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Abstract. Let d be a Jordan derivation from a ring A into an A-
bimodule M. Our main result in particular shows that the restriction
of d to the ideal of A generated by certain higher commutators of A
is a derivation. This general statement is used for proving that under
various additional conditions d must be a derivation on A. Furthermore,
several examples of proper Jordan derivations are given, C∗-algebras
admitting proper additive Jordan derivations are characterized, and the
connections with the related problems on Jordan homomorphisms and
Jordan A-module homomorphisms are discussed.

1. Introduction

Let A be a ring (resp. algebra) and letM be an A-bimodule. An additive
(resp. linear) map d : A →M is called a Jordan derivation if

d(x2) = d(x)x+ xd(x) and d(xyx) = d(x)yx+ xd(y)x+ xyd(x)

for all x, y ∈ A. The standard problem is to find out whether a Jordan
derivation is necessarily a derivation, that is, does

d(xy) = d(x)y + xd(y)

hold for all x, y ∈ A. Starting with the results by Jacobson and Rickart
[17] and Herstein [14], this problem has been an active area of research for
more than 50 years (see [1, 3, 5, 6, 8, 11, 12, 13, 19, 22, 24] and references
therein).

There certainly exist proper Jordan derivations, i.e. such that they are not
derivations. Our main purpose, however, is to show that Jordan derivations
are derivations at least on some “piece of A”. The largeness of this piece
depends on the structure of certain higher commutators of A. Specifically,
in particular we show that d(ux) = d(u)x + ud(x) for every x ∈ A and
every u from the ideal generated by [[[A,A], [A,A]], [[A,A], [A,A]]]. If A
is commutative, or “close” to be commutative, then this information is of
course useless. If, however, A is “fairly noncommutative”, then one may
expect that d acts as a derivation on a considerable piece of A.

We shall illustrate the usefulness of our basic result on Jordan derivations,
Theorem 3.1, by deriving generalizations and new proofs of some known re-
sults from it. On the other hand, we shall obtain Theorem 3.1 as a corollary
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to a more general result, Theorem 2.1, which considers biadditive maps sat-
isfying certain identities. We remark that there is some analogy with our
treatment of Lie derivations [9] where the result was also derived from a
more abstract theorem on biadditive maps.

In Section 4 we shall present a variety of examples of proper Jordan
derivations, and thereby indicate the limitations of the problem whether a
Jordan derivation is (or at least it is close to) a derivation. Our construction
of proper Jordan derivations on some commutative rings (Subsection 4.4)
seems to be of particular interest for two reasons. On the one hand, it
justifies the exclusion of commutative rings in some of our main results,
and on the other hand it connects the Jordan derivation problem with the
classical problem on the existence of nontrivial derivations on commutative
rings and algebras. Moreover, it will also make it possible for us to state some
remarks on Jordan derivations on C∗-algebras in Section 5. In particular, we
shall characterize C∗-algebras on which there exist proper additive Jordan
derivations (Theorem 5.1).

For the most part, M will play an entirely formal role in this paper, so
the majority of our results depend only on the structure of A. One of the
advantages of such approach is that thereby we obtain the solution of the
analogous problem for Jordan A-module homomorphisms (which are defined
in Section 6) as direct consequences of the results on Jordan derivations. The
related problem on Jordan homomorphism is, on the contrary, more general
(see Theorem 6.1).

To the best of our knowledge, this paper brings a new approach to the
study of Jordan derivations. It has been motivated by the recent work
on Jordan ideals [10]; as in [10] we wish to show in the present paper that
although Jordan structures in associative rings have already been thoroughly
studied by a number of authors, one can still obtain new and in our opinion
somewhat surprising results by entirely elementary means.

2. A theorem on biadditive maps

Let A be an associative ring. We set [x, y] = xy− yx and x ◦ y = xy+ yx
for x, y ∈ A. We shall write [x,m] for xm − mx also in the case where

x ∈ A and m is from some A-bimodule. We set A(0) = A, and inductively,
A(n+1) = [A(n),A(n)] for every n ≥ 0. Given a subset S of A, we denote by
R(S) (resp. I(S)) the subring (resp. ideal) of A generated by S.

If L is a Lie ideal of A, then I([L,L]) ⊆ R(L). This observation is
essentially due to Herstein (cf. [15, pp. 4-5]) and can be easily proved.
Indeed, from x[u, v] = [xu, v]− [x, v]u we see that A[L,L] ⊆ R(L), similarly
we show that [L,L]A ⊆ R(L), and finally, noting that R(L) is also a Lie
ideal of A and using x[u, v]y = [x[u, v], y] + yx[u, v] one concludes that
A[L,L]A ⊆ R(L). Using the Jacobi identity we see that [L,L] is also a Lie

ideal of A. Consequently, A(n) is a Lie ideal and so we have

I(A(n+1)) ⊆ R(A(n)) for every n ≥ 0.
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In particular, I(A(3)) ⊆ R(A(2)), which explains the last statement in the
following theorem.

Theorem 2.1. Let A be a ring and let M be an A-bimodule. If { . , . } :
A×A →M is a biadditive map such that

{x, x} = 0,(1)

{xy, x}+ {x, y}x = 0,(2)

{xy, z}+ {x, y}z = {x, yz}+ x{y, z}(3)

for all x, y, z ∈ A, then {R(A(2)),A} = 0 (and hence {I(A(3)),A} = 0).

Proof. By (1), { . , . } is skew-symmetric. Consequently, the linearized form
of (2) can be written as

{xy, z}+ {x, y}z = {x, zy}+ {y, z}x.

Comparing this identity with (3) we get

(4) {x, [y, z]}+ [x, {y, z}] = 0

for all x, y, z ∈ A. Using (4) together with the fact that both { . , . } and
[ . , . ] are skew-symmetric one easily infers that

(5) {[x, y], [u, v]} = −[[x, y], {u, v}] = −[{x, y}, [u, v]]

for all x, y, u, v ∈ A.
We shall now compute {[x, y]z, [u, v]} in two different ways. On the one

hand, using (4) we have

{[x, y]z, [u, v]} = −[[x, y]z, {u, v}]
= −[x, y][z, {u, v}]− [[x, y], {u, v}]z
= [x, y]{z, [u, v]} − [[x, y], {u, v}]z.

On the other hand, first applying (3) and after that (4) we get

{[x, y]z, [u, v]} = {[x, y], z[u, v]} − {[x, y], z}[u, v] + [x, y]{z, [u, v]}
= −{z[u, v], [x, y]}+ {z, [x, y]}[u, v] + [x, y]{z, [u, v]}
= [z[u, v], {x, y}]− [z, {x, y}][u, v] + [x, y]{z, [u, v]}
= z[[u, v], {x, y}] + [x, y]{z, [u, v]}.

Comparing both expressions we obtain

z[[u, v], {x, y}] = −[[x, y], {u, v}]z,

which can be, in view of (5), rewritten as [z, {[x, y], [u, v]}] = 0. Hence (4)

implies that {z, [[x, y], [u, v]]} = 0; that is, {A,A(2)} = {A(2),A} = 0. From
(3) we see that the set of all u ∈ A such that {u,A} = 0 is a subring of A.

Consequently, {R(A(2)),A} = 0. �

Let us mention another two useful observations concerning { . , . }. First,
using (3) it is straightforward to note
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Remark 2.2. If I is an ideal of A such that {I,A} = 0, then I{A,A} = 0.

Accordingly, I(A(3)){A,A} = 0.

Let e ∈ A be an idempotent, and let x ∈ A. By (2) we have {ex, e} +
{e, x}e = 0, and by (3) and (1) we have {xe, e} + {x, e}e = {x, e}. Now
assume that e and x commute. Comparing both relations and using the fact
that { . , . } is skew-symmetric we infer that 2{e, x}e = {e, x}. Multiplying
this identity from the right by e it follows that {e, x}e = {e, x} = 0. We
have proved

Remark 2.3. Let e ∈ A be an idempotent and let x ∈ A. Then [e, x] = 0
implies {e, x} = 0.

3. Jordan derivations on noncommutative rings

First we remark that in the literature often only the first condition,
d(x2) = d(x)x + xd(x), is required in the definition of a Jordan deriva-
tion, since the second condition, d(xyx) = d(x)yx+xd(y)x+xyd(x), follows
from it provided that M is 2-torsionfree (i.e. 2m = 0 with m ∈ M implies
m = 0). This is a simple consequence of the identity 2xyx = x◦(y◦x)−x2◦y.
Moreover, in the 2-torsionfree case the definition of a Jordan derivation is
equivalent to

(6) d(x ◦ y) = d(x) ◦ y + x ◦ d(y) for all x, y ∈ A.

Given a Jordan derivation d : A →M, we set

{x, y} = d(xy)− d(x)y − xd(y)

for all x, y ∈ A. Of course, d is a derivation if and only if {A,A} = 0, so
{ . , . } measures how far is d from being a derivation. It is straightforward
to check that { . , . } satisfies the conditions (1), (2), and (3). Therefore,
Theorem 2.1 yields the following result.

Theorem 3.1. If d is a Jordan derivation from a ring A into an A-bimodule
M, then

d(ux) = d(u)x+ ud(x)

for all x ∈ A and all u ∈ R(A(2)) (and so, in particular, for all u ∈ I(A(3))).

Let us mention that the concept behind the proof of Theorem 3.1 has
been the well-known formula [[x, y], z] = x◦ (y ◦ z)−y ◦ (x◦ z) which implies
that every Jordan derivation is also Lie triple derivation, i.e. it satisfies

d([[x, y], z]) = [[d(x), y], z] + [[x, d(y)], z] + [[x, y], d(z)]

(this is hidden in (4)). The reader can notice the similarity to the recent
study of Jordan ideals in [10].

An immediate but noteworthy corollary to Theorem 3.1 is

Corollary 3.2. If a ring A is such that R(A(2)) = A (in particular, if

I(A(3)) = A), then every Jordan derivation from A into an arbitrary A-
bimodule is a derivation.
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We continue by stating corollaries to Remarks 2.2 and 2.3.

Remark 3.3. Every Jordan derivation d : A →M satisfies

I(A(3))
(
d(xy)− d(x)y − xd(y)

)
= 0

for all x, y ∈ A. Accordingly, if a bimodule M is such that I(A(3))m 6= 0
for every nonzero m ∈ M, then every Jordan derivation from A into M is
a derivation.

Remark 3.4. Every Jordan derivation d : A →M satisfies d(ex) = d(e)x+
ed(x) whenever e ∈ A is an idempotent and x ∈ A commutes with e.

Although Remark 3.4 is just an elementary observation, it is important
since it makes it possible for one to reduce the study of Jordan derivations
from rings to their direct summands. Namely, in particular it implies that
d(e)f + ed(f) = 0 for every pair of orthogonal idempotents e and f , and
using this one can easily infer

Remark 3.5. Let A1, . . . ,An be unital rings and let d be a Jordan derivation
from A = A1 ⊕ . . .⊕An into an A-bimodule M. If d|Ai is a derivation for
every i, then d is a derivation.

Remark 3.5 partially generalizes [1, Lemma 6.4] (it seems that the fact
that Remark 3.4 holds was overlooked in [1]). The usefulness of both remarks
will be illustrated in Subsection 5 where an alternative proof of Johnson’s
theorem on Jordan derivations on C∗-algebras will be given.

Using the very definition it is easy to see that every Jordan derivation
d : A →M satisfies

d(xk) =

k∑
i=1

xi−1d(x)xk−i

for all k ≥ 1 and all x ∈ A. This readily implies that

d(xnxm) = d(xn)xm + xnd(xm)

whenever n,m ≥ 1. Moreover, if A is unital, then Remark 3.4 shows that
that the same is true if n = 0 or m = 0. Consequently, we have

Remark 3.6. Let A be a unital ring and let x ∈ A. If d : A → M is a
Jordan derivation, then d|R({1, x}) is a derivation.

Theorem 3.1 somehow reduces the question on the structure of Jordan
derivations to the question on the largeness of the subring R(A(2)). The
latter is of course intimately connected with the question on the largeness of
the ideal I(A(3)). It is difficult to expect reasonable answers to these ques-
tions in arbitrary noncommutative rings (just take, for example, nilpotent
rings), so we shall confine ourselves to some of their special classes.

We recall that an ideal E of a ring A is said to be essential if E ∩ I 6= 0
for every nonzero ideal I of A. It is well-known and easy to see that in the
case when A is a semiprime ring, this condition is equivalent to the one that
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E has trivial (right) annihilator, i.e. Ec = 0, where c ∈ A, implies c = 0. In
this connection we note that the right and the left annihilator of any ideal
I of a semiprime ring A coincide, that is, Ic = 0 of and only cI = 0 (so,
in particular, [c, I] = 0 holds in this case). Of course, the annihilator of an
ideal is again an ideal.

Is I(A(3)) an essential ideal of a semiprime ring A? If the center Z(A) of
A contains a nonzero ideal J of A, then the answer is no. Namely, in this
case we have AJ ⊆ J ⊆ Z(A) and so [A,A]J = [A,AJ ] = 0, showing that

J is contained in the annihilator of I(A(1)) (and hence also in the annihilator

of I(A(n)) for every n ≥ 1). But otherwise the answer is affirmative. To
prove this we shall need [4, Lemma 3] which states that for every Lie ideal L
of a prime ring A with char(A) 6= 2 and every c ∈ A, [c, [L,L]] = 0 implies
[c,L] = 0.

Lemma 3.7. Let A be a 2-torsionfree semiprime ring, and let n ≥ 1. If
c ∈ A is such that [c,A(n)] = 0, then c ∈ Z(A). In particular, the annihilator

of I(A(n)) is contained in Z(A). Accordingly, I(A(n)) is an essential ideal
of A if and only if Z(A) does not contain nonzero ideals of A.

Proof. In view of the above discussion it suffices to prove that [c,A(n)] = 0
implies c ∈ Z(A).

A standard argument shows that there exist prime ideals {Pλ |λ ∈ Λ} such
that

⋂
λ∈Λ Pλ = 0 and the prime rings A/Pλ are of characteristic different

from 2. Since [c,A(n)] = 0 implies [c+Pλ, (A/Pλ)(n)] = 0 we see that without
loss of generality we may assume that A is a prime ring with char(A) 6= 2.

But then, in view of [4, Lemma 3], [c, [A(n−1),A(n−1)]] = [c,A(n)] = 0 implies

[c,A(n−1)] = 0. Therefore, inductively we arrive at [c,A] = [c,A(0)] = 0, i.e.
c ∈ Z(A). �

We remark that the assumption in Lemma 3.7 that A is 2-torsionfree is
really necessary: just consider the matrix ring M2(F) with char(F) = 2.

Corollary 3.8. Let A be a 2-torsionfree semiprime ring and let d be a
Jordan derivation from A into an A-bimodule M.

(i) If Z(A) does not contain nonzero ideals of A, then the restriction of
d to some essential ideal of A is a derivation.

(ii) Suppose that M satisfies the following two conditions: (a) for every
essential ideal E of A and every m ∈ M, Em = 0 implies m = 0, and (b)
cm = mc for all c ∈ Z(A) and all m ∈M. Then d is a derivation.

Proof. (i) Use Theorem 3.1 and Lemma 3.7.

(ii) Let I = I(A(3)) and let J = {c ∈ A | Ic = 0}. Note that E = I ⊕ J
is an essential ideal of A. By Remark 3.3, I{A,A} = 0, where of course
{x, y} stands for d(xy)− d(x)y−xd(y). Therefore, in view of (a), it suffices
to show that also J {A,A} = 0.
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By Lemma 3.7 we have J ⊆ Z(A). Pick c ∈ J and x ∈ A. Using (6) and
(b) it follows that

(7) 2d(cx) = d(c) ◦ x+ 2cd(x) for all c ∈ J , x ∈ A.

For every c′ ∈ J we have c′x ∈ J and so both c′, c′x ∈ Z(A). By (b) we
then have c′d(c)x = d(c)(c′x) = c′xd(c). Therefore, multiplying (7) from
the left by c′ we obtain 2c′{c, x} = 0. Thus 2J {c, x} = 0 and so, since
I{A,A} = 0, also 2E{c, x} = 0. As 2E is also an essential ideal of A it
follows that {c, x} = 0. Thus, {J,A} = 0, and so Remark 2.2 tells us that
J {A,A} = 0. �

The conditions (a) and (b) are trivially fulfilled in the case whereM = A.
Thus, the assertion (ii) is a generalization of the result of Cusack [12] (which
was later also proved in [5]) stating that a Jordan derivation from a 2-
torsionfree ring A into itself is necessarily a derivation (the prime ring case
of this result is the classical Herstein’s theorem [14]). Let us mention that
the arguments in [12] and [5] do not lead to (ii) since they both indirectly
make some computations with d2.

There is another, more general instance when (ii) is applicable.

Corollary 3.9. Let A be a 2-torsionfree semiprime ring and let Q be the
maximal left (or right) ring of quotients of A. Then every Jordan derivation
from A into Q is a derivation.

Proof. It is a fact that M = Q satisfies (a) and (b) (see, for example, [2,
Proposition 2.1.7, Remark 2.3.1]). �

In the case when A is a prime ring, the assumption in (i) of Corollary 3.8
converts into a very simple one: A must be noncommutative. Furthermore,
if A is a simple ring, then we get the definitive conclusion:

Corollary 3.10. Let A be a noncommutative simple ring with char(A) 6= 2.
Then every Jordan derivation from A into any A-bimodule is a derivation.

In the next section we shall see that the conclusion of this corollary does
not hold even for rings that are just slightly more general than the noncom-
mutative simple ones.

Corollary 3.10 improves [8, Corollary 1]; in particular, it removes the
assumption that A must be unital (on which the argument in [8] is based).
For unital rings, however, we are now in a position to state a stronger result.

Corollary 3.11. Let A be a unital ring with char(A) 6= 2. Suppose there
exists a noncommutative simple subring A0 of A which contains the unity of
A. Then every Jordan derivation from A into any A-bimodule is a deriva-
tion.

Proof. The ideal of A0 generated by A(3)
0 is equal to A0 and so it contains

the unity of A. Since this ideal is clearly contained in I(A(3)), we have

I(A(3)) = A. Now apply Corollary 3.2. �
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For the special case where A0 = Mn(C), Corollary 3.11 was proved by
Johnson [19, Theorem 7.1]. The next corollary is motivated by another
result of Johnson who proved its special where A is the norm closure of the
algebra of all finite rank operators on a Banach space [19, Theorem 6.4].

Corollary 3.12. Let A be a normed (real or complex) algebra containing a
dense simple subalgebra. Then every continuous Jordan derivation from A
into any normed A-bimodule is a derivation.

Proof. Let d : A → M be a continuous Jordan derivation and let A0 be a
dense simple subalgebra of A. If A0 is commutative, then A = A0 is a field
(R or C) and so one can check directly that d is a derivation (in the case
when A = C is considered as an R-algebra this perhaps does not appear
so evident, but note that Remark 3.4 can be applied to yield the desired

conclusion). So let A0 be noncommutative. Then A0 = I(A(3)
0 ) and hence

Theorem 3.1 tells us that d satisfies d(ux) = d(u)x + ud(x) for all u ∈ A0,
x ∈ A. Since d is continuous and A0 is dense, d must be a derivation. �

4. Examples of proper Jordan derivations

We begin with with a simple but important general observation which can
be extracted from [19, p. 465]. One example of a proper Jordan derivation
d : A → M easily generates further examples on other rings (or algebras).
Namely, if there exists a proper Jordan derivation d from a ring (resp. al-
gebra) A into an A-bimodule M, then there also exists a proper Jordan
derivation from every ring (resp. algebra) B that has A as a quotient into
M. Indeed, if π is a homomorphism from B onto A, then M becomes an
B-bimodule in the canonical way, and dπ is a proper Jordan derivation from
B into M.

Some examples of proper Jordan derivations were found already in [3,
12, 19]. In the first two subsections we shall recall (in some modified form)
those of them that particularly nicely illustrate the results obtained in the
previous section.

In order to make it clear what are in our opinion the main features of the
particular example considered, we shall describe them in a short statement.

Throughout this section, F will denote a field with char(F) 6= 2. By
Tn(F) we denote the subalgebra of Mn(F) consisting of all upper triangular
matrices, and by eij we denote the matrix units.

4.1. Constructing antiderivations. In [19, p. 465] Johnson constructed
an example of a proper Jordan derivation from T2(F) into a certain T2(F)-
bimodule. Proceeding from this example, Benkovič [3] recently discovered a
general method for constructing proper Jordan derivations, which we shall
now briefly survey. In fact, these proper Jordan derivations are the so-called
antiderivations, i.e. they satisfy the condition d(xy) = d(y)x+ yd(x) for all
x and y.
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Let A be an algebra. Suppose that there is an A-bimodule N (we denote
the multiplication in this bimodule by ·) and a derivation δ : A → N
satisfying the following two conditions:

(8) [A,A] · N = N · [A,A] = 0 and δ([A,A]) 6= 0.

The first condition guarantees that the vector space of N becomes an A-
bimodule if we define the new multiplication by xn = n · x and nx = x · n
for all x ∈ A, n ∈ N . Let us denote this bimodule by M. Note that
d : x 7→ δ(x) defines an antiderivation from A into M. Given x, y ∈ A, we
see that d(xy) = d(x)y + xd(y) holds if and only if δ([x, y]) = 0. Therefore,
in view of the second condition in (8), d is a proper Jordan derivation.

Let us now consider a concrete situation where (8) occurs (cf. [3, Remark
2.4]). Let A = Tn(F), n ≥ 2, and let S be the ideal of A consisting of
all strictly upper triangular matrices. Consider the ideals S and S2 as A-
bimodules, and let N = S/S2 be the quotient module. Clearly, N satisfies
the first condition in (8). Define a linear map δ : A → N by δ(ei i+1) =
ei i+1 + S2, i = 1, . . . , n, and δ(eij) = 0 whenever j 6= i + 1. Note that
δ is a derivation satisfying the second condition in (8). Moreover, setting,
for example, e = e11 and u = e12 we arrive at the following conclusion
concerning the corresponding antiderivation d.

Example 4.1. Let A = Tn(F), n ≥ 2. Then there exists an A-bimodule M
and a proper Jordan derivation (in fact, an antiderivation) d : A →M such

that d(ue) 6= d(u)e+ ud(e) for some u ∈ A(1) and some idempotent e ∈ A.

Example 4.1 shows, on the one hand, that the assumption that e com-
mutes with x is really necessary in Remark 3.4, and on the other hand, that,
using the above notation, {A(1),A} is not zero for every Jordan derivation.
Thus, the involvement of higher commutators in Theorem 3.1, and hence
also in Theorem 2.1, is really necessary.

The main result in [3] states that every Jordan derivation from Tn(F)
into an Tn(F)-bimodule is the sum of a derivation and an antiderivation. A
thorough analysis of antiderivations on Tn(F) shows that these maps always
vanish on S2. Therefore, in a loose manner we can say that Jordan deriva-
tions on Tn(F) act as derivations on a rather large part of the algebra. Thus,
the results from [3] nicely illustrate the philosophy of the present paper.

4.2. Constructing proper Jordan derivations on some noncommu-
tative algebras, I. In [12, p. 324] Cusack gave two simple examples of
proper Jordan derivations from a ring into itself. We shall now present
a modified version of his second example. Let A be a 3-dimensional al-
gebra over F generated by elements a and b such that a2 = b2 = 0 and
ab = −ba 6= 0 (for example, one can take A ⊂ T4(F) with a = e12 − e34,
b = e13 + e24, and so ab = e14). Of course, A is noncommutative, but

A(2) = 0. Since x ◦ y = 0 for all x, y ∈ A, every linear map from A into
itself is a Jordan derivation. However, not every map is a derivation. In
particular, consider d : A → A defined by d(λa + µb + νab) = νa. In the



10 MATEJ BREŠAR

next statement we state a special property of this map which is of some
interest in light of Theorem 3.1.

Example 4.2. There exists a 3-dimensional noncommutative algebra A ad-
mitting a proper Jordan derivation d : A → A such that for every u 6= 0 in
A there is x ∈ A satisyfing d(ux) 6= d(u)x+ ud(x).

4.3. Constructing proper Jordan derivations on some noncommu-
tative algebras, II. Let U be an algebra over F such that U ◦U , the linear
span of all elements of the form u ◦ v, u, v ∈ U , is a proper subspace of U2.
Clearly, U cannot be commutative or unital. Further, letM be any nonzero
vector space over F. We make an U-bimodule of it by defining the trivial
multiplication MU = UM = 0. Now let d : U → M be a linear map such
that d(U ◦ U) = 0 and d(U2) 6= 0. In particular, d(u2) = d(u)u = ud(u) = 0
for all u ∈ U , so that d is a Jordan derivation. On the other hand, since
d(uv) 6= 0 for some u, v ∈ U and d(u)v = ud(v) = 0 for all u, v ∈ U , d is not
a derivation.

One might find this example a bit artificial because of the triviality of the
module multiplication. However, we may consider the unitization A of U ,
extend the module multiplication so that M becomes a unital A-bimodule,
and extend d to A by defining d(1) = 0. Note that we can interpret the
resulting construction in the following way.

Example 4.3. Let A be a unital algebra over F containing an ideal U of
codimension 1 such that U ◦ U 6= U2. Then there exist a proper Jordan
derivation from A into some unital A-bimodule.

Algebras containing an ideal of codimension 1 will also appear in a dif-
ferent construction below.

A simple concrete example of an algebra satisfying the conditions of Ex-
ample 4.3 is the free noncommutative algebra (here, U consists of elements
of constant term zero). An example of a proper Jordan derivation on this
algebra was found already in [3], and its purpose was to show that there ex-
ist Jordan derivations on some rings that cannot be expressed as the sums
of derivations and antiderivations. One can notice that this also applies to
both proper Jordan derivations constructed in Examples 4.2 and 4.3.

4.4. Constructing proper Jordan derivations on some commutative
rings. Let A be a ring, let N be an A-bimodule and let δ : A → N be a
derivation. Note that the additive group N ×A becomes an A-bimodule if
we define

x(n, y) = (xn+ δ(x)y, xy), (n, y)x = (nx− yδ(x), yx).

We denote this A-bimodule by M. Further, let γ : A → A be a derivation
and define d : A →M by

d(x) = (0, γ(x)).
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It is straightforward to check that d is a derivation if and only if

(9) δ(x)γ(y) = γ(x)δ(y) for all x, y ∈ A,
and d is a Jordan derivation if and only if

(10) δ(x)γ(x) = γ(x)δ(x) for all x ∈ A.
Our point here is that the condition (10) seems to be considerably weaker
than the condition (9). Thus, one may expect that this construction can be
used to produce examples of proper Jordan derivations.

From now on we assume that N = A (the more general situation when
N is an A-bimodule was mentioned only because of possible applications
elsewhere). If A is a noncommutative prime ring with char(A) 6= 2, then,
unfortunately, (9) and (10) are equivalent. This follows, for example, from
[21, Theorem 4]. On the other hand, if A is a commutative ring, then (10)
is automatically fulfilled, while (9) holds only expectionally. For example, if
A is an integral domain then (9) is readily equivalent to the condition that
δ and γ are linearly dependent over the field of fractions F of A (i.e. δ = 0
or γ(x) = λδ(x) for all x ∈ A and some λ ∈ F). Thus, we have

Example 4.4. Let A be an integral domain. Suppose there exist two deriva-
tions from A into itself that are linearly independent over the field of frac-
tions of A. Then there exist a proper Jordan derivation from A into some
A-bimodule M.

It is clear from our construction that M is a unital bimodule if A is a
unital ring. We also remark that it is not enough to assume only the exis-
tence of only one nonzero derivation on A. For example, there are certainly
nonzero derivations on the polynomial ring Z[x], but applying Remark 3.6
we see that every Jordan derivation d from Z[x] into any Z[x]-bimodule is a
derivation.

Example 4.4 justifies the necessity of some of the assumptions in certain
results in Section 3. In particular, it shows that Corollary 3.10 really does
not hold for commutative rings. This follows from the discussion in the next
subsection.

4.5. Constructing proper additive Jordan derivations on some real
and complex algebras. It is well-known that nontrivial derivations can
be constructed on many fields (see, for example, sections on derivations in
[16] or [27]). Let us briefly outline one such construction which is sufficient
for our present purposes. For simplicity we assume that our fields have
characteristic 0. Let E/F be a field extension such that a transcendence
basis B for E over F has at least two elements. Set K = F(B). Pick different
a, b ∈ B and let γ, δ : B → E be any maps such that δ(a) = γ(b) = 1
and δ(b) = γ(a) = 0. Note that δ and γ can be extended uniquely to F-
linear derivations from K into itself. Moreover, since every element in E is
algebraic over K, every derivation, say ε, on K can be extended uniquely to
a derivation on E. Indeed, given u ∈ E, let f(x) =

∑n−1
i=0 aix

i+xn ∈ K[x] be
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its minimal polynomial, and define ε(u) = −
(∑n−1

i=0 ε(ai)u
i
)
f ′(u)−1 where

f ′(x) is the formal derivative of f(x). Therefore, γ and δ can be extended
to (F-linear) derivations on E, and of course they are linearly independent
over E.

In particular this shows that there are (say, Q-linear) linearly indepen-
dent derivations on R and C. This fact gives rise examples of proper Jordan
derivations on many other important rings. By an additive (Jordan) deriva-
tion on an algebra A we mean an additive (and not necessarily linear) map
that satisfies the usual (Jordan) derivation law; that is, it is a (Jordan)
derivation of the ring A. Let us mention that there has been some interest
in additive derivations on Banach algebras, see e.g. [20]. In view of the
observation at the beginning of Section 4 we can now state

Example 4.5. Let A be a unital real or complex algebra. If A contains an
ideal of codimension 1, then there exists a proper additive Jordan derivation
from A into some unital A-bimodule M.

So, while there are no proper additive Jordan derivations on a simple real
or complex algebra A without unity (Corollary 3.10), this is no longer true
for the unitization of A. This indicates the delicate nature of the Jordan
derivation problem.

5. On Jordan derivations on C∗-algebras

Is every Jordan derivation from a C∗-algebra A into a Banach A-bimodule
a derivation? This is an intriguing open question. Unfortunately our meth-
ods do not seem to lead to the final solution, but at least we can give some
new insight into the problem. In particular we are able to give the defini-
tive answer to a related (but more algebraic) question on additive Jordan
derivations.

Johnson proved that a continuous Jordan derivation from a C∗-algebra A
into a Banach A-bimodule is a derivation [19, Theorem 6.3]. Since deriva-
tions from C∗-algebras into their Banach A-bimodules are automatically
continuous [23], the above question is equivalent to the following one: Is
every Jordan derivation from a C∗-algebra A into a Banach A-bimodule
continuous? (This is Question 14 in Villena’s survey [25]).

In the recent paper [1] the affirmative answer was obtained for various
classes of C∗-algebras, including von Neumann algebras and commutative
C∗-algebras. On the other hand, in 1992 the present author proved that
every additive Jordan derivation from a unital C∗-algebra A with no multi-
plicative functionals into any A-bimodule is a derivation [8, Corollary 2] (in
fact, the result was not stated for additive Jordan derivations, but it is clear
from the proof that it holds true for them). This result also follows from
Corollary 3.2 and the fact that a unital C∗-algebra A with no multiplicative
functionals satisfies I(A(n)) = A for every n ≥ 1. The latter can be proved
easily by combining Lemma 3.7 with the arguments from the proof of [8,
Lemma 4] (we omit details).
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The condition that a unital algebra A has a multiplicative functional is
clearly equivalent to the condition that A contains an ideal of codimension
1. Therefore, in view of Example 4.5 we have

Theorem 5.1. Let A be a unital C∗-algebra. Then there exists a proper
additive Jordan derivation from A into some unital A-bimodule if and only
if A contains an ideal of codimension 1.

The theorem of Johnson [19, Theorem 6.3] can be easily derived from
Theorem 5.1 and Remarks 3.4 and 3.5. Indeed, let d be a continuous Jordan
derivation from a C∗-algebra A into a Banach A-bimodule M. First, from
the argument in [19, p. 466] we see that in order to show that d is a derivation
we may assume without loss of generality that A is a von Neumann algebra.
Every von Neumann algebra A can be represented as A = A1⊕A2 where A1

is a commutative von Neumann algebra and A2 is a von Neumann algebra
without commutative direct summands (i.e., A2 has no central portion of
type I1). Since A2 does not have multiplicative functionals (this follows for
example from [7, Lemma 2.6]), d|A2 is a derivation. Remark 3.4 implies that
d(u1x1) = d(u1)x1 + u1d(x1) for all x1 ∈ A1 and every u1 ∈ A1 which can
be expressed as a linear combination of projections in A1. However, since
d is continuous and the linear span of projections in A1 is dense in A1, it
follows that d|A1 is a derivation (in fact, the use of the continuity assumption
can be avoided at this point, but this makes the proof incomparably more
complicated, see [1]). Applying Remark 3.5 we now see that d is a derivation.

Of course, our construction of proper Jordan derivations in Subsection
4.4 also works in the context of algebras (i.e., for linear and not only ad-
ditive maps). The result from [1] stating that there are no proper Jordan
derivations from a commutative C∗-algebra A into a Banach A-bimoduleM
can now be viewed from a different perspective: it has some relations with
the well-known fact that there are no nonzero derivations from commuta-
tive C∗-algebras into themselves. Actually, nonzero derivations do not exist
even on commutative semisimple Banach algebras [18]. Now it would be
interesting to know whether this result from [1] can be generalized to more
general algebras. This question, however, requires some carefulness. In the
noncommutative context it is clear that Johnson’s result cannot be extended
from C∗-algebras to semisimple Banach algebras. Namely, it is easy to find
a semisimple (even primitive) Banach algebra A having T2(C) as a quotient
[19, p. 465], and so there are continuous proper Jordan derivations (in fact,
antiderivations) on A.

6. Related problems on Jordan homomorphisms and Jordan
A-module homomorphisms

Recall that a Jordan homomorphism is an additive map h from a ring A
into a ring B satisfying

h(x2) = h(x)2 and h(xyx) = h(x)h(y)h(x) for all x, y ∈ A.
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The basic examples are homomorphisms, antihomomorphisms, and their
sums. It was observed already by Jacobson and Rickart that the problem
on Jordan derivations can be often reduced to the one on Jordan homomor-
phisms [17, Theorem 22]. The idea of this reduction can be easily described.
Let A be a ring and let M an A-bimodule (we remark that in [17] only
the case when M = A was considered, but the following facts are true also
in the case where M is an A-bimodule). Note that the set of all matrices
matrices of the form (

x m
0 x

)
, x ∈ A, m ∈M,

forms a ring under the usual matrix operations. We denote this ring by B.
Given a map d : A →M we define h : A → B by

h(x) =

(
x d(x)
0 x

)
.

Note that d is a derivation (resp. Jordan derivation) if and only if h is a
homomorphism (resp. Jordan homomorphism). So, knowing the structure of
Jordan homomorphisms one can also get some conclusion concerning Jordan
derivations. All these are well-known facts. What we would like to add here
is that h also satisfies

(11)
(
h(xy)− h(x)h(y)

)(
h(zw)− h(z)h(w)

)
= 0 for all x, y, z, w ∈ A.

So, if we know that h is a Jordan homomorphism, then it is much more
likely that h is a homomorphism rather than an antihomomorphism. The
condition (i) below therefore seems to be a natural one.

Now letM0 be a right A-module. We shall call an additive map f : A →
M0 a Jordan A-module homomorphism if it satisfies

(12) f(x2) = f(x)x and f(xyx) = f(x)yx for all x, y ∈ A

(similarly as in the Jordan derivation case, in the 2-torsionfree setting the
second condition follows from the first one). A natural question is of course
whether a Jordan A-module homomorphism is an A-module homomor-
phism, i.e. does f(xy) = f(x)y hold for all x, y ∈ A. This question was
studied by Zalar [26] (for the case where M0 = A) who used a method
similar to the one that has been used in the study of Jordan derivations.
Appropriate modifications of our above arguments would also give results for
Jordan A-module homomorphisms. However, instead of doing this we will
show that the Jordan derivation problem is in fact more general. Indeed, let
f : A →M0 be a Jordan A-module homomorphism. We can turn M0 into
an A-bimodule by defining the trivial multiplication AM0 = 0. We denote
this bimodule byM and note that d : x 7→ f(x) is a Jordan derivation from
A into M. If d is actually a derivation from A into M, then clearly f is an
A-module homomorphism from A into M0.

We summarize the above discussion in
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Theorem 6.1. Let A be a ring. Consider the following conditions:
(i) every Jordan homomorphism from A into an arbitrary ring that sat-

isfies (11) is a homomorphism;
(ii) every Jordan derivation from A into an arbitrary A-bimodule is a

derivation;
(iii) every Jordan A-module homomorphism from A into an arbitrary

right A-bimodule is an A-module homomorphism.
Then (i) =⇒ (ii) =⇒ (iii).

In order to justify the relevance of Theorem 6.1 we have to show that (i)
really holds in some rings and that (iii) does not hold in every ring.

We claim that the matrix ring A = Mn(D), where D is any unital ring
and n ≥ 2, satisfies (i). Indeed, if h : A → B is a Jordan homomor-
phism then by [17, Theorem 7] there are a homomorphism h1 : A →
B and an antihomomorphism h2 : A → B such that h = h1 + h2 and
h1(A)h2(A) = h2(A)h1(A) = 0. If h also satisfies (11), then we have
[h2(y), h2(x)][h2(w), h2(z)] = 0, that is, [x, y][z, w] lies in the kernel K of
h2 for all x, y, z, w ∈ A. In particular, K contains all matrix units eii since
eii = [eii, eij ][ejj , eji] for every j 6= i. Accordingly, K contains the unity of
A. However, K is an ideal of A and so K = A; that is, h2 = 0 and so h = h1

is a homomorphism. Thus, A = Mn(D) satisfies (i). Theorem 6.1 now im-
plies that there are no proper Jordan derivations from A into A-bimodules.
Under some slight additional assumptions, this could also be deduced from
the results in Section 3.

If A is a unital ring, then taking x = 1 in the second identity in (12) we
see that f(y) = m0y for all y ∈ A and some m0 ∈ M0. Therefore it makes
sense to search for an example of a ring not satisfying (iii) only among
rings that are not unital. But in fact such an example has already been
found. Note that the Jordan derivation d : U → M defined in Subsection
4.3 satisfies d(u2) = d(u)u = 0 for all u ∈ U , and hence (since char(F) 6= 2)
also d(uvu) = d(u)vu = 0 for all u, v ∈ U . Thus d is a Jordan A-module
homomorphism. However, d is not an A-module homomorphism. In the
algebra considered in Subsection 4.2 the desired examples exist even for
maps from the algebra into itself: just consider f(λa+ µb+ νab) = νab.

In view of Theorem 6.1 we now see that some of the results in Section 3
imply that in certain rings Jordan A-module homomorphisms on A are nec-
essarily A-module homomorphisms, and the examples in Section 4 generate
examples of nontrivial Jordan homomorphisms.
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