then r(ac) ≤
r(bc) holds for every c ∈ A if and only if there exists λ ∈ C such that

a = λb and |λ| ≤ 1; here, σ( . ) and r( . ) stand for the spectrum and the

spectral radius, respectively. We will generalize the first result by treating

the inclusion instead of the equality of the spectra (Theorem 2.3), and extend

the second result to general C∗-algebras (Theorem 3.6). These higher levels

of generality make the problems technically quite more involved. Therefore

we have to add new methods to those already used in [4].

We introduce some notation. We write A′′ for the second dual of a C∗-

algebra A. The spectrum of a ∈ A will be usually denoted by σ(a), but
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sometimes, when it will be appropriate to emphasize the algebra with respect

to which we are considering the spectrum, by σA(a). The center of A will

be denoted by Z(A).

2. Spectrum

First we state a lemma which is evident from the proofs of Claims 1 and

2 of [4, Theorem 2.6].

Lemma 2.1. Let A be a unital C∗-algebra and let a, b ∈ A be such that

σ(ac) ⊆ σ(bc) ∪ {0} for every c ∈ A. Suppose that b∗ = b. Then a∗ = a and

ab = ba.

We continue by treating the commutative case.

Lemma 2.2. Let K be a compact Hausdorff space and let f, g ∈ C(K) be

such that σ(fh) ⊆ σ(gh)∪{0} for every h ∈ C(K). Then supp(f) ⊆ supp(g)

and f = g on supp(f).

Proof. Let t ∈ K \ supp(g). Then there exists h ∈ C(K) with h(t) = 1 and

h(supp(g)) = {0}. Consequently, gh = 0 and

f(t) = f(t)h(t) ∈ σ(fh) ⊆ σ(gh) ∪ {0} = {0}.

We thus get K \supp(g) ⊆ { t ∈ K : f(t) = 0 }, which obviously implies that

supp(f) ⊆ supp(g).

We now claim that

(2.1)
(
f(t)g(t)

)2
= f(t)g(t)|g(t)|2

for each t ∈ K. Let h = g∗ + ig∗ |g|2. Then

σ
(
fg∗ + ifg∗ |g|2

)
= σ(fh) ⊆ σ(gh) ∪ {0} = σ

(
|g|2 + i |g|4

)
∪ {0}.

Hence, for each t ∈ K, either f(t)g(t) + if(t)g(t) |g(t)|2 = 0, in which case

f(t)g(t) = 0, or there exists st ∈ K such that f(t)g(t) + if(t)g(t) |g(t)|2 =

|g(st)|2 + i |g(st)|4. Using σ(fg∗) ⊆ σ(|g|2) ∪ {0} ⊆ R and σ(fg∗ |g|2) ⊆
σ(|g|4) ∪ {0} ⊆ R we see that in the latter case we have f(t)g(t) = |g(st)|2

and f(t)g(t) |g(t)|2 = |g(st)|4. This proves (2.1).

On account of (2.1), we have f(t) = g(t) for each t ∈ K with f(t), g(t) 6= 0.

We claim that f = g on supp(f). Of course, it suffices to prove that f = g

on the set U = { t ∈ K : f(t) 6= 0 }. Pick t ∈ U . Since supp(f) ⊆ supp(g), it

follows that t ∈ supp(g) and so there exists a net (tλ) in K with g(tλ) 6= 0

for every λ and lim tλ = t. Since U is a neighbourhood of t we can certainly

assume that tλ ∈ U for each λ. Therefore f(tλ) = g(tλ) for each λ, which

gives f(t) = lim f(tλ) = lim g(tλ) = g(t). �
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Theorem 2.3. Let A be a unital C∗-algebra and let a, b ∈ A. Then the

following properties are equivalent.

(1) σ(ac) ⊆ σ(bc) ∪ {0} for every c ∈ A.

(2) There exists a central projection z ∈ A′′ such that a = zb.

Proof. We begin by assuming that (1) holds. By applying the hypothesis

with c replaced by b∗c we arrive at

σ(ab∗c) ⊆ σ(bb∗c) ∪ {0} (c ∈ A).

Lemma 2.1 then shows that ab∗ = ba∗ commutes with bb∗. We now apply

the hypothesis with c replaced by a∗c to get

σ(aa∗c) ⊆ σ(ba∗c) ∪ {0} (c ∈ A).

Since we already know that ba∗ is self-adjoint, Lemma 2.1 now shows that

ba∗ commutes with aa∗. Moreover, the preceding inclusions yield

σ(aa∗c) ⊆ σ(bb∗c) ∪ {0} (c ∈ A)

and Lemma 2.1 then shows that aa∗ commutes with bb∗. Consequently, the

C∗-subalgebra B of A generated by 1, aa∗, ab∗ = ba∗, and bb∗ is commuta-

tive. Further, we have

σB(aa∗c) ⊆ σB(ab∗c) ∪ {0} ⊆ σB(bb∗c) ∪ {0} (c ∈ B).

On account of Lemma 2.2, we have

supp(aa∗) ⊆ supp(ab∗) ⊆ supp(bb∗),

aa∗ = ab∗ on supp(aa∗), and ab∗ = bb∗ on supp(ab∗). Let e be the projection

in A′′ corresponding to the characteristic function of the set supp(aa∗). It

is immediate to check that (a− eb)(a− eb)∗ = 0, which implies

(2.2) a = eb.

Let s be a self-adjoint element in A. Then σ(asb∗c) ⊆ σ(bsb∗c) ∪ {0} for

each c ∈ A. Since bsb∗ is self-adjoint, Lemma 2.1 shows that asb∗ = bsa∗.

This clearly implies that acb∗ = bca∗ for each c ∈ A and therefore that

axb∗ = bxa∗ for each x ∈ A′′. On account of (2.2), we have

ebxb∗ = bxb∗e (x ∈ A′′)

and this clearly gives

(1− e)bA′′b∗e = {0}.

Therefore, there exists a a central projection z ∈ A′′ such that zb∗e = b∗e

and z(1 − e)b = 0 (see for example [2, Proposition III.1.1.7]). The first
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identity now yields zeb = eb = a, while the second one gives zeb = zb.

Consequently, a = zb, as required.

Finally, assume that (2) holds. Let c ∈ A. Since σA′′(z) ⊆ {0, 1}, it

follows that

σ(ac) = σA′′(ac) ⊆ σA′′(z)σA′′(bc) ⊆ σA′′(bc) ∪ {0} = σ(bc) ∪ {0}. �

3. Spectral radius

Let a be an element in a von Neumann algebra M. The smallest pro-

jection p in M such that pa = a (ap = a) is the left support (resp. right

support) of a. If a is self-adjoint, then both supports coincide and this com-

mon projection, called the support of a, is denoted by s(a). We refer the

reader to [7, Section 1.10] for the basic properties of the support.

We continue with a series of technical lemmas.

Lemma 3.1. Let M be a von Neumann algebra and let b, w ∈M. Suppose

that b∗ = b and that wbub2ub = bubwbub for every self-adjoint element

u ∈M. Then ws(b)xs(b) = s(b)xws(b) for each x ∈M.

Proof. Replacing u by u + v with both u and v self-adjoint elements in M
it follows that

wbub2vb+ wbvb2ub = bubwbvb+ bvbwbub.

Since every element inM is a linear combination of two self-adjoint elements,

it follows that

(3.1) wbxb2yb+ wbyb2xb = bxbwbyb+ bybwbxb (x, y ∈M).

On account of [7, Proposition 1.10.4], s(b) belongs to the von Neumann

subalgebra of M generated by b. Consequently, there is a net (Pi)i∈I of

polynomials with Pi(0) = 0 (i ∈ I) such that s(b) is the limit with respect

to the weak∗ topology on M of the net (Pi(b)). For each i ∈ I we write

Pi(λ) = λQi(λ) for some polynomial Qi. Replacing x by Qi(b)x in (3.1) it

follows that

(3.2) wPi(b)xb
2yb+wbybPi(b)xb = Pi(b)xbwbyb+bybwPi(b)xb (x, y ∈M).

Taking the limit with respect to the weak∗-topology on M in (3.2) and

taking into account the separate weak∗-continuity of the product we arrive

at

ws(b)xb2yb+ wbybxb = s(b)xbwbyb+ bybws(b)xb (x, y ∈M).

The same reasoning starting with x replaced by xQi(b) gives

ws(b)xbyb+ wbybxs(b) = s(b)xs(b)wbyb+ bybws(b)xs(b) (x, y ∈M).
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We now apply this argument once again, with respect to y instead of x, to

obtain

ws(b)xs(b)yb+ ws(b)ybxs(b) = s(b)xs(b)ws(b)yb+ s(b)ybws(b)xs(b)

and then

ws(b)xs(b)ys(b)+ws(b)ys(b)xs(b) = s(b)xs(b)ws(b)ys(b)+s(b)ys(b)ws(b)xs(b)

for all x, y ∈M.

Taking y = s(b) we get the identity

2ws(b)xs(b) = s(b)xs(b)ws(b) + s(b)ws(b)xs(b) (x ∈M).

Taking x = s(b) in the preceding identity we arrive at ws(b) = s(b)ws(b).

We now use this property in the previous identity to get 2ws(b)xs(b) =

s(b)xws(b) + ws(b)xs(b) and therefore ws(b)xs(b) = s(b)xws(b) for each

x ∈M, as required. �

Lemma 3.2. Let M be a von Neumann algebra, let w be a normal element

in M, and let p be a projection in M. Suppose that wpxp = pxpw for each

x ∈M. Then there exists z ∈ Z(M) such that zp = wp and ‖z‖ ≤ ‖w‖.

Proof. Let E be the spectral measure on σ(w) such that

w =

∫
σ(w)

λ dE(λ).

Since wpxp = pxpw for all x ∈M, it follows that

(3.3) E(∆)pxp = pxpE(∆) (x ∈M)

and, in particular, we have E(∆)p = pE(∆) for each Borel subset ∆ of σ(w).

Every projection q inM has a central carrier, the smallest projection θ(q)

in Z(M) majorizing q. We refer the reader to [2, Section III.1.1] and [7,

Section 1.10] for the basic facts about the central carrier. For every Borel

subset ∆ of σ(w) we define

F(∆) = θ
(
E(∆)p

)
.

Let ∆ be a Borel subset ∆ of σ(w). We claim that F(∆) ∈ θ(p)Z(M). It

is clear that E(∆)p ≤ θ(E(∆))θ(p) ∈ Z(M) and so θ
(
E(∆)p

)
≤ θ(E(∆))θ(p).

According to [2, Proposition II.3.3.1], we have

F(∆) = θ
(
E(∆)p

)
= θ
(
E(∆)p

)(
θ(E(∆))θ(p)

)
=
(
θ
(
E(∆)p

)
θ(E(∆))

)
θ(p) ∈ Z(M)θ(p).
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Our next objective is to show that if ∆1 and ∆2 are disjoint Borel subsets

of σ(w), then

(3.4) F(∆1)F(∆2) = 0.

On account of (3.3), we have E(∆1)pxE(∆2)p = 0 and [7, Proposition 1.10.7]

then gives (3.4).

Let (∆n) be a sequence of pairwise disjoint Borel subsets of σ(w). Then

F

( ∞⋃
n=1

∆n

)
= θ

(
E

( ∞⋃
n=1

∆n

)
p

)
= θ

( ∞∑
n=1

E(∆n)p

)
.

Since
(
E(∆n)p

)
is a sequence of pairwise orthogonal projections and, accord-

ing to (3.4), the sequence
(
θ(E(∆n)p)

)
also consists of pairwise orthogonal

projections, [5, Propositions 2.5.8 and 5.5.3] show that

θ

( ∞∑
n=1

E(∆n)p

)
=
∞∑
n=1

θ
(
E(∆n)p

)
.

We thus get

F

( ∞⋃
n=1

∆n

)
=
∞∑
n=1

F(∆n).

Consequently, F is a spectral measure on σ(w) with range in the von

Neumann algebra θ(p)Z(M).

We now define

z =

∫
σ(w)

λ dF(λ).

Then z ∈ Z(M) and it is immediate to check that ‖z‖ ≤ ‖w‖. Our final goal

is to show that zp = wp. To this end it suffices to show that F(∆)p = E(∆)p

for each Borel subset ∆ of σ(w). Let ∆ be a Borel subset of σ(w). On the

one hand, we have E(∆)p ≤ F(∆) and hence

(3.5) F(∆)
(
E(∆)p

)
= E(∆)p.

On the other hand, on account of (3.4) and (3.5) (with ∆ replaced by σ(w)\
∆), we have

(3.6) F(∆)
(
E(σ(w) \∆)p

)
= F(∆)F(σ(w) \∆)

(
E(σ(w) \∆)p

)
= 0.

From (3.5) and (3.6) we deduce that

F(∆)p = F(∆)
(
E(∆)p+ E(σ(w) \∆)p

)
= E(∆)p,

as required. �

Lemma 3.3. Let A be a unital C∗-algebra and let a, b ∈ A be such that

r(ac) ≤ r(bc) for every c ∈ A. Suppose that b∗ = b. Then a is normal and

ac = ca for every c ∈ A such that bc = cb.



DETERMINING ELEMENTS THROUGH SPECTRAL PROPERTIES 7

Proof. Let B = {u ∈ A : bu = ub}. Then B is a C∗-algebra containing

b. Define ϕ : B × B → A by ϕ(u, v) = uav for all u, v ∈ B. Suppose that

u, v ∈ B are such that uv = 0. Then ubv = buv = 0 and [4, Lemma 3.2]

then yields uav = 0. On account of [1, Theorem 2.11 and Example 1.3.2],

we have ϕ(uv,w) = ϕ(u, vw) for all u, v, w ∈ B. By taking u = w = 1 we

get va = av for each v ∈ B, as claimed.

Since b ∈ B it follows that ab = ba and therefore ba∗ = a∗b. This shows

that a∗ ∈ B and therefore aa∗ = a∗a. �

Lemma 3.4. Let K be a compact Hausdorff space and let f, g ∈ C(K) be

such that r(fh) ≤ r(gh) for each h ∈ C(K). Then |f | ≤ |g|.

Proof. On the contrary, suppose that |f(t0)| > |g(t0)| for some t0 ∈ K.

Then U = { t ∈ K : |g(t)| < |f(t0)| } is an open neighbourhood of t0. We

take a continuous function h : K → [0, 1] with supp(h) ⊆ U and h(t0) = 1.

Then |(gh)(t)| < |f(t0)| = |(fh)(t0)|, which shows that r(gh) < r(fh), a

contradiction. �

Lemma 3.5. Let A be a unital C∗-algebra and let a, b ∈ A such that r(ac) ≤
r(bc) for each c ∈ A. Suppose that b∗ = b. Then there exists z ∈ Z(A′′)

such that a = zb and ‖z‖ ≤ 1.

Proof. Let B be the C∗-subalgebra of A generated by 1, a, and b. By

Lemma 3.3, the algebra B is commutative so that it can be identified with

C(K) for some compact Hausdorff space K. From Lemma 3.4 it follows that

|a(t)| ≤ |b(t)| for each t ∈ K. We now define w ∈ A′′ by w(t) = a(t)/b(t)

whenever t ∈ K is such that b(t) 6= 0 and w(t) = 0 elsewhere. Then

a = wb and ‖w‖ ≤ 1. Our purpose is to show that w can be replaced by an

appropriate element in Z(A′′).

Pick a self-adjoint element u ∈ A. Replacing c by ubc in r(wbc) ≤ r(bc) we

get r(wbubc) ≤ r(bubc) for each c ∈ A. Since bub is self-adjoint, Lemma 3.3

shows that (wbub)(bub) = (bub)(wbub). Lemma 3.1 now yields ws(b)xs(b) =

s(b)xws(b) for every x ∈ A′′. We now observe that ws(b) = s(b)w and

therefore Lemma 3.2 gives z ∈ Z(A′′) such that zs(b) = ws(b) and ‖z‖ ≤
‖w‖ ≤ 1. Finally, we observe that

zb = z(s(b)b) = (zs(b))b = (ws(b))b = w(s(b)b) = wb = a. �

Theorem 3.6. Let A be a unital C∗-algebra and let a, b ∈ A. Then the

following properties are equivalent.

(1) r(ac) ≤ r(bc) for every c ∈ A.

(2) There exists z ∈ Z(A′′) such that a = zb and ‖z‖ ≤ 1.
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Proof. Assume that (1) holds. Then

(3.7) r(a∗c) ≤ r(b∗c) (c ∈ A).

Indeed,
r(a∗c) = r(ca∗) = r

(
(ac∗)∗

)
= r(ac∗)

≤ r(bc∗) = r
(
(cb∗)∗

)
= r(cb∗) = r(b∗c).

Taking b∗c for c in (1) we get

r(ab∗c) ≤ r(bb∗c) (c ∈ A).

Since bb∗ is self-adjoint, Lemma 3.5 yields z ∈ Z(A′′) such that ab∗ = zbb∗

and ‖z‖ ≤ 1. Our goal is to show that a = zb.

By (3.7)

r(aa∗c) ≤ r(ba∗c) = r(a∗cb) ≤ r(b∗cb) = r(bb∗c)

and Lemma 3.5 now gives w ∈ Z(A′′) such that aa∗ = wbb∗ and ‖w‖ ≤ 1.

Take a self-adjoint element u ∈ A. Replacing c by ubc in (3.7) we get

r(a∗ubc) ≤ r(b∗ubc) for each c ∈ A. Since b∗ub is self-adjoint, Lemma 3.3

shows that (a∗ub)(b∗ub) = (b∗ub)(a∗ub). Linearizing this identity we get

a∗ubb∗vb+a∗vbb∗ub = b∗uba∗vb+b∗vba∗ub for all self-adjoint elements u, v ∈
A. This obviously implies that a∗cbb∗db + a∗dbb∗cb = b∗cba∗db + b∗dba∗cb

for all c, d ∈ A, which gives

a∗xbb∗yb+ a∗ybb∗xb = b∗xba∗yb+ b∗yba∗xb (x, y ∈ A′′).

Taking into account that ab∗ = zbb∗ we arrive at

a∗xbb∗yb+ a∗ybb∗xb = b∗xz∗bb∗yb+ b∗yz∗bb∗xb (x, y ∈ A′′)

and therefore

(a− zb)∗xbb∗yb+ (a− zb)∗ybb∗xb = 0 (x, y ∈ A′′).

In particular, we have

(a− zb)∗xbb∗xb = 0 (x ∈ A′′).

The last two identities yield(
(a− zb)∗xbb∗

)
y
(
(a− zb)∗xbb∗

)
= (a− zb)∗xbb∗

(
y(a− zb)∗x

)
bb∗

= −(a− zb)∗
(
y(a− zb)∗x

)
bb∗xbb∗

= −(a− zb)∗y
(
(a− zb)∗xbb∗xb

)
b∗

= 0

for all x, y ∈ A′′. By taking y =
(
(a− zb)∗xbb∗

)∗
with x ∈ A′′ we arrive at(

(a− zb)∗xbb∗
)(

(a− zb)∗xbb∗
)∗(

(a− zb)∗xbb∗
)

= 0
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and multiplying by
(
(a− zb)∗xbb∗

)∗
on the right we obtain((

(a− zb)∗xbb∗
)(

(a− zb)∗xbb∗
)∗)2

= 0.

This implies that (a− zb)∗xbb∗ = 0 for each x ∈ A′′. Equivalently,

(bb∗)x(a− zb) = 0 (x ∈ A′′).

Suppose that a 6= zb. Then there exists an irreducible representation π

of A′′ on a Hilbert space with π(a− zb) 6= 0. Since

π(bb∗)π(A′′)π(a− zb) = 0

and π(A′′) is prime, it follows that π(bb∗) = 0 and hence that π(b) = 0.

Since aa∗ = wbb∗, it follows that π(aa∗) = 0 and hence that π(a) = 0. This

shows that π(a− zb) = 0, a contradiction.

Conversely, assume that (2) holds. Since z is central, it follows that

r(ac) = r(zbc) ≤ r(z)r(bc) ≤ r(bc). �
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[1] J. Alaminos, M. Brešar, J. Extremera, and A. R. Villena, Maps preserving

zero products, Studia Math. 193 (2009), 131–159.

[2] B. Blackadar, Operator algebras. Theory of C*-algebras and von Neumann al-

gebras. Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and Non-

commutative Geometry, III. Springer-Verlag, Berlin, 2006. xx+517 pp.
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