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IDENTIFYING DERIVATIONS THROUGH THE SPECTRA OF THEIR VALUES

MATEJ BREŠAR, BOJAN MAGAJNA, AND ŠPELA ŠPENKO

Abstract. We consider the relationship between derivations d and g of a Banach algebra B that
satisfy σ(g(x)) ⊆ σ(d(x)) for every x ∈ B, where σ( . ) stands for the spectrum. It turns out that in
some basic situations, say if B = B(X), the only possibilities are that g = d, g = 0, and, if d is an
inner derivation implemented by an algebraic element of degree 2, also g = −d. The conclusions in
more complex classes of algebras are not so simple, but are of a similar spirit. A rather definitive result
is obtained for von Neumann algebras. In general C∗-algebras we have to make some adjustments,
in particular we restrict our attention to inner derivations implemented by selfadjoint elements. We
also consider a related condition ‖[b, x]‖ ≤ M‖[a, x]‖ for all selfadjoint elements x from a C∗-algebra
B, where a, b ∈ B and a is normal.

1. Introduction

Let B be a Banach algebra. By σ(x) (resp. ρ(x)) we denote the spectrum (resp. spectral radius)
of x ∈ B. Finding conditions under which a linear map f from B onto another Banach algebra that
satisfies σ(f(x)) = σ(x) for every x ∈ B is necessarily a Jordan homomorphism is an important and
widely open problem, raised by Kaplansky [16]. Motivated by some of its aspects, the first and the
third author have recently considered the question whether the equality σ(ax) = σ(bx) for every x ∈ B,
where a, b ∈ B are fixed elements, implies a = b [8]. An affirmative answer has been obtained for some
classes of algebras, including C∗-algebras. Now one may wonder what can be said about other pairs
of linear maps on B such that the spectra of their values coincide at each point. In this paper we will
consider a pair of derivations d and g. In fact, in most of our results we will not need to assume the
equality of the spectra, but only

(S) σ(g(x)) ⊆ σ(d(x)) for all x ∈ B.

By studying (S) we follow the line of investigation of spectral properties of values of derivations. Let
us mention some topics in this area: derivations and their products that have quasinilpotent values
[9, 18, 22], spectrally bounded derivations [6], and derivations all of whose values have a finite spectrum
[4, 5, 7]. A topic of a different kind, which, however, is closer to the problem considered here than it
may seem at a first glance, is the study of derivations d and g such that the range of g(x) is contained
in the range of d(x) for every x ∈ B. In their seminal work [14], Johnson and Williams considered such
a range inclusion for the case where B = B(H) and d is an inner derivation implemented by a normal
operator. See also [11, 17] for further development.

When can (S) occur? A trivial possibility is that g = d. If the range of d consists of non-invertible
elements, e.g., if d is an inner derivation implemented by an element from a proper ideal, then we can
take g = 0. There is another, less obvious possibility: g = −d, where d is inner and implemented by an
algebraic element of degree 2. This situation is briefly discussed in Section 2. In Section 3 we show that
the aforementioned three possibilities are also the only ones if B is a primitive Banach algebra with
nonzero socle. Using this result we are able to handle (S) for a general semisimple Banach algebra B
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under the assumption that d(x) has a finite spectrum for every x ∈ B. Section 4 is devoted to the case
where B is a von Neumann algebra. The main result says that (S) implies that B can be decomposed
into three parts such that on each of them one of the possibilities g = d, g = 0, and g = −d holds. In
Section 5 we consider the case where B is a C∗-algebra and derivations are inner, d : x 7→ [a, x] and
g : x 7→ [b, x]. First we show that b lies in {a}′′, the (relative) bicommutant of {a}, provided that a is
normal. Other results are of a slightly different nature. Consider the condition ρ([b, x]) ≤ Mρ([a, x])
which clearly follows from (S) (with M = 1). If both a, b are selfadjoint, then the commutators [a, x]
and [b, x] are anti-selfadjoint whenever x is selfadjoint. In this case we can therefore write our condition
as

(N) ||[b, x]|| ≤M ||[a, x]|| for all selfadjoint x ∈ B.

According to [14, Lemma 1.1], we can view (N) as a dual problem to the range inclusion problem.
Following [14] and consecutive papers [11, 17] we consider the condition (N) for a normal element a
in a C∗-algebra B. The most complete result, however, is obtained for selfadjoint elements a, b under
the assumption that the equality (with M = 1) holds in (N) (equivalently, ρ([b, x]) = ρ([a, x]) for all
selfadjoint x ∈ B).

A word about terminology and notation. By a Banach algebra we shall mean a complex Banach
algebra. For simplicity we assume that all our algebras have identity elements. We write Z(B) for the
center of B.

2. Commutators with symmetric spectra

If an element a from a Banach algebra B is such that for every x ∈ B the spectrum of [a, x] is
symmetric in the sense that σ

(
[a, x]

)
= −σ([a, x]), then the spectral inclusion condition (S) is fulfilled

for g = −d, d = [a,−]. This situation is of special interest. Let us show that it can indeed occur.

Lemma 2.1. Let B be a Banach algebra. If e ∈ B is an idempotent and x ∈ B is arbitrary, then [e, x]
is similar to −[e, x]. In particular, σ([e, x]) = −σ([e, x]).

Proof. Take s = 1− 2e. Then s = s−1 and s[e, x]s−1 = −[e, x]. �

Lemma 2.2. Let B be a Banach algebra in which for all x, y ∈ B, xy = 1 implies yx = 1. If a ∈ B is
algebraic of degree 2, then σ([a, x]) = −σ([a, x]) for all x ∈ B.

Proof. Replacing x by αx+ β, where α and β are suitable scalars, the proof reduces to two cases: a is
an idempotent and a is nilpotent of nilpotency degree 2. As the first one has already been treated in
Lemma 2.1, we may suppose that a2 = 0. It suffices to prove that −1 ∈ σ([a, x]) implies 1 ∈ σ([a, x])
for every x ∈ B. We have

(1 + xa)(1 − ax) = 1− [a, x],

and

−(1− xa)(1 + ax) = −1− [a, x].

If 1− [a, x] is invertible, then, by our assumption, 1 + xa and 1− ax are invertible. Consequently, (as
it is well-known) 1 + ax and 1 − xa are invertible. By the above equality this implies the invertibility
of −1− [a, x]. �

Let us show that the assumption that xy = 1 implies yx = 1 is not redundant. We give an example of
an element a ∈ B(H) such that a2 = 0 and there exists x ∈ B(H) such that σ([a, x]) is not symmetric.

Example 2.3. Let a, x ∈ B(H) ∼= B(H
⊕
H) ∼=M2(B(H)) be of the form

a =

(
0 1
0 0

)
, x =

(
y 0
u 0

)
.
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Then

[a, x] =

(
u −y
0 −u

)
, 1 + [a, x] =

(
1 + u −y
0 1− u

)
, 1− [a, x] =

(
1− u y
0 1 + u

)
.

It suffices to find u such that 1 − u is right invertible, 1 + u is left invertible and {0} 6= ker(1 − u)
is isomorphic to im(1 + u)⊥. For then we take for y an operator which is an isomorphism from
ker(1 − u) onto im(1 + u)⊥ and is zero on ker(1 − u)⊥. Then 1 + [a, x] is bijective (hence invertible),

but 1− [a, x] is not injective since ker(1− u) 6= {0}. One possible choice for u is

(
1 + s∗ 0

0 −1 + s

)
,

where s is the unilateral shift and s∗ its adjoint. Indeed, 1 − u =

(
−s∗ 0
0 2− s

)
is right invertible

(since s∗ is right invertible and 2 − s is invertible), 1 + u =

(
2 + s∗ 0

0 s

)
is left invertible and

ker(1− u) ∼= ker s∗ = ims⊥ ∼= im(1 + u)⊥.

Roughly speaking, we have shown that algebraic elements of degree 2 often generate derivations
whose values have symmetric spectra. Later, in Lemma 3.2, we shall see that these are also the only
natural examples of such elements.

3. Results on Banach algebras

We begin our discussion on the spectral inclusion condition (S) in algebras in which the spectrum
can be easily computed at least for some elements. The prototype example we have in mind is B(X),
the algebra of all bounded operators on a Banach space X . In this case the operators of finite rank
have an easily approachable spectrum. Actually, we will work in a slightly more general setting of
primitive Banach algebras with nonzero socle and we will replace (S) with a technically weaker condition
σ(g(x)) ⊆ σ(d(x)) ∪ {0}. This will be needed for further applications.

Recall that a semiprime Banach algebra B is said to have a nonzero socle if B has minimal one-
sided ideals. In this case the socle of B, soc(B), is defined as the sum of all minimal left ideals of B
(equivalently, the sum of all minimal right ideals of B). The socle has a particularly important role if
B is a primitive algebra.

Theorem 3.1. Let B be a primitive Banach algebra with nonzero socle. If derivations d, g : B → B
satisfy σ(g(x)) ⊆ σ(d(x)) ∪ {0} for all x ∈ soc(B), then g = λd with λ ∈ {−1, 0, 1}.

Proof. Let us recall some standard facts about the structure of B (see, e.g., [3, Section 31]). There
exists an idempotent e such that eBe = Ce. We may identify eBe with C. Denote the regular
representation of B on Be by π, which is faithful since B is primitive. If we define 〈x, y〉 = yx for
x ∈ Be, y ∈ eB, then x 7→ 〈x, v〉 is a linear functional on Be for every v ∈ eB. Write X = Be and
Y = {f ∈ X∗ : f = 〈−, v〉 for some v ∈ eB}. If ξ1, . . . , ξn ∈ X are linearly independent, there exists
f ∈ Y such that f(ξ1) = 1 and f(ξi) = 0 for all i > 1. All operators of the form

∑n
i=1 ξi ⊗ fi with

ξi ∈ X, fi ∈ Y are contained in π(soc(B)). We write {ξ}⊥ = {f ∈ Y : f(ξ) = 0} for ξ ∈ X .

We may and we shall identify B with π(B). Every derivation d̃ on B is of the form [ã,−] for some

ã ∈ B(X). The proof is the same as for B(X). (One just defines ã : ξ 7→ d̃(ξ ⊗ f)η for some η ∈ X ,
f ∈ Y with f(η) = 1 and details can be easily verified.) Hence there exist a, b ∈ B(X) such that
d = [a,−] and g = [b,−]. We take ξ ∈ X , f ∈ {ξ}⊥ and calculate the spectra of [a, ξ ⊗ f ] and
[b, ξ⊗ f ]. These are operators of rank at most 2, and the only nonzero elements of their spectra appear
as eigenvalues of their restrictions ā, b̄ to the vector spaces span{ξ, aξ} and span{ξ, bξ}, respectively.
Suppose that f(bξ) 6= 0. Then −f(bξ) is a nonzero eigenvalue of b̄ (corresponding to the eigenvector
ξ). Since b̄ has trace zero, its eigenvalues are −f(bξ) and f(bξ). By the hypothesis of the theorem,
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ā is nonsingular with nonzero eigenvalues −f(aξ) and f(aξ), and {−f(aξ), f(aξ)} = {−f(bξ), f(bξ)}.
Hence f(aξ) = ±f(bξ).

Therefore, for all ξ ∈ X, f ∈ {ξ}⊥ one of the following possibilities holds: f((a − b)ξ) = 0 or
f((a + b)ξ) = 0 or f(bξ) = 0 . We shall have established the theorem if we prove that the same
possibility holds for all ξ ∈ X, f ∈ {ξ}⊥. Indeed, if c ∈ B(X) has the property that f(cξ) = 0 for all
ξ ∈ X, f ∈ {ξ}⊥, then for all ξ ∈ X , ξ and cξ are linearly dependent, which easily implies c ∈ C1.

We first fix ξ and define

X0
ξ = {f ∈ {ξ}⊥ : f(bξ) = 0},

X−
ξ = {f ∈ {ξ}⊥ : f((a− b)ξ) = 0},

X+
ξ = {f ∈ {ξ}⊥ : f((a+ b)ξ) = 0}.

From what has already been proved it follows that {ξ}⊥ = X0
ξ ∪X

−
ξ ∪X+

ξ . Since X0
ξ , X

−
ξ and X+

ξ are

vector spaces, we may conclude that one of them equals {ξ}⊥.
Let

X0 = {ξ ∈ X : {ξ}⊥ = X0
ξ } = {ξ ∈ X : bξ ∈ Cξ},

X− = {ξ ∈ X : {ξ}⊥ = X−
ξ } = {ξ ∈ X : (a− b)ξ ∈ Cξ},

X+ = {ξ ∈ X : {ξ}⊥ = X+
ξ } = {ξ ∈ X : (a+ b)ξ ∈ Cξ}.

Then X0, X−, X+ are closed sets with union X , therefore at least one of them, say Xδ with δ ∈
{0,−,+}, has a nonempty interior by Baire’s theorem. Let us prove that Xδ is a vector space. Since
Xδ is closed under scalar multiplication, it suffices to show that ξ + ξ′ ∈ Xδ for linearly independent
ξ, ξ′ ∈ Xδ. As Xδ has a nonempty interior, there exists α ∈ C \ {0} such that ξ + αξ′ ∈ Xδ. Then
(δa + b)(ξ + αξ′) = λα(ξ + αξ′) for some λα ∈ C. As ξ, ξ′ ∈ Xδ, we have (δa + b)(ξ + αξ′) =
(δa+ b)ξ+(δa+ b)αξ′ = λξξ+αλξ′ξ

′ for some λξ, λξ′ ∈ C. The linear independence of ξ, ξ′ now gives
λξ = λα = λξ′ , which implies that ξ + ξ′ ∈ Xδ. Hence Xδ is a vector subspace of X with nonempty
interior and thus Xδ = X , from which we easily deduce that δa+ b ∈ C1. �

The following lemma shows that in the present context we have a kind of a converse to the results
from the preceding section.

Lemma 3.2. Let B be a primitive Banach algebra with nonzero socle. If a derivation d : B → B
satisfies σ(d(x)) = −σ(d(x)) for all x ∈ B, then d is implemented by an algebraic element of degree 2.

Proof. We adopt the notation of the preceding theorem. Let d = [a,−]. Assume that a is not algebraic
of degree 2. By Kaplansky’s theorem (see e.g. [2, Theorem 4.2.7]), we can find ξ ∈ X such that
ξ, aξ, a2ξ are linearly independent. Take the element ξ ⊗ f + aξ ⊗ g where f ∈ Y satisfies f(ξ) 6=
0, f(aξ) = 0, f(a2ξ) 6= 0 and g ∈ Y satisfies g(ξ) = 0, g(aξ) = 0, g(a2ξ) 6= 0. Then the range of
[a, ξ⊗ f + aξ⊗ g] is contained in the vector subspace of X spanned by the linearly independent vectors
ξ, aξ, a2ξ. An easy computation shows that the restriction of [a, ξ ⊗ f + aξ ⊗ g] to this subspace is
invertible. Hence it has three nonzero eigenvalues (counted by their multiplicity) whose sum is zero.
Therefore σ([a, ξ ⊗ f + aξ ⊗ g]) is not equal to −σ([a, ξ ⊗ f + aξ ⊗ g]). �

Corollary 3.3. Let a ∈ Mn(C). Then there exists a nonscalar b ∈ Mn(C) such that b 6∈ a + C1
and σ([b, x]) ⊆ σ([a, x]) for every x ∈ Mn(C) if and only if a is algebraic of degree 2. In this case
b ∈ −a+ C1.

Proof. Apply Lemma 2.2, Theorem 3.1, and Lemma 3.2. �
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We will need Theorem 3.1 in Section 4. Its first application, however, concerns derivations with the
property that their values have a finite spectrum. Such derivations have been studied in a series of
papers, started in [7] and ended in [5].

Theorem 3.4. Let d, g be derivations of a semisimple Banach algebra B. Suppose σ(d(x)) is finite
for every x ∈ B. If σ(g(x)) ⊆ σ(d(x)) for every x ∈ B, then there exist derivations d0, d1, d2 of B such
that d = d0 + d1 + d2, g = d1 − d2, and di(B)Bdj(B) = 0 for i 6= j.

Proof. First we give an extraction from the aforementioned papers. It consists of the main results
together with some details that are apparently not explicitly formulated in any of the papers from the
series, but are evident from the proofs.

By [4, Theorem 2.4] there exist a, b ∈ soc(B) such that d = [a,−] and g = [b,−]. Accordingly, each
of d(B) and g(B) is contained in all but finitely many primitive ideals of B [7, Proposition 2.2]. If
d = 0, then there are no such primitive ideals for d(B). However, in this case g has only quasinilpotent
values and hence it is 0 (see, e.g., [22]). We may therefore assume that d 6= 0. On the other hand,
g 6= 0 can be assumed without loss of generality. Let P1, . . . , Pm be the only primitive ideals such that
d(B) 6⊆ Pi, i = 1, . . . ,m, and similarly, let Q1, . . . , Qn be the only primitive ideals such that g(B) 6⊆ Qj ,
j = 1, . . . , n. As noticed in the proof of [5, Theorem 2.1], we have Pi 6⊆ Pi′ for all i 6= i′ and Qj 6⊆ Qj′

for all j 6= j′. Therefore the proof of [4, Theorem 2.4] shows that there exist a1, . . . , am ∈ B and
b1, . . . , bn ∈ B such that

• a = a1 + . . .+ am and b = b1 + . . .+ bn.
• d(x) + Pi = [ai, x] + Pi and g(x) +Qj = [bj , x] +Qj for all x ∈ B.
• ai + Pi ∈ soc(B/Pi) and bj +Qj ∈ soc(B/Qj).
• ai ∈

⋂
P 6=Pi

P and bj ∈
⋂

P 6=Qj
P .

(Here, the intersection runs over primitive ideals P ofB.) Note that each ai 6= 0 and each bj 6= 0. There-

fore
⋂

P 6=Pi
P and

⋂
P 6=Qj

P are nonzero ideals. Since
(⋂

P 6=Pi
P
)⋂

Pi = 0 and
(⋂

P 6=Qj
P
)⋂

Qj = 0

by the semisimplicity of B, it follows that
⋂

P 6=Pi
P 6⊆ Pi and

⋂
P 6=Qj

P 6⊆ Qj.

We claim that {Q1, . . . , Qn} ⊆ {P1, . . . , Pm}. Suppose that, say, Q1 is none of the ideals Pi. Thus,
d(B) ⊆ Q1 and g(B) 6⊆ Q1. Set I =

⋂
P 6=Q1

P and take x ∈ I. In particular, x is contained in

every Pi, hence d(x) is contained in every Pi, and so d(x) is actually contained in every primitive ideal
of B. Therefore d(x) = 0, and, consequently, σ(g(x)) = {0}. Thus, the restriction of g = [b,−] to
I is a continuous derivation of I with quasinilpotent values. As I is a closed ideal of a semisimple
Banach algebra, it follows that g(I) = 0 [22]. Accordingly, for all x ∈ B and u ∈ I we have g(x)u =
g(xu)− xg(u) = 0 ∈ Q1. Since Q1 is, in particular, a prime ideal, and since g(x) /∈ Q1 for some x ∈ B,
we must have I ⊆ Q1. However, at the end of the preceding paragraph we have shown that this is not
true. Our claim is thus proved. Therefore n ≤ m and we may assume that

Q1 = P1, Q2 = P2, . . . , Qn = Pn.

Recall that σ(y) =
⋃

P σ(y + P ) for every y ∈ B [21, Theorem 2.2.9]. Let i ≤ n, pick x ∈
⋂

P 6=Pi
P ,

and take g(x) for y. Then we obtain σ(g(x))∪{0} = σ(g(x)+Pi)∪{0} = σ([bi, x]+Pi)∪{0}. Similarly,
σ(d(x)) ∪ {0} = σ([ai, x] + Pi) ∪ {0}. Using the assumption of the theorem we thus have

σ([bi, x] + Pi) ⊆ σ([bi, x] + Pi) ∪ {0} ⊆ σ([ai, x] + Pi) ∪ {0}

for all x ∈
⋂

P 6=Pi
P . Since

⋂
P 6=Pi

P is an ideal which is not contained in Pi,
(⋂

P 6=Pi
P + Pi

)
/Pi is a

nonzero ideal of B/Pi. It is well-known that the socle of a primitive algebra is contained in every other
nonzero ideal. Therefore σ([bi +Pi, y]) ⊆ σ([ai +Pi, y])∪ {0} holds for all y ∈ soc(B/Pi). This enables
us to apply Theorem 3.1. Hence we conclude that bi + Pi = λiai + µi1 + Pi for some λi ∈ {−1, 1} and
µi ∈ C. Note that the case λi = 0 can not occur for g(B) 6⊆ Pi. Now define ã1 as the sum of all ai
such that i ≤ n and λi = 1, ã2 as the sum of all ai such that i ≤ n and λi = −1, and ã0 as the sum of
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all ai such that i > n (the sum over the empty set of indices should be read as 0). Setting d0 = [ã0,−],
d1 = [ã1,−], and d2 = [ã2,−] we have d = d0 + d1 + d2 and g = d1 − d2. Note that for any pair of
different indices k and l we have [ak, B]B[al, B] ⊆

(⋂
P 6=Pk

P
)⋂(⋂

P 6=Pl
P
)
= 0. This clearly implies

that di(B)Bdj(B) = 0 if i 6= j. �

So far we have relied heavily on finite rank operators. In general Banach algebras the spectrum of
a value of a derivation may not be so easily tractable. The next lemma reduces the treatment of the
spectral inclusion condition (S) to another problem which may be of independent interest. It will play
a fundamental role in the next section and in the first result of the last section.

Lemma 3.5. Let B be a semisimple Banach algebra and a, b ∈ B. If σ([b, x]) ⊆ σ([a, x]) ∪ {0} for all
x ∈ B, then for all y, z ∈ B, yz = yaz = 0 implies ybz = 0.

Proof. From the assumptions yz = 0 and yaz = 0 we find by a short calculation that [a, zxy]3 = 0 for
all x ∈ B. Consequently, by the hypothesis of the lemma, σ([b, zxy]) = {0} for all x ∈ B. Assume that
ybz 6= 0 and, to obtain a contradiction, take an irreducible representation π of B on a Banach space
X such that π(ybz) 6= 0. Choose ξ ∈ X with π(ybz)ξ 6= 0. By irreducibility there exists u ∈ B such
that π(u)π(ybz)ξ = ξ. Then π([b, zuy])η = −η, where η = π(z)ξ. Hence we have −1 ∈ σ([b, zuy]), a
contradiction. �

4. Results on von Neumann algebras

In this section we consider the spectral inclusion condition (S) in von Neumann algebras. As deriva-
tions are automatically inner on these algebras (see, e.g., [15, Exercise 8.7.55]), we assume, throughout,
that d = [a,−] and g = [b,−].

For factors the desired conclusion, which is the same as for primitive Banach algebras with nonzero
socle, follows easily from Lemma 3.5 and the result on reflexivity from [19]. But first we need a technical
lemma.

Lemma 4.1. Let B be a von Neumann algebra and I be a closed ideal in B. If an element a ∈ B with
a + I 6∈ Z(B/I) satisfies λσ([a, x] + I) ⊆ σ([a, x] + I) ∪ {0} for all x ∈ B and for some λ ∈ C, then
λ ∈ {−1, 0, 1}.

Proof. Since a+ I is not central in B/I, we can find a projection p ∈ B such that (1 − p)ap 6∈ I. Let
B act on a Hilbert space H = pH +(1− p)H . According to this decomposition we can represent every
a ∈ B as a 2× 2 matrix (

a1 a2
a3 a4

)
,

where a1 = pap, a2 = pa(1− p) and so on. If we choose x in pB(1− p) so that x is represented by the
matrix which has an element x2 on the position (1, 2) and zeros elsewhere, then a short computation
shows that

[a, x] =

(
−x2a3 a1x2 − x2a4

0 a3x2

)
.

Since a3 = (1 − p)ap /∈ I, it follows that a3a
∗
3 /∈ I and there exists a closed subset in σ(a3a

∗
3) that

does not contain 0 such that its characteristic function χ satisfies χ(a3a
∗
3) 6∈ I. Take a function g that

satisfies χ(t) = g(t)t for every t ∈ σ(a3a
∗
3) and g(0) = 0. If we choose x2 = a∗3g(a3a

∗
3), then [a, x] is of

the form

[a, x] =

(
−q1 y
0 q2

)
,

where q1 = χ(a∗3a3) and q2 = χ(a3a
∗
3). (We have used the well-known fact that g(a3a

∗
3)a3 = a3g(a

∗
3a3)

which follows by approximating g by polynomials.) Since q1 and q2 are projections and not contained
in I, we now see that {−1, 1} ⊆ σ([a, x] + I) ⊆ {−1, 0, 1}, from which the lemma is evident. �
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Proposition 4.2. Let B be a factor and let a, b ∈ B satisfy σ([b, x]) ⊆ σ([a, x])∪ {0} for every x ∈ B.
Then b = λa+ µ for some λ ∈ {−1, 0, 1} and some µ ∈ C.

Proof. The case B = B(H) has already been handled by Theorem 3.1. Assume that B 6= B(H)
and b 6∈ span{1, a}. According to [19, Theorem 1.1], every finite dimensional subspace, in particular
span{1, a}, in a factor different from B(H) is reflexive. This means that there exist y, z ∈ B such that
yz = 0 and yaz = 0 but ybz 6= 0, contradicting Lemma 3.5. Therefore b ∈ span{1, a}. Now Lemma 4.1
with I = 0 yields the desired conclusion. �

We now proceed to general von Neumann algebras. Let us introduce some notation and list some
standard results that will be needed in the sequel.

Denote by X the character space of Z(B). Let Bt be the closed ideal in B generated by t ∈ X .
We write B(t) for the quotient algebra B/Bt and x(t) for the coset x + Bt ∈ B/Bt. The function
t 7→ ‖x(t)‖ is continuous for every x ∈ B and the map x 7→ (x(t))t∈X from B to Πt∈XB(t) is injective
and hence an isometric embedding, in particular ‖x‖ = supt∈X ‖x(t)‖ (see [12] for proofs). By [13,
Theorem 4.7], B(t) is primitive for every t ∈ X .

The spectrum of elements relative to some subalgebra A of B will be denoted by σA( . ).

Lemma 4.3. Let B be a von Neumann algebra, c an element in B, and let t be an element in the
character space X of Z(B). If Pt is the set of all projections that correspond to the characteristic
functions of those clopen sets that contain t, then σ(c(t)) =

⋂
p∈Pt

σpB(pc).

Proof. Since B(t) is a quotient of pB for every p ∈ Pt , σ(c(t)) ⊆
⋂

p∈Pt
σpB(pc).

For the reverse inclusion assume that c(t) is invertible. It suffices to show that there exists a clopen
set U ⊆ X which contains t and that c(s) is invertible for every s ∈ U . Then pc is invertible in pB
where p is the projection that corresponds to the characteristic function of U .

Consider the polar decomposition c = u|c| of c, hence c(s) = u(s)|c(s)| for all s ∈ X . Since c(t)
is invertible, u(t) is unitary. The continuous functions s 7→ ‖u(s)u∗(s) − 1‖ and s 7→ ‖u∗(s)u(s) − 1‖
equal zero at s = t. Hence, these functions are less than 1 on some neighborhood V of t in X . Since
u(s) is a partial isometry for every s ∈ X , it follows that u(s) must be invertible (thus unitary) for all
s in V . Hence we may assume that c ≥ 0 on V . As c(t) is invertible, c(t) ≥ m1 for some m ∈ R+.
We only need to show that c(s) > m

2 1 for all s is some neighborhood of t. Suppose the contrary that
there exists a net {sj}j∈J converging to t such that σ(c(sj)) contains some λj <

m
2 for every j ∈ J .

Let f : R → R be the continuous map defined by

f(x) =





1 if x < m
2 ,

2− 2
m
x if m

2 ≤ x ≤ m,
0 if x > m.

Then f(c(t)) = 0 and ‖f(c(sj))‖ = 1 for every j ∈ J . As f(c)(s) = f(c(s)), we have f(c)(t) = 0 and
‖f(c)(sj)‖ = 1 for every j ∈ J . However, this contradicts the continuity of the map s 7→ ‖f(c)(s)‖. �

Theorem 4.4. Let B be a von Neumann algebra and let a, b ∈ B. If σ([b, x]) ⊆ σ([a, x]) ∪ {0} for
every x ∈ B, then b = p1a− p2a+ z for some orthogonal central projections p1, p2 and some z ∈ Z(B).

Proof. There exist central orthogonal projections z1, z2 ∈ B with z1 + z2 = 1 such that z1B is of
Type I while z2B does not contain central portions of Type I. We have the inclusions σ([zib, x]) ⊆
σ([zia, x]) ∪ {0} for every x ∈ ziB, i = 1, 2, therefore σziB([zib, x]) ⊆ σziB([zia, x]) ∪ {0}. Hence the
proof will be divided into two cases, the one where B is of Type I and the one where B does not
contain central portions of Type I.

Case 1. Let B be a von Neumann algebra of Type I. It suffices to show that the assertion of the
theorem holds for B = C(X)⊗B(H), the von Neumann algebra of continuous functions from a Stonean
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space X with values in B(H), equipped with a weak operator topology, for a Hilbert space H . Indeed,
B is a direct sum of such algebras.

We take ξ, η ∈ H with 〈ξ, η〉 = 0. Choose ǫ > 0, t0 ∈ X and let U be a clopen neighborhood of t0
with the property |〈(a(t) − a(t0))ξ, η〉| < ǫ and |〈(b(t) − b(t0))ξ, η〉| < ǫ for every t ∈ U . We calculate
the spectra of [a, (ξ ⊗ η∗)U ] and [b, (ξ ⊗ η∗)U ], where (ξ ⊗ η∗)U denotes the function t 7→ χU (t)ξ ⊗ η∗

for every t ∈ X . We have

σ([a, (ξ ⊗ η∗)U ]) ∪ {0} = ∪t∈Uσ([a(t), ξ ⊗ η∗]) ∪ {0}

and

σ([b, (ξ ⊗ η∗)U ]) ∪ {0} = ∪t∈Uσ([b(t), ξ ⊗ η∗]) ∪ {0}.

From the second paragraph of the proof of Theorem 3.1 we see that σ([a(t), ξ⊗η∗]) ⊆ {0,−〈aξ, η〉, 〈aξ, η〉}
and σ([a(t), ξ ⊗ η∗]) = {0} if and only if 〈a(t)ξ, η〉 = 0. Thus,

σ([a, (ξ ⊗ η∗)U ]) ⊆ ∪t∈U{0,−〈a(t)ξ, η〉, 〈a(t)ξ, η〉}

and by choice of U we have |〈a(t)ξ, η〉 − 〈a(t0)ξ, η〉| < ǫ. The same conclusions hold if we replace a
by b. Since σ([b, (ξ ⊗ η∗)U ]) ⊆ σ([a, (ξ ⊗ η∗)U ]) ∪ {0}, it follows that 〈b(t0)ξ, η〉 = 0 or |〈b(t0)ξ, η〉 −
〈a(t0)ξ, η〉| < ǫ or |〈b(t0)ξ, η〉 + 〈a(t0)ξ, η〉| < ǫ for every ǫ > 0. Consequently, we have 〈b(t0)ξ, η〉 = 0
or 〈b(t0)ξ, η〉 = ±〈a(t0)ξ, η〉. Following the proof of Theorem 3.1 we may conclude that b(t0) ∈ C1 or
b(t0)± a(t0) ∈ C1 for every t0 ∈ X .

Therefore, the union of the closed sets F0 = {t ∈ X : b(t) ∈ C1}, F1 = {t ∈ X : b(t)− a(t) ∈ C1}
and F2 = {t ∈ X : b(t) + a(t) ∈ C1} equals X . Complements of these sets are open and the interiors
G0, G1, G2 of F0, F1, F2, respectively, are clopen. As G

c

0 is the closure of F
c

0 , we have G
c

0 ⊆ F1∪F2. The
sets G0, G

c

0 then divide X in the disjoint union of two clopen sets, contained in F0, F1∪F2, respectively.
Similarly, we divide Gc

0 in the union of two disjoint clopen sets H1 ⊆ F1, H
c

1 ⊆ F2. The characteristic
functions of G0, H1, H

c

1 yield central projections p0, p1, p2 with sum 1. Moreover, the elements z0 = p0b,
z1 = p1(b− a), z2 = p2(b+ a) are central. The result is b = (p0 + p1 + p2)b = p1a− p2a+ z0 + z1 + z2.

Case 2. Assume now that B does not contain central portions of Type I. Let us examine the linear
independence of 1, a, b in the quotient spaces B(t) for t ∈ X . If the elements 1, a(t0), b(t0) are linearly
independent for some t0 ∈ X , then there exists a neighborhood U of t0 such that 1, a(t), b(t) are linearly
independent for every t ∈ U . (In order to prove this, we consider the continuous map f : X × S → R

defined by f(t, α, β, γ) 7→ ‖α1 + βa(t) + γb(t)‖, where S is the unit sphere in C3. As 1, a(t0), b(t0) are
linearly independent, f(t0, α, β, γ) > m for some m > 0 and for all (α, β, γ) ∈ S. Since S is compact
we can find a neighborhood U of t0 ∈ X such that f(t, α, β, γ) > m

2 for all t ∈ U , (α, β, γ) ∈ S.)
Replacing U by its appropriate subset, if necessary, we may assume that U is clopen. Its character-

istic function is continuous on X and corresponds to some projection p ∈ Z(B). Thus 1, a(t), b(t) are
linearly independent for every t in the character space Xp of Zp = Z(pB). From the hypothesis and
since p is central, we have σ([pb, x]) ⊆ σ([pa, x]) ∪ {0} for every x ∈ pB.

Consider the map f ′ : Z2
p → pB, defined by (z1, z2) 7→ z1 + z2pa. Since 1 and a(t) are linearly

independent for all t ∈ Xp, there exists m′ > 0 such that ‖α + βpa(t)‖2 ≥ m′(|α|2 + |β|2) for every
α, β ∈ C. Therefore, ‖z1(t) + z2(t)pa(t)‖

2 ≥ m′(|z1(t)|
2 + |z2(t)|

2) for all z1, z2 ∈ Zp. Taking the
supremum over t ∈ Xp gives ‖z1 + z2pa‖2 ≥ m′ max{‖z1‖2, ‖z2‖2}. Thus the map f ′ is bounded from
below, hence its range is norm-closed. Since the range of any weak* continuous linear map is norm
closed if and only if it is weak* closed (see, e.g., [10, Chapter VI, Theorem 1.10]), Zp + Zpa is weak*
closed. Since pB does not contain central portions of Type I, Zp+Zpa is reflexive by [19, Theorem 1.1].
Therefore there exist y, z ∈ pB such that yz = 0, ypaz = 0 but ypbz 6= 0, which contradicts Lemma
3.5. Thus, b(t) ∈ span{1, a(t)} for every t ∈ X for which 1, a(t) are linearly independent. Hence in
this case there exist λ(t), µ(t) ∈ C such that b(t) = λ(t)a(t) + µ(t). Using Lemma 4.3 we deduce the
inclusion σ([pb(t), px(t)]) ⊆ σ([pa(t), px(t)]) ∪ {0} for all x ∈ B; then by Lemma 4.1 we conclude that
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λ(t) ∈ {−1, 0, 1}. In the remaining case, when a(t) is a scalar for some t, b(t) must also be a scalar by
Lemma 4.3 and [2, Theorem 5.2.1].

Therefore, the union of the closed sets F0 = {t ∈ X : b(t) ∈ C1}, F1 = {t ∈ X : b(t)− a(t) ∈ C1}
and F2 = {t ∈ X : b(t)+a(t) ∈ C1} equals X . The proof can now be completed by the same argument
as at the end of Case 1. �

5. Results on C∗-algebras

In this section we will consider inner derivations of C∗-algebras. Our first result is an easy conse-
quence of Lemma 3.5 and a deeper result from [1].

Theorem 5.1. Let B be a unital C∗-algebra and a, b ∈ B with a normal. If σ([b, x]) ⊆ σ([a, x]) for all
x ∈ B, then b ∈ {a}′′, the bicommutant of {a} in B.

Proof. Let A = {a}′. Define φ : A×A→ B by φ(y, z) = ybz. For all u, v ∈ A, uv = 0 implies uav = 0.
According to Lemma 3.5 this further gives φ(u, v) = 0. Then φ(xy, z) = φ(x, yz) for all x, y, z ∈ A [1,
Theorem 2.11 and Example 2, p. 137]. Setting x = z = 1 we get yb = by. �

From now on we will consider the norm inequality condition (N), which, as observed in the introduc-
tion, follows immediately from the spectral inclusion condition (S) if a and b are selfadjoint. When can
(N) occur? For instance, if b = an, then we see from [b, x] = an−1[a, x] + an−2[a, x]a+ · · ·+ [a, x]an−1

that (N) holds with M = n‖a‖n−1. Consequently, (N) is fulfilled whenever b is a polynomial in a.
In the next theorem we will show directly that (N) implies that b is a Lipschitz function f of a, pro-
vided that B is a prime C∗-algebra and a is a normal element. This is perhaps not the best possible
conclusion, however, a complete description of the properties of the appropriate functions f could be
too difficult. In [14] Johnson and Williams considered the special case where B = B(H). By [14,
Corollary 3.7], in this case the condition (N) is equivalent to the requirement that the range of [b, x] is
contained in the range of [a, x] for every x ∈ B(H). The description of appropriate functions f in the
case B = B(H) in [14, Theorems 3.6 and 4.1] is quite entangled. In a general C∗-algebra B the range
inclusion im [b, x] ⊆ im [a, x] for all x ∈ B implies the condition (N) by [17, Theorem 6.5].

Theorem 5.2. Let B be a prime C∗-algebra and let a, b ∈ B satisfy ‖[b, x]‖ ≤ M‖[a, x]‖ for all
selfadjoint x ∈ B and some M > 0. If a is normal, then b = f(a) where f is Lipschitz (with a
Lipschitz constant M) on the spectrum of a.

Proof. We can assume a 6∈ C1 without loss of generality.
Our assumption implies that a and b commute. Since a is normal, a commutes also with b∗ by

the Putnam-Fuglede theorem, and then the condition (N) implies that b is normal. Denote by A the
C∗-algebra generated by a and b. The Gelfand transformation is an isomorphism between A and C(Ω),
the algebra of continuous functions on the character space Ω of A, which can be identified with a

compact subset K of C2 via the homeomorphism ψ : χ 7→ (χ(a), χ(b)). Let â and b̂ denote the Gelfand
transforms of a and b, regarded as functions on K. (These are just the restrictions to K of the two
coordinate projections C2 → C.)

We can divide C2 = R4 into a grid of small closed cubes with sides parallel to the coordinate axes
such that the intersection of any two cubes is either empty or a common face. Then it is not hard to
see that there exists p ∈ N such that each cube intersects at most p other cubes (p = 34−1). By taking
slightly larger open cubes we can cover the compact set K by a finite family {Pi}ni=1 of such cubes,
so that each intersects at most p other cubes; moreover, for a given ǫ > 0, by the uniform continuity

we may assume that the cubes Pi are so small that |â(t) − â(t′)| < ǫ and |b̂(t) − b̂(t′)| < ǫ whenever
t, t′ ∈ K are such that t ∈ Pi and t

′ ∈ Pj for some i, j with Pi ∩ Pj 6= ∅.
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Let Vi = Pi ∩K and choose a partition of unity {φ̂i}ni=1 subordinate to the covering {Vi}ni=1 of K.
Then

‖â−
n∑

i=1

â(ti)φ̂i‖ < ǫ, and ‖b̂−
n∑

i=1

b̂(ti)φ̂i‖ < ǫ for arbitrary ti ∈ Vi.

Note also that φ̂j
∑

i:Vi∩Vj 6=∅ φ̂i = φ̂j for all 1 ≤ j ≤ n. Moreover, if Vi ∩ Vj 6= ∅ then |â(ti)− â(tj)| < ǫ

for arbitrary ti ∈ Vi, tj ∈ Vj .
Choose 1 ≤ j, k ≤ n such that Vj ∩ Vk = ∅. Since B is prime, there exists y ∈ B such that

‖φjyφk‖ = 1. As φjφk = φjφk = 0, we have ‖φjyφk ± φky
∗φj‖ = 2. Set x = φjyφk + φky

∗φj . Take
arbitrary ti ∈ Vi. Let L(j) denote the set of all i ∈ {1, . . . , n} such that Vi ∩ Vj 6= ∅. For p, q ∈ R we
write p ≈ǫ q if |p− q| < ǫ. According to the above observations we can estimate

‖[a, x]‖ ≈4ǫ

∥∥∥
[∑n

i=1
â(ti)φi, x

]∥∥∥

=

∥∥∥∥
∑

L(j)
â(ti)(φiφjyφk − φky

∗φjφi)−
∑

L(k)
â(ti)(φjyφkφi − φiφky

∗φj)

∥∥∥∥

≈4pǫ

∥∥∥∥â(tj)φj
(∑

L(j)
φi

)
yφk − â(tj)φky

∗φj

(∑
L(j)

φi

)

−â(tk)φjyφk

(∑
L(k)

φi

)
+ â(tk)φk

(∑
L(k)

φi

)
y∗φj

∥∥∥∥
= ‖â(tj)(φjyφk − φky

∗φj)− â(tk)(φjyφk − φky
∗φj)‖

= 2|â(tj)− â(tk)|.

In the same manner we show that ‖[b, x]‖ ≈4(p+1)ǫ 2|b̂(tj) − b̂(tk)|. Using the condition (N) it follows

now that 0 ≤M‖[a, x]‖− ‖[b, x]‖ ≈8(p+1)ǫ 2(M |â(tj)− â(tk)| − |b̂(tj)− b̂(tk)|). Since ǫ > 0 and ti ∈ Vi
were arbitrary, we conclude that

|b̂(t)− b̂(t′)| ≤M |â(t)− â(t′)| for all t, t′ ∈ K.

From this we see in particular that â(t) = â(t′) implies b̂(t) = b̂(t′), hence b is a function of a, say
b = f(a). The above inequality means that this function f is Lipschitz. �

Corollary 5.3. Let B be a prime C∗-algebra. The following conditions are equivalent for normal
elements a, b ∈ B:

(1) ‖[a, x]‖ = ‖[b, x]‖ for every selfadjoint x ∈ B.
(2) b = λa+ µ1 or b = λa∗ + µ1 for some λ, µ ∈ C with |λ| = 1.

Proof. By replacing a with a− t01 for some t0 ∈ σ(a) we may assume that 0 ∈ σ(a). From Theorem
5.2 we obtain b = f(a) for a Lipschitz function f on σ(a) and a = g(b) for a Lipschitz function g on
σ(b), with both f and g having Lipschitz constants 1. Then g ◦ f = idσ(a) yields |f(t)− f(t′)| = |t− t′|
for all t, t′ ∈ σ(a). Replacing f by f − f(0) we may assume that f(0) = 0. It is easy to see that then f
must take one of the following forms: f(t) = eiθt or f(t) = eiθt for some θ ∈ [0, 2π). This establishes
(2).

The converse is trivial. �

Theorem 5.4. Let B be a C∗-algebra on some Hilbert space and B be its weak∗ closure. The following
conditions are equivalent for selfadjoint elements a, b ∈ B:

(1) ρ([a, x]) = ρ([b, x]) for every x ∈ B.
(2) ‖[a, x]‖ = ‖[b, x]‖ for every selfadjoint x ∈ B.
(3) For every primitive ideal P of B we have that a+ b+ P ∈ C1 + P or a− b+ P ∈ C1 + P .
(4) b = ca+ z for some c, z ∈ Z(B) with z = z∗, c = c∗, c2 = 1.
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Proof. Take a selfadjoint x ∈ B. Then [a, x], [b, x] are anti-selfadjoint and ‖[a, x]‖ = ρ([a, x]), ρ([b, x]) =
‖[b, x]‖. Thus, (1) implies (2).

Assume that (2) holds. We will first observe that a passage to the quotient B/I for an arbitrary
ideal I in B preserves the condition (2). This observation follows from the existence of a quasicentral
approximate unit in I (see, e.g., [15, Exercise 10.5.6]). This is an increasing net {eλ}λ∈Λ of positive
elements in I which is an approximate unit for I and satisfies limλ ‖eλz − zeλ‖ = 0 for every z ∈ B.
Since ‖y + I‖ = limλ ‖(1− eλ)y‖ for all y ∈ B (see, e.g., [15, Exercise 4.6.60]), we have

‖[a, x] + I‖| = lim
λ

‖(1− eλ)[a, x]‖ = lim
λ

‖[a, (1− eλ)x]‖

= lim
λ

‖[b, (1− eλ)x]‖ = lim
λ

‖(1− eλ)[b, x]‖ = ‖[b, x] + I‖.

Taking for I any primitive ideal P , we now deduce from Corollary 5.3 that a + b + P ∈ C1 + P or
a− b+ P ∈ C1 + P . This proves (3).

If we assume (3), then [a + b, x] ∈ P for every x ∈ B or [a − b, y] ∈ P for every y ∈ B. Hence
[a− b, B]B[a+ b, B] ⊆ P for every primitive ideal P . Since B is semisimple, we obtain [a− b, B]B[a+
b, B] = 0. Write S = [a− b, B], T = [a+ b, B]. It follows SBT = 0. Since B is a von Neumann algebra,
there exists a projection p ∈ Z(B) such that ps = s for all s ∈ S and (1−p)t = t for all t ∈ T . Therefore,
(1 − p)[a − b, x] = 0 and p[a + b, x] = 0 for all x ∈ B. Since p is central, z1 = (1 − p)(a − b) ∈ Z(B)
and z2 = p(a+ b) ∈ Z(B). Hence, b = (1 − p)b + pb = (1 − p)a− z1 + z2 − pa = (1 − 2p)a+ z for an
element z = z∗ ∈ Z(B). Taking c = 1− 2p establishes (4).

The implication (4)⇒(1) is clear. �

The elements c and z may be sometimes chosen from Z(B), but in general we cannot expect this.

Example 5.5. Take B = C([0, 1],M2(C)), the C
∗-algebra of continuous functions with matrix values.

Define a and b by a(t) = |1 − 2t|J , b(t) = (1 − 2t)J , where J is an arbitrary non-scalar matrix. The
two elements a and b satisfy (1), therefore b = ca+ z for some c, z ∈ Z(B) with z = z∗, c = c∗, c2 = 1.
If c, z belonged to B, we would have b(t) = c(t)a(t) + z(t) for every t ∈ [0, 1]. Hence, c(t) = 1 on [0, 12 )

and c(t) = −1 on (12 , 1], contradicting the continuity of c.

Remark 5.6. If the primitive spectrum Prim(B) is Hausdorff, then in Theorem 5.4 we can choose
z ∈ Z(B). To see this, take selfadjoint elements a, b ∈ B that satisfy the conditions of Theorem 5.4.
Define U = {P ; a+ b+P 6∈ C1 + P}, V = {P ; a− b+ P 6∈ C1 +P}. According to the condition (3), U
and V are disjoint sets. Since Prim(B) is a Hausdorff topological space, P 7→ ‖z + P‖ is a continuous
function from Prim(B) to R for every z ∈ B (see, e.g., [20, Proposition 4.4.5]). Hence, U and V are
open sets. From the definition of U and the Hausdorff property of Prim(B) it follows that a restricted
to ∂U is a continuous scalar function. By the Tietze extension theorem we can extend it to a continuous
function on Prim(B), which is by the Dauns-Hofmann theorem an element z0 ∈ Z(B). We can replace
a with a−z0, and therefore assume that a(P ) = 0 for all P ∈ ∂U . Let χU be the characteristic function
of U , which is a Borel function and therefore an element of C(Prim(B))′′ = Z(B)′′ ⊆ Z(B′′). Define
z(P ) = (1− 2χU(P ))a(P ) + b(P ). This is a scalar-valued function that equals −a(P )+ b(P ) for P ∈ U
and a(P ) + b(P ) for P ∈ Uc. Since a(P ) = 0 for P ∈ ∂U , z is a continuous function on Prim(B).
Hence, z ∈ Z(B). This implies the desired conclusion b = (2χU − 1)a+ z, where 2χU − 1 ∈ Z(B′′) and
z ∈ Z(B).
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