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Abstract. In this paper we apply the method of functional identities to the
study of group gradings by an abelian group G on simple Lie algebras, under

very mild restrictions on the grading group or the base field of coefficients.

1. Introduction

In this paper two areas of active research come together: Lie maps of associative
rings and group gradings of Lie algebras. The latest reference to the first area is
[12]. A number of references to the latest research in the second area can be found
in [7]. One of the main goals in both areas is to “reduce” Lie maps or Lie gradings
to the associative ones. The classical results about Lie maps deal with simple or
prime rings but the latest achievements reflected in [12] include much wider classes
of rings sufficient to settle some questions about graded Lie algebras.

Specifically, the situation in the theory of graded algebras is the following. Sup-
pose a Lie algebra L over a field F is graded by a group G. This is well known
[15] to be equivalent to L being a (right) H-comodule Lie algebra over the group
algebra H = FG, that is, to the existence of a Lie homomorphism ρ : L→ L⊗H
such that

(1) (ρ⊗ idH)ρ = (idL ⊗∆)ρ

and

(2) (idL ⊗ ε)ρ = idL.

In the case of a graded algebra, ρ is determined by ρ(ag) = ag ⊗ g where ag is a
homogeneous element of degree g. Here ∆ and ε are the coproduct and the counit
of H, respectively. If L is a Lie subalgebra generating an associative algebra A and
ρ extends to an associative homomorphism ρ : A→ A⊗H (with (1),(2) preserved!)
then A also becomes G-graded. Since both Lg and Ag are defined as the sets of
elements x in L and A satisfying ρ(x) = x⊗ g we have Lg = L ∩Ag.

In what follows we will use techniques of [12] to show the existence of such ex-
tension under certain natural restrictions on L and G. Notice, however, that the
natural extension of a Lie homomorphism is not an associative homomorphism but
rather the direct sum of a homomorphism and the negative of an antihomomor-
phism. The grading theory counterpart of this situation is the so called involution
grading on an associative algebra with involution. In the case of matrix algebras
such gradings have been completely described in [7]. In what follows we will show
that this approach works in a more general situation considered in this paper.
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The paper is organized as follows. In Section 2 we recall some definitions, fix
the notation, and indicate the main idea upon which this paper is based. Then, in
Sections 3 - 5, we apply the techniques of [12] to the study of Lie maps of tensor
products. In the remaining Sections 6 - 8 we give some applications of the results
obtained to the grading theory. Our fundamental results, Theorems 6.8, 7.1 and 8.4,
show that under certain technical conditions a grading of a Lie algebra L is induced
by an associative or an involution grading of an associative algebra A generated
by L. These abstract theorems are then applied to more concrete situations. In
particular, we obtain (modulo some technicalities) new proofs and improvements
of existing results concerning classical Lie algebras.

2. Preliminaries

Let A be a not necessarily associative algebra over a field F , and let G be a
group. We say that A is graded by G if A =

∑
g∈GAg and AgAh ⊂ Agh, for any

g, h ∈ G. An element a ∈ Ag is called homogeneous of degree g and we write
deg a = g. A subspace M is called graded if M =

∑
g∈G(M ∩ Ag). The set

SuppA = {g ∈ G |Ag 6= 0} is called the support of the grading. Let H be the group
algebra H = FG. This is a Hopf algebra with coproduct ∆(g) = g ⊗ g, counit
ε(g) = 1 and antipode S(g) = g−1, for any g ∈ G. As mentioned above, A becomes
a right H-comodule algebra with a structure homomorphism ρ : A→ A⊗H. If A
is a simple Lie algebra, it is shown in [16] that the elements in SuppA commute,
which enables one to restrict oneself to the gradings by abelian groups.

Suppose A is an associative algebra and A(−) is the Lie algebra attached to A.
As mentioned above, a grading by an abelian group G on A(−) is equivalent to a
comodule mapping ρ : A(−) → A(−) ⊗H, H = FG. We remark that A(−) ⊗H is
actually equal to (A⊗H)(−). Indeed, this follows from

[a⊗h, b⊗k] = (a⊗h)(b⊗k)−(b⊗k)(a⊗h) = (ab)⊗(hk)−(ba)⊗(kh) = [a, b]⊗(hk).

Thus, ρ is a Lie homomorphism between associative algebras A and A⊗H. Its range
is a rather “small” subset of A⊗H, which makes the results and the methods from
[12] more or less inapplicable. However, ρ can be extended to a Lie automorphism
ρ̃ of the algebra A⊗H, defined as follows:

ρ̃(a⊗ h) =
∑
g∈G

ag ⊗ (gh), where a =
∑
g∈G ag and ag ∈ Ag.

Since A is spanned by the elements of Ag, it follows that A ⊗ H is spanned by
ag ⊗ h = ρ̃(ag ⊗ (g−1h)), g ∈ G, h ∈ H. Thus ρ̃ is surjective. Now, this makes the
theory exposed in [12] applicable. Actually, the results are not directly applicable,
but the methods are. More precisely, the approach based on the concept of the
fractional degree works, as we shall see.

The previous paragraph reveals the main idea of our approach. It will be used
not only for Lie algebras A(−), A being an associative algebra, but also for some
other types of Lie subalgebras of associative algebras.

Let us fix some notation and terminology. From now on, by an “algebra” we
mean an associative algebra over a fixed field F . Let A be an algebra. We set
A] = A if A is unital, and A] is the algebra obtained by adjoining a unity to A
if A is not unital. If X is a subset of A, then by 〈X〉 we denote the subalgebra
of A generated by X. By ZA we denote the center of A. If A is an algebra with
involution ∗, then by K(A, ∗) or simply KA we denote the Lie algebra of skew
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symmetric elements of A. If V is a subspace of A stable under the involution, then
we denote by K(V, ∗) the subspace of skew-symmetric elements of V and by H(V, ∗)
the subspace of symmetric elements of V under ∗. We will be mostly concerned
with prime and simple algebras. By a central simple algebra we will mean a simple
algebra such that its centroid is F . If such an algebra is unital, then its center
ZA consists of scalar multiples of 1; otherwise ZA = 0. Recall that the extended
centroid of a prime F -algebra A can be defined as the center of the maximal left (or
right) algebra of quotients of A. It is well-known that the extended centroid of A is
a field containing F as a subfield (see e.g. [10]). We say that A is a centrally closed
prime algebra if its extended centroid coincides with F . The notion of a centrally
closed simple algebra coincides with the notion of a central simple algebra.

In some of our main results we will assume that the dimension of the algebra
in question is big enough, i.e. greater than some concrete positive integer. Let us
point out that we are not dealing with finite dimensional algebras only, so all such
results hold for infinite dimensional algebras.

3. The fractional degree

The fractional degree of an element in a ring was introduced in [8] as an auxiliary
notion, primarily needed for extending the existing results on functional identities
from the prime ring to the semiprime ring setting. As we shall see, this notion is
also suitable for the purposes of this paper.

We do not intend to discuss the fractional degree and related concepts in detail
in this section; for this we refer to the original paper [8] or to [12, Section 5.1].
Our main goal is to establish a result on the fractional degree of elements in tensor
products of algebras (Proposition 3.6).

We begin by recalling the main definitions. Let A be a subalgebra of an algebra
Q. We say that an element a ∈ A is fractionable in Q if the following two conditions
hold:

(i) If ϕ : A→ Q is an additive map such that ϕ(xay) = axϕ(y) for all x, y ∈ A,
then there exists q ∈ Q such that ϕ(x) = axq for all x ∈ A;

(ii) If q ∈ Q is such that qAa = 0 or aAq = 0, then q = 0.

For example, if A is unital and the identity element of A is also the identity element
of Q, then every invertible element in A is fractionable in Q. Indeed, (ii) is trivial,
while (i) follows by taking y = a−1. Let us also mention a nontrivial example: every
nonzero element in a prime algebra A is fractionable in the maximal left algebra of
quotients Q of A [12, Lemma 5.8].

By M(A) we denote the multiplication algebra of A, i.e. the algebra of linear
operators on A of the form x 7→

∑
i aixbi where ai, bi ∈ A. These operators can be

extended to A] in the obvious way. We say that the fractional degree of an element
t ∈ A is greater than n (in Q), where n ≥ 0, if for every i = 0, 1, . . . , n there exists
Ei ∈M(A) such that

Ei(tj) = 0 if j 6= i, and Ei(ti) is fractionable in Q

(here, of course, is should be understood that t0 = 1 ∈ A]). We write this as
f - degA,Q(t) > n. Of course, we define that f - degA,Q(t) = n if f - degA,Q(t) > n−1
but f - degA,Q(t) 6> n. If f - degA,Q(t) > n for every positive integer n, then we write
f - degA,Q(t) =∞.
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We remark that the standard notation for the fractional degree is f - degQ(t) [12],
but below we shall arrive at situations where it might not be entirely obvious which
algebra plays the role of A. Therefore we have decided to expand the notation. On
the other hand, [12] deals with the situation where t does not necessarily lie in A,
but in the idealizer of A in Q. But we do not need this level of generality here.

We continue by recording two lemmas which will be easily derived from the
results in [12].

Lemma 3.1. Let A be a centrally closed prime algebra, and let Q be its maximal
left algebra of quotients. Let L be a noncentral Lie ideal of A. If dimF A ≥ d2

(possibly ∞), then L contains an element a with f - degA,Q(a) ≥ d.

Proof. By [12, Theorems C.1 and C.2] A contains elements such that their degree
of algebraicity over F is ≥ d. But then [12, Lemma C.5] tells us that L contains
such elements as well. Now use [12, Lemma 5.10]. �

Lemma 3.2. Let A be a centrally closed prime algebra with involution, and let Q
be its maximal left algebra of quotients. Let L be a noncentral Lie ideal of KA.
If charF 6= 2, d ≥ 5 and dimF A ≥ d2, then L contains an element a with f -
degA,Q(a) ≥ d.

Proof. Just follow the proof of Lemma 3.1, except that instead of [12, Lemma C.5]
use [12, Lemma C.6]. �

We now proceed with treating the fractional degree in tensor products.

Lemma 3.3. Let A ⊆ Q be arbitrary algebras, and let H be a finite dimensional
unital algebra. If a ∈ A is fractionable in Q, then a⊗ 1 ∈ A⊗H is fractionable in
Q⊗H.

Proof. We first remark that for each r ∈ Q⊗H we have

(3) (a⊗ 1)(A⊗ 1)r = 0 =⇒ r = 0

Indeed, just pick a basis {h1, . . . , hn} of the linear space H, write r = r1⊗h1 + . . .+
rn ⊗ hn where ri ∈ Q, and note that (a⊗ 1)(A⊗ 1)r = 0 yields aAri = 0. As a is
fractionable, each ri = 0 and hence r = 0. Similarly we see that r(A⊗1)(a⊗1) = 0
implies r = 0. In particular, each of the conditions r(A ⊗ H)(a ⊗ 1) = 0 and
(a⊗ 1)(A⊗H)r = 0 yields r = 0, meaning that a⊗ 1 satisfies the conditon (ii) of
the definition of the fractionability.

Now consider an additive map Φ : A⊗H → Q⊗H such that

(4) Φ
(

(x⊗ h)(a⊗ 1)(y ⊗ k)
)

= (a⊗ 1)(x⊗ h)Φ(y ⊗ k)

for all x, y ∈ A, h, k ∈ H. We can write

Φ(x⊗ 1) = ϕ1(x)⊗ h1 + . . .+ ϕn(x)⊗ hn,
where ϕ1, . . . , ϕn : A→ Q are additive maps. By (4) we have

ϕ1(xay)⊗ h1 + . . .+ ϕn(xay)⊗ hn
= Φ(xay ⊗ 1) = Φ

(
(x⊗ 1)(a⊗ 1)(y ⊗ 1)

)
= (a⊗ 1)(x⊗ 1)Φ(y ⊗ 1) = (ax⊗ 1)

(
ϕ1(y)⊗ h1 + . . .+ ϕn(y)⊗ hn

)
= axϕ1(y)⊗ h1 + . . .+ axϕn(y)⊗ hn
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for all x, y ∈ A. Therefore ϕi(xay) = axϕi(y) for each i and all x, y ∈ A. Since
a is fractionable in Q it follows that ϕi(x) = axqi for some qi ∈ Q. Accordingly,
Φ(x⊗ 1) = (a⊗ 1)(x⊗ 1)q where q = q1 ⊗ h1 + . . .+ qn ⊗ hn. Using this together
with (4) we get

(a⊗ 1)(x⊗ 1)Φ(y ⊗ h) = Φ
(

(x⊗ 1)(a⊗ 1)(y ⊗ h)
)

=Φ
(

(x⊗ h)(a⊗ 1)(y ⊗ 1)
)

= (a⊗ 1)(x⊗ h)Φ(y ⊗ 1)

=(a⊗ 1)(x⊗ h)(a⊗ 1)(y ⊗ 1)q = (a⊗ 1)(x⊗ 1)(a⊗ 1)(y ⊗ h)q.

Thus

(a⊗ 1)(x⊗ 1)
(

Φ(y ⊗ h)− (a⊗ 1)(y ⊗ h)q
)

= 0,

and so (3) implies Φ(y ⊗ h) = (a⊗ 1)(y ⊗ h)q. This proves that a⊗ 1 satisfies the
condition (i) of the definition of the fractionability. �

The following example shows that the assumption that H is finite dimensional
is really necessary.

Example 3.4. Let A be the algebra of all infinite matrices that have only finitely
many nonzero entries. Pick a nonzero matrix a ∈ A, and let Q ⊇ A be an algebra
such that a is fractionable in Q (such algebras exist by [12, Lemma 5.8]). Further,
let H be any infinite dimensional unital algebra. We claim that a⊗1 ∈ A⊗H is not
fractionable in Q⊗H. Indeed, pick a linearly independent subset {hi | i = 1, 2, . . .}
of H, and consider Φ : A⊗H → A⊗H given by

(5) Φ(r) =

∞∑
i=1

(a⊗ 1)r(eii ⊗ hi),

where eii is a matrix unit. Note that this is well-defined since for each r this sum
is actually finite (namely, r(eii ⊗ hi) can be nonzero only for finitely many i). It is
clear that Φ satisfies Φ(r(a⊗1)s) = (a⊗1)rΦ(s) for all r, s ∈ A⊗H. Thus, if a⊗1
was fractionable in Q⊗H, there would exist q =

∑s
j=1 qj ⊗ kj ∈ Q⊗H such that

(6) Φ(r) = (a⊗ 1)rq =

s∑
j=1

(a⊗ 1)r(qj ⊗ kj)

for all r ∈ A ⊗ H. Now let n be such that hn does not lie in the linear span of
k1, . . . , ks, and let m be such that b = aemn 6= 0 (such m exists since a 6= 0).
By (5) we have Φ(emn ⊗ 1) = b ⊗ hn. On the other hand, from (6) we see that
Φ(emn ⊗ 1) =

∑s
j=1(aemnqj)⊗ kj . Thus

b⊗ hn ∈ Q⊗ k1 + . . .+Q⊗ ks,

which is clearly a contradiction. This shows that a⊗1 does not satisfy the condition
(i).

Having in mind applications to graded algebras, we are primarily interested in
the situation when A is a simple algebra and H = FG is a group algebra. Note that
the algebra A from Example 3.4 is simple. We shall be therefore forced to confine
ourselves to finite groups G in some of our main applications. The next lemma will
make it possible for us to avoid this confinement in the case of unital algebras.
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Lemma 3.5. Let A be a simple unital algebra, let Q ⊇ A be any algebra having
the same identity element as A, and let H be an arbitrary unital algebra. Then
a⊗ 1 ∈ A⊗H is fractionable in Q⊗H for every nonzero a ∈ A.

Proof. Let Φ : A⊗H → Q⊗H be an additive map satisfying (4). Since A is simple
and unital, we have

∑n
i=1 xiayi = 1 for some xi, yi ∈ A. We have

Φ(x⊗ h) = Φ
(

(x⊗ h)
( n∑
i=1

xiayi ⊗ 1
))

=

n∑
i=1

Φ
(

(x⊗ h)(xi ⊗ 1)(a⊗ 1)(yi ⊗ 1)
)

=

n∑
i=1

(a⊗ 1)(x⊗ h)(xi ⊗ 1)Φ(yi ⊗ 1).

Thus Φ(x⊗h) = (a⊗1)(x⊗h)q where q =
∑n
i=1(xi⊗1)Φ(yi⊗1). This proves that

the condition (i) is fulfilled. The condition (ii) follows from the (implicitly already
established) fact that 1⊗ 1 lies in the ideal of A⊗H generated by a⊗ 1. �

Let us mention that in order to handle only unital simple algebras we could
avoid using the fractional degree, and deal with a (somewhat simpler) concept of
the strong degree [8, 12] instead. Still, the fractional degree approach works in a
number of more general instances.

Proposition 3.6. Let A ⊆ Q be arbitrary algebras, and H a unital algebra. Then

f - degA⊗H,Q⊗H(t⊗ 1) ≥ f - degA,Q(t)

holds for every t ∈ A, provided that one of the following two conditions holds:

(a) H is finite dimensional;
(b) A is a simple unital algebra and Q has the same identity element as A.

Proof. This is an immediate consequence of Lemmas 3.3 and 3.5. Indeed, one can
pick appropriate elements in M(A ⊗ 1) (which is contained in M(A ⊗ H)), and
then use Lemmas 3.3 and 3.5. �

4. Lie maps on Lie ideals of algebras

We say that a map σ from an algebra B into a unital algebra R is a direct sum
of a homomorphism and the negative of an antihomomorphism if there exists an
idempotent ε ∈ ZR such that x 7→ εσ(x) is a homomorphism and x 7→ (1 − ε)σ(x)
is the negative of an antihomomorphism.

Proposition 4.1. Let R be a unital algebra and let S be its subalgebra such that the
centralizer of S in R is equal to ZR. Let M be a Lie ideal of some associative algebra,
let N be a Lie ideal of S, and let ρ : M → N be a surjective Lie homomorphism.
Suppose there exists t ∈ N such that f - degS,R(t) ≥ 8. Then there exist a direct
sum of a homomorphism and the negative of an antihomomorphism σ : 〈M〉 → R
and a linear map τ : M → ZR such that ρ(x) = σ(x) + τ(x) for all x ∈ M and
τ([M,M ]) = 0.

Proof. By [12, Theorem 5.6] S is a (t; 8)-free subset of R. Since N is a Lie ideal
of S and t ∈ N , we have [t, S] ⊆ N . Therefore [12, Corollary 3.18] tells us that N
is a 7-free subset of R (we note that the condition that the degree of algebraicity
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of t over ZR is not ≤ 2 holds automatically since f - degS,R(t) > 2; cf. the remark
following the proof of [12, Lemma 5.4]).

Let R be the quotient Lie algebra R(−)/ZR. For every r ∈ R we set r = r+ZR ∈
R. Define α : M → R by α(x) = ρ(x). We claim that α satisfies all conditions of
[12, Theorem 6.19]. Firstly, as a linear space ZR is trivially a direct summand of the
additive group R. Secondly, N is a 7-free subset of R and α(M) = N . Therefore
[12, Theorem 6.19] yields the existence of a direct sum of a homomorphism and

the negative of an antihomomorphism σ : 〈M〉 → R such that α(x) = σ(x) for
all x ∈ M (remark: since [12] deals with rings, and not algebras over F , applying
the results from [12] formally yields additive maps instead of linear ones; however,

from the proofs it is clear that σ is linear if ρ is). That is, ρ(x) = σ(x) for every
x ∈ M , so that τ(x) = σ(x)− ρ(x) lies in ZR. Finally, since both ρ and σ are Lie
homomorphisms, we have

τ([x, y]) = σ([x, y])− ρ([x, y]) = [σ(x), σ(y)]− [ρ(x), ρ(y)]

= [ρ(x) + τ(x), ρ(y) + τ(y)]− [ρ(x), ρ(y)]

= 0

for all x, y ∈M . �

Since σ(x) = ρ(x) − τ(x) for x ∈ M , σ actually maps 〈M〉 into the subalgebra
of R generated by S and ZR. This will be tacitly used in the proof of the next
corollary.

Theorem 4.2. Let A be a centrally closed prime algebra and H a unital commu-
tative algebra. Assume that either H is finite dimensional or A is central simple
unital. Further, let M be a Lie ideal of some associative algebra, L a noncentral Lie
ideal of A, and ρ : M → L ⊗H a surjective Lie homomorphism. If dimF A ≥ 64,
then there exist a direct sum of a homomorphism and the negative of an antiho-
momorphism σ : 〈M〉 → A] ⊗ H and a linear map τ : M → 1 ⊗ H such that
ρ(x) = σ(x) + τ(x) for all x ∈M and τ([M,M ]) = 0.

Proof. Let Q be the maximal left algebra of quotients of A. Set R = Q ⊗ H,
S = A⊗H and N = L⊗H. Since H is commutative, N is a Lie ideal of S.

Suppose that r ∈ R is such that [r, S] = 0. Writing r as
∑
i qi⊗hi, where qi ∈ Q

and the hi’s are linearly independent elements in H, it follows from [r,A ⊗ 1] = 0
that [qi, A] = 0 for every i. Since A is a centrally closed prime F -algebra, it
follows that each qi is a scalar multiple of 1 (see [10, Remark 2.3.1]). Therefore
r ∈ 1⊗H = ZR. We have thereby showed that the centralizer of S in R is ZR.

By Lemma 3.1 there exists a ∈ L with f - degA,Q(a) ≥ 8, and so t = a ⊗ 1 ∈ N
satisfies f - degS,R(t) ≥ 8 by Proposition 3.6. Using Proposition 4.1 one easily infers
the desired conclusion. �

Incidentally, we remark that if L = A, then we can replace 64 by 9. The proof is
more or less the same (yet slightly easier), just that one has to apply [12, Theorem
6.1] instead of [12, Theorem 6.19] at an appropriate place.

The structure of Lie ideals can be quite complicated in general (see e.g. [13]), but
not in simple algebras: every Lie ideal L of a simple algebra A over any field F with
charF 6= 2 is either central or it contains [A,A] [14, Theorem 1.5]. Furthermore,
[A,A] is a simple Lie algebra provided that is has trivial intersection with ZA.
(The prototype example is A = Mn(F ): its only Lie ideals are A, 0, ZA = F1
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and [A,A] = sln(F ).) These are the reasons that when considering Lie ideals of a
simple algebra A one usually restricts the attention to [A,A].

Corollary 4.3. Let A be a central simple algebra such that dimF A ≥ 64. Let
H be a unital commutative algebra. If A is not unital, then assume that H is
finite dimensional. Then every surjective Lie homomorphism ρ : [A,A] ⊗ H →
[A,A]⊗H can be extended to a direct sum of a homomorphism and the negative of
an antihomomorphism σ : A⊗H → A⊗H.

Proof. A well-known Herstein’s result says that 〈[A,A]〉 = A [14, Corollary, p. 9].
This readily implies that

〈[A,A]⊗H〉 = A⊗H.
Another Herstein’s theorem says that [[A,A], [A,A]] = [A,A] [14, Theorem 1.8],
and this yields

[[A,A]⊗H, [A,A]⊗H] = [A,A]⊗H.
These two facts together with Theorem 4.2 give the desired conclusion; namely, in
our situation M = [A,A]⊗H and so σ is defined on A⊗H = 〈M〉, and [M,M ] = M
so that τ = 0. �

Remark 4.4. Let us point out that the range of σ indeed lies in A⊗H, even when
A is not unital. This follows from the fact that [A,A] ⊗ H generates the algebra
A ⊗H. However, the idempotent ε yielding the decomposition of σ to a sum of a
homomorphism and the negative of an antihomomorphism may lie in A] ⊗H.

5. Lie maps on Lie ideals of skew elements

The proofs in this section are slightly more involved than those in the previous
section, but conceptually they are the same. Therefore we will occasionally omit
some details.

Proposition 5.1. Let charF 6= 2, R a unital algebra and S a subalgebra of R.
Assume that S has an involution and that the centralizer of S in R is equal to
ZR. Further, let B be an arbitrary algebra with involution, M a Lie ideal of KB,
N a Lie ideal of KS, and ρ : M → N a surjective Lie homomorphism. Suppose
there exists t ∈ N such that f - degS,R(t) ≥ 21. Then there exist a homomorphism
σ : 〈M〉 → R and a linear map τ : M → ZR such that ρ(x) = σ(x) + τ(x) for all
x ∈M and τ([M,M ]) = 0.

Proof. By [12, Theorem 5.6] S is a (t; 21)-free subset of R. Accordingly, KS is a
(t; 10)-free subset of R by [12, Theorem 3.28]. Since N is a Lie ideal of KS and
t ∈ N , we have [t,KS ] ⊆ N , and so N is a 9-free subset of R by [12, Corollary 3.18].

Let R and r have the same meaning as in the proof of Proposition 4.1. Define
α : M → R by α(x) = ρ(x). Clearly, N is a 9-free subset of R satisfying α(M) = N .
Therefore [12, Theorem 6.18] implies that there is a homomorphism σ : 〈M〉 → R

such that α(x) = σ(x) for all x ∈M . The rest of the proof is the same as the final
part of the proof of Proposition 4.1. �

Theorem 5.2. Let charF 6= 2, A a centrally closed prime algebra with involution
and L a noncentral Lie ideal of KA. Let also B be an arbitrary algebra with invo-
lution and M a Lie ideal of KB. Further, let H be a unital commutative algebra.
Assume that either H is finite dimensional or A is a central simple unital algebra.
If ρ : M → L⊗H is a surjective Lie homomorphism and dimF A ≥ 441, then there
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exists a homomorphism σ : 〈M〉 → A] ⊗H and a linear map τ : M → 1⊗H such
that ρ(x) = σ(x) + τ(x) for all x ∈M and τ([M,M ]) = 0.

Proof. As in the proof of Theorem 4.2, we set R = Q⊗H, where Q is the maximal
left algebra of quotients of A, S = A⊗H and N = L⊗H. The proof of Theorem
4.2 then shows that the centralizer of S in R is ZR = 1⊗H.

By Lemma 3.2 there exists a ∈ L with f - degA,Q(a) ≥ 21. Therefore t = a ⊗
1 ∈ N has f - degS,R(t) ≥ 21 by Proposition 3.6. Define an involution on S by
(x⊗ h)∗ = x∗ ⊗ h, and note that L⊗H is a Lie ideal of KS = KA ⊗H. Now use
Proposition 5.1. �

A Lie ideal of KA that is of special importance is [KA,KA]. Namely, if A is a
simple algebra, then under certain mild conditions [KA,KA] is a simple Lie algebra,
see [14, Theorem 2.15].

Corollary 5.3. Let charF 6= 2 and let A be a central simple algebra such that
dimF A ≥ 441. Suppose that A has an involution and set K = KA. Let H be a
unital commutative algebra. If A is not unital, assume that H is finite dimensional.
Then every surjective Lie homomorphism ρ : [K,K] ⊗ H → [K,K] ⊗ H can be
extended to a homomorphism σ : A⊗H → A⊗H.

Proof. Herstein’s theorem says that 〈[K,K]〉 = A [14, Theorem 2.13]. This yields

〈[K,K]⊗H〉 = A⊗H.
From Herstein’s theory of Lie ideals of skew elements (see e.g. [14, Theorem 2.15]),
one can derive that [[K,K], [K,K]] = [K,K], and this implies

[[K,K]⊗H, [K,K]⊗H] = [K,K]⊗H.
Applying Theorem 5.2 one easily completes the proof. �

6. Applications to graded algebras: Lie ideals

Let A be an associative algebra, L a Lie ideal of A such that A = 〈L〉 and G an
abelian group. In this section we consider the possibility of a group grading of L
being induced from a group grading of A. As suggested by the techniques of the
previous sections, we have to assume that G finite if A is not simple and unital.
We already know that the grading by an abelian group G on L is completely
equivalent to a comodule map ρ : L → L ⊗ H, H = FG, which can be viewed
as a Lie homomorphism from L to A ⊗H. We also know that ρ extends to a Lie
homomorphism from L⊗H to itself which we denote by the same letter: ρ(a⊗h) =
ρ(a)(1⊗h). Now L⊗H is a Lie ideal of A⊗H and A⊗H = 〈L⊗H〉. As mentioned
in Section 2, ρ : L ⊗ H → L ⊗ H is surjective. Now one can apply the results of
Section 4 allowing to extend ρ to a map ρ̃ : A⊗H → A⊗H with certain properties
depending on the properties of A and L.

If A is centrally closed prime with dimA ≥ 64 then by Theorem 4.2 there exists
σ : A ⊗ H → A ⊗ H which is the sum of a homomorphism and a negative of
an antihomomorphism and a linear map τ : L ⊗ H → 1 ⊗ H with τ([L,L]) = 0
such that for any x ∈ L one has ρ(x) = σ(x) + τ(x). If, additionally, we assume
L = [L,L] then ρ(x) = σ(x), for any x ∈ L. So in this case we may set ρ̃ = σ to
obtain an extension of ρ which is the sum of a homomorphism and the negative
of an antihomomorphism. If A is central simple and L = [A,A] then we can use
Corollary 4.3 to derive the existence of such ρ̃.



10 BAHTURIN AND BREŠAR

In what follows we would like to examine the properties of the restriction map
ρ̃ : A→ A⊗H extending the Lie homomorphism ρ : L→ L⊗H in a more general
setting where H is an arbitrary commutative bialgebra. In this case all we know is
the validity of the axioms (1) and (2) for ρ.

Proposition 6.1. Let A be a centrally closed prime algebra with dimF A > 4,
L a noncentral Lie ideal of A such that 〈L〉 = A. Suppose that L is a Lie H-
comodule algebra for a commutative bialgebra H, and suppose that an H-comodule
map ρ : L → L ⊗H extends to a direct sum of a homomorphism and the negative
of an antihomomorphism ρ̃ : A → A ⊗H. Then (idA ⊗ ε)ρ̃ = idA. In particular,
ρ̃ is not the negative of an antihomomorphism. Further, suppose that e ∈ H is an
idempotent such that a 7→ (1⊗e)ρ̃(a) is a homomorphism and a 7→ (1⊗f)ρ̃(a), where
f = 1−e, is the negative of a homomorphism, and suppose that ∆(e) = e⊗e+f⊗f
and ∆(f) = e⊗ f + f ⊗ e. Then (ρ̃⊗ idH)ρ̃ = (idA ⊗∆)ρ̃.

Proof. We have ρ̃ = ϕ̃−ψ̃, where ϕ̃ : A→ A⊗H is a homomorphism, ψ̃ : A→ A⊗H
is an antihomomorphism, and ϕ̃(A⊗H)ψ̃(A⊗H) = ψ̃(A⊗H)ϕ̃(A⊗H) = 0. Let

us set ρ′ = (idA ⊗ ε)ρ̃, ϕ = (idA ⊗ ε)ϕ̃, and ψ = (idA ⊗ ε)ψ̃. Since idA ⊗ ε is an
algebra homomorphism from A ⊗H into A, we have that ρ′, φ, ψ are linear maps
from A into A, ρ′ = ϕ−ψ, ϕ is a homomorphism, ψ is an antihomomorphism, and
ϕ(A)ψ(A) = ψ(A)ϕ(A) = 0. But then

ϕ(A)ρ′(A)ψ(A) = ϕ(A)
(
(ϕ− ψ)(A)

)
ψ(A) = 0.

By the axiom (2) of the comodule, ρ′ acts as the identity on L. Hence we have

ϕ(A)Lψ(A) = ϕ(A)ρ′(L)ψ(A) = 0.

By [11, Lemma 4] it follows that either ϕ = 0 or ψ = 0. The case ϕ = 0 will be
dealt with in the following lemma, which we will also need in the future (Section
8).

Lemma 6.2. Let A be a centrally closed prime algebra with dimF A > 4, and let
L be a noncentral Lie ideal of A such that 〈L〉 = A. Then the identity map of L
cannot be induced from the negative of an antihomomorphism of A.

Proof. To keep our notation closer to the preceding argument, we assume that ρ′

is the negative of an antihomomorphism which induces th identity map on L. In
this case, for x ∈ L and a ∈ A we will have [x, a] = ρ′([x, a]) = −[ρ′(a), ρ′(x)] =
[x, ρ′(a)], so that [L, ρ′(a) − a] = 0. Since 〈L〉 = A by assumption, this yields
[A, ρ′(a) − a] = 0, and hence µ(a) = ρ′(a) − a ∈ ZA for each a ∈ A. If also b ∈ A
then

ab+ µ(ab) = ρ′(ab) = −ρ′(b)ρ′(a) = −(b+ µ(b))(a+ µ(a)),

that is,

(a+ µ(a))b+ (b+ µ(b))a = −µ(ab)− µ(a)µ(b) ∈ ZA.
This means that ρ′ satisfies the condition

ρ′(a)b+ ρ′(b)a ∈ ZA
for all a, b ∈ A. We are now in a position to use the theory of functional identities.
Since A is a 3-free subset of the maximal left algebra of quotients of A [12, Corollary
5.12, Theorem C.2], it follows by the very definition of 3-freeness that ρ′ = 0 - a
contradiction. �
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In particular, this shows that ϕ̃ 6= 0 and hence ρ̃ cannot be the negative of a
homomorphism.

Therefore ψ = 0 and ρ′ = ϕ is a homomorphism. Since ρ′ is the identity on L and
〈L〉 = A, it follows that ρ′ = idA. We have thereby proved that (idA ⊗ ε)ρ̃ = idA.

Assume now that e ∈ H is an idempotent such that φ̃(a) = (1 ⊗ e)ρ̃(a) and

ψ̃(a) = −(1 ⊗ f)ρ̃(a), f = 1 − e, and suppose that ∆(e) = e ⊗ e + f ⊗ f , ∆(f) =
e⊗ f + f ⊗ e. We want to prove that (ρ̃⊗ idH)ρ̃ = (idA ⊗∆)ρ̃.

We have

(7) (ρ̃⊗ idH)ρ̃ = (ϕ̃⊗ idH)ϕ̃− (ψ̃ ⊗ idH)ϕ̃− (ϕ̃⊗ idH)ψ̃ + (ψ̃ ⊗ idH)ψ̃.

We will now consider separately each of the four terms on the right-hand side. Let
us do this in detail for, say, the second term; the others can be considered similarly.

Let a1, . . . , an ∈ L. We will compute
(
(ψ̃ ⊗ idH)ϕ̃

)
(a1 . . . an). Since ϕ̃ is a

homomorphism and ψ̃ is an antihomomorphism, we have(
(ψ̃ ⊗ idH)ϕ̃

)
(a1 . . . an) =

(
ψ̃ ⊗ idH

)(
ϕ̃(a1) . . . ϕ̃(an)

)
=
((
ψ̃ ⊗ idH

)
(ϕ̃(an))

)
. . .
((
ψ̃ ⊗ idH

)
(ϕ̃(a1))

)
.

(8)

One can check that(
ψ̃ ⊗ idH

)
(ϕ̃(a)) = −(1⊗ f ⊗ e)

((
ρ̃⊗ idH)(ρ̃(a))

)
for every a ∈ L. Of course, ρ̃ coincides with ρ on L, and so in view of (1) we have(

ψ̃ ⊗ idH
)
(ϕ̃(a)) = −(1⊗ f ⊗ e)

((
idA ⊗∆)(ρ(a))

)
.

Therefore it follows from (8), together with the fact that idA ⊗ ∆ is an algebra
homomorphism, that(

(ψ̃ ⊗ idH)ϕ̃
)
(a1 . . . an) = (−1)n(1⊗ f ⊗ e)

(
(idA ⊗∆)

(
ρ(an) . . . ρ(a1)

))
=(−1)n(1⊗ f ⊗ e)

(
(idA ⊗∆)

(
(1⊗ e)ρ̃(an . . . a1) + (−1)n−1(1⊗ f)ρ̃(a1 . . . an)

))
=(−1)n(1⊗ f ⊗ e)

(
1⊗∆(e)

)(
(idA ⊗∆)(ρ̃(an . . . a1))

)
− (1⊗ f ⊗ e)

(
1⊗∆(f)

)(
(idA ⊗∆)(ρ̃(a1 . . . an))

)
.

Using ∆(e) = e⊗ e+ f ⊗ f and ∆(f) = e⊗ f + f ⊗ e it obviously follows that(
(ψ̃ ⊗ idH)ϕ̃

)
(a1 . . . an) = −(1⊗ f ⊗ e)

(
(idA ⊗∆)(ρ̃(a1 . . . an))

)
.

Following the same pattern one shows(
(ϕ̃⊗ idH)ϕ̃

)
(a1 . . . an) =(1⊗ e⊗ e)

(
(idA ⊗∆)(ρ̃(a1 . . . an))

)
,(

(ϕ̃⊗ idH)ψ̃
)
(a1 . . . an) =− (1⊗ e⊗ f)

(
(idA ⊗∆)(ρ̃(a1 . . . an))

)
,(

(ψ̃ ⊗ idH)ψ̃
)
(a1 . . . an) =(1⊗ f ⊗ f)

(
(idA ⊗∆)(ρ̃(a1 . . . an))

)
.

Since
1⊗ e⊗ e+ 1⊗ e⊗ f + 1⊗ f ⊗ e+ 1⊗ f ⊗ f = 1⊗ 1⊗ 1

it now follows from (7) that (ρ̃ ⊗ idH)ρ̃ agrees with (idA ⊗∆)ρ̃ on all elements of
the form a1 . . . an where ai ∈ L. Since 〈L〉 = A this means that (ρ̃ ⊗ idH)ρ̃ and
(idA ⊗∆)ρ̃ agree on A. �
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Let us show by a simple example that the condition dimF A > 4 is not redundant.

Example 6.3. Let A = H be the algebra of quaternions. Then [A,A] is the linear
span of i, j, and k. The map ρ̃(x) = −x, where x denotes the conjugate of x, is
the negative of an antihomomorphism of A, which, however, acts as the identity on
[A,A].

Example 6.4. Another example works over any field F . Let A = M2(F ) be the

matrix algebra of order 2. Consider L = sl2(F ) = [A,A]. Let S =

[
0 1
−1 0

]
.

Then the map ρ̃(X) = −S−1XtS where Xt is the transpose of a matrix X ∈ M2

is the negative of an antiautomorphism on A and ρ = ρ̃|L acts as the identity map
on L.

Proposition 6.1 shows that ρ̃ satisfies both axioms (1) and (2), provided some
conditions are satisfied. However, ρ̃ is not always a homomorphism. Let us give an
example, the simplest one of its kind, when it is not. The relevance of this example
will become clear in Section 8.

Example 6.5. Let A be an algebra with involution, let L = A(−), and let G = Z2.
Thus, we have G = {1, t} and t2 = 1. Suppose that charF 6= 2. Setting L1 =
K(A, ∗) and Lt = H(A, ∗) we see that L becomes graded by G. Thus, ρ̃ = ρ is
given by ρ̃(a1 + at) = a1 ⊗ 1 + at ⊗ t. Note that ε = 1⊗ 1+t

2 is a nontrivial central
idempotent in A ⊗ H, H = FG, such that a 7→ ερ̃(a) is a homomorphism and
a 7→ (1− ε)ρ̃(a) is the negative of an antihomomorphism. In particular, ρ̃ is not a
homomorphism.

The assumptions concerning e in the last part of Proposition 6.1 might seem
somewhat artificial. However, we shall see later that they actually occur in a
situation in which we will be interested in. Anyway, the following simple result
tells us that the first assumption that an idempotent yielding the decomposition of
ρ̃ is of the form 1⊗ e is in fact automatically fulfilled.

Proposition 6.6. Let A and H be algebras with ZA] = F . Then all central idem-
potents of A] ⊗H are of the form of 1⊗ e, e a central idempotent of H.

Proof. Note that if ε =
∑n
i=1 ri⊗hi is central, with h1, . . . , hn linearly independent,

then each ri is also central, that is, a scalar multiple of the identity element 1 of
A]. Then ε = 1⊗ e, e ∈ ZH and ε2 = ε immediately gives e2 = e, as claimed. �

In the rest of this section we restrict ourselves to the case where central idem-
potents are trivial. We need an easy result.

Proposition 6.7. Let A be an algebra with ZA] = F , and let H = FG be the
group algebra of an abelian group G. We define a subgroup T1 of G as follows. Let
T be the subgroup of elements of G of finite order. In the case charF = 0 we set
T1 = T . In the case charF = p > 0 we define T1 as the subgroup of T consisting of
all elements whose order is coprime to p. Then any central idempotent of A] ⊗H
is of the form 1⊗ e where the idempotent e lies in the group algebra of T1.

Proof. Without loss of generality we may assume that A = A]. Any idempotent
is an element of A ⊗ FG′ where G′ is a finitely generated subgroup of G. This
allows us to assume from the very beginning that G is finitely generated. Let us
decompose H as H = H0 ⊗K according to the group decomposition G = G0 × T
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where G0 is torsion-free and T is torsion. If F has characteristic p > 0 then also
T = T0 × T1 where T0 is a Sylow p-subgroup and T1 has no elements of order p.
Then H = H0 ⊗ K0 ⊗ K1 where H0, K, K0, and K1 are the group algebras of
G0, T , T0, and T1, respectively. We will assume that H = H0 ⊗K0 ⊗K1 for any
characteristic, having in mind that each of the factors may be trivial. Let u be an
idempotent of A⊗H. If we prove our claim after an extension of the field then it
is true even before. So we may assume F algebraically closed. In this case K1 is
the direct sum of the (mutually orthogonal) copies of F each spanned by some ei,
i = 1, . . . , n, for some n. If ε is a central idempotent in A⊗H, then ε = ε1 + · · ·+εn
where now εi = ε(1⊗ei) may be viewed as idempotents in A⊗Hei ∼= A⊗(H0⊗K0).

First we show that the central idempotents of R = A ⊗ H0 are trivial. Using
induction by the rank of G0, we can assume G0 being infinite cyclic with generator
x. Let u be a central idempotent in R. Then u = (a0 ⊗ 1 + a1 ⊗ x + · · · + am ⊗
xm)(1⊗ x−k), for some non-negative m, k. Here a0, . . . , am are central elements of
A. Since u2 = u, we immediately obtain k = 0 and then a2

0 = a0, that is, a0 = 1
by our assumption on A. Comparing the x-powers, we obtain a1 = 0, then a2 = 0,
etc.

Now we have to show that for any R without nontrivial central idempotents the
central idempotents of R⊗K0 are trivial. It is well-known that the largest nilpotent
ideal N of the group algebra K0 of a p-group T0 over a field F of characteristic p > 0
coincides with the augmentation ideal so that K0 = F ⊕N where N is a nilpotent
ideal. Then we can write a central idempotent u as u = a0⊗1+a1⊗v1 +· · · am⊗vm
where ai 6= 0 are central elements in R ⊗ K0 while vj are linearly independent
elements, a part of a filtered basis of N . Considering u2 = u we easily obtain
a2

0 = a0 or, by our assumption, a2
0 = 1. We will also have

0 = a1 ⊗ v1 + · · ·+ am ⊗ vm +

m∑
i,j=1

aiaj ⊗ vivj .

If v1 is the element with the least filtration then we must have a1 = 0, which is a
contradiction. So, we must have u = 1⊗ 1 in A⊗ (H0 ⊗K0), considering that we
have no nontrivial central idempotents in R = A⊗H0.

Accordingly, each εi is either 0 or 1 ⊗ ei. This readily implies that ε = 1 ⊗ e
where e is an idempotent in H. �

Some easy but important consequences of this result are as follows. We recall
that a Lie algebra is called perfect if L = [L,L].

Theorem 6.8. Let a perfect Lie algebra L be a Lie ideal generating a centrally
closed prime algebra A over a field F , dimF A ≥ 64, and G an abelian group which
is finite if A is not simple and unital. Suppose G has no periodic elements, if
char F = 0 or no periodic elements whose order is coprime to p if char F = p > 0.
If L is graded by G, then there is an associative grading A =

⊕
g∈GAg such that

Lg = Ag ∩L, for all g ∈ G. If, additionally, A is simple and L = [A,A] then every
Lie grading of L is induced from an associative grading of A.

Proof. We use Proposition 6.7 to obtain that any central idempotent of A] ⊗H is
trivial. Given a Lie grading of L we consider the comodule map ρ : L→ L⊗H. As
pointed out at the beginning of the section, Theorem 4.2 makes it possible for us to
extend ρ to the sum of a homomorphism and the negative of an antihomomorphism
ρ̃ : A → A ⊗H. The central idempotent ε yielding the decomposition of ρ̃ lies in
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A] ⊗H (see Remark 4.4). However, Proposition 6.7 tells us that A] ⊗H has only
trivial central idempotents, so that ε = 0 or ε = 1. The case ε = 0 is impossible
since ρ̃ is not the negative of an antihomomorphism by Proposition 6.1. Thus ε = 1
and so ρ̃ is a homomorphism. This, together with 〈L〉 = A, implies that ρ̃ also
satisfies the axioms (1) and (2). Now since both Lg and Ag are defined in the same
way, using ρ, say, Ag = {x | ρ(x) = x⊗ g}, we obviously obtain Lg = L∩Ag, for all
g ∈ G.

The last claim easily follows if we apply Corollary 4.3. �

Now let A = Mn(F ) be a matrix algebra of order n over a field F , A = Mn(F )
where F is the algebraic closure of F . Any grading of A by a group G naturally
induces a grading of A by G if one sets Ag = Ag ⊗ F . We say that a grading of
the matrix algebra A = Mn(F ) is elementary if there is an n-tuple of elements
(g1, . . . , gn) ∈ Gn such that for a certain choice of matrix units Eij of A one has

Ag = Span {Eij | g = g−1
i gj}.

Theorem 6.9. Let L = sln(F ) be graded by an abelian p-group G. If charF = p and
n ≥ 8 then any grading of L is induced from an (elementary) grading of A = Mn(F ).

Proof. By [5] all gradings of a matrix algebra over a field of characteristic p > 0 by
a finite abelian p-group are elementary. Applying Theorem 6.8 we easily derive our
result. �

The following result is proved in [3] by entirely different methods.

Theorem 6.10. Let A = Mn(F ), char F = p > 0, p 6= 2 and p 6 | n. Let G be a
finite abelian p-group and L = sln(F ). Suppose L =

∑
g∈G Lg is a grading on L.

Then there exists an elementary grading A =
∑
g∈GAg such that Lg = Ag ∩ L.

Thus, in [3] the restriction that n ≥ 8 is not required; such restrictions typically
appear when functional identities are used. On the other hand, the advantage of
the approach used in this paper is that we do not need the assumption that p 6 | n.

7. Applications to graded algebras: Lie algebras of skew-symmetric
elements

Let A be an algebra with involution ∗, let charF 6= 2, let KA be the Lie algebra
of skew-symmetric elements under ∗, and set L = [KA,KA]. Again, given a grading
of L by an abelian group G, we have a comodule Lie homomorphism ρ : L→ L⊗H.
As before, we can extend ρ to a surjective Lie homomorphism ρ̃ : L⊗H → L⊗H.
Applying Theorem 5.2 as above we can easily prove the following.

Theorem 7.1. Let A be a centrally closed prime algebra with involution. Assume
that charF 6= 2 and dimF (A) ≥ 441. Let L a noncentral Lie ideal of KA such
that 〈L〉 = A and L is a perfect Lie algebra. Let L be graded by an abelian group
G, which should be assumed finite if A is not simple and unital. Then there is an
associative grading A =

⊕
g∈GAg such that Lg = Ag ∩ L, for all g ∈ G.

An important special case is L = [KA,KA] with A simple (see Corollary 5.3).

Theorem 7.2. Let A be a central simple algebra with involution. Assume that
charF 6= 2 and dimF (A) ≥ 441. Let L = [KA,KA] be graded by an abelian group
G, which should be assumed finite if A is not unital. Then there is an associative
grading A =

⊕
g∈GAg such that Lg = Ag ∩ L, for all g ∈ G.
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A direct consequence is the following theorem, which is an extension of results
in [4] and [7].

Theorem 7.3. Let L = so(n) with n ≥ 21, or L = sp(2m) with m ≥ 11, G be a
finite abelian group G, and let charF 6= 2. Then the G-gradings of L are induced
from the involutions gradings of Mn(F ).

The involution gradings of Mn(F ) are completely described in [7] provided that
charF 6= 2 and F has “sufficiently many” roots of 1 (for example, when F is
algebraically closed).

There is no technical restriction on n in [4] in the case of zero characteristic.

The following theorem is proved in [3] by entirely different methods.

Theorem 7.4. Let L be one of so(n), n ≥ 5, n 6= 8, and sp(n), n ≥ 6, n even,
where F is an algebraically closed field, charF 6= 2. Let G be a finite abelian group.
Then any G-grading on L is the restriction of a G-grading of Mn(F ). Moreover,
if G is a p-group then any G-grading on L is the restriction of an elementary
G-grading of Mn(F ).

8. Applications to graded algebras: two types of gradings on [A,A]

In this section we consider the case where a Lie grading on L = [A,A] is given by
an abelian group G with periodic elements over a field F of characteristic 0 or with
periodic elements of order coprime to p = char F . As noted at the beginning of
Section 6 and in Proposition 6.7, the comodule Lie homomorphism ρ : L→ L⊗H
is induced by a map ρ̃ : A → A ⊗ H which is the the sum of an associative
homomorphism a → (1 ⊗ e)ρ̃(a) and the negative of an antihomomorphism a →
(1 ⊗ f)ρ̃(a) with e and f = 1 − e being central idempotents of the group algebra
K1 = FT1 where, in the same way as in Proposition 6.7, T1 is the subgroup of all
periodic elements of G in the case where char F = 0 or of all periodic elements of
G of order coprime to p if p = char F . Note that A is not assumed to be unital, so
that 1⊗ e, 1⊗ f ∈ A] ⊗H.

To study the precise form of the idempotents e and f we will temporarily assume
that F is algebraically closed. In this case, K1 = Fe1⊕· · ·⊕Fem where e1, . . . , em
are pairwise orthogonal indecomposable idempotents of K1, m = dimK1 = |T1|.
Also, it is well-known [1] that in this case T1

∼= T̂1 where T̂1 is the group of multi-
plicative characters χ : T1 → F ∗. Also, the idempotents in the above decomposition
of K1 take the form of

(9) eχ =
1

m

∑
t∈T1

χ(t)−1t.

Note that if (ψ | χ)T1 stands for the scalar product of the characters ψ and χ of
a group T1 then

(10) χ(eψ) =
1

m

∑
t∈T1

ψ(t)−1χ(t) = (ψ | χ)T1
= 1 if ψ = χ and 0 otherwise.

One more important formula, a direct consequence of (9), is this. For any t ∈ T1

and χ ∈ T̂1 one has teχ = χ(t)eχ. Further, given a subset Ω of T̂1, one can define
an idempotent eΩ =

∑
χ∈Ω eχ in FT1, and conversely, every idempotent in FT1
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is of such form. In particular, there is Λ ⊂ T̂1 such that e = eΛ. Note that

f = 1− e = eΛ′ where Λ ∪ Λ′ = T̂1.
Before we formulate our next result we introduce the group AutA of automor-

phisms and the negatives of antiautomorphisms of the algebra A. This has a sub-
group of automorphisms AutA of index at most 2.

Now given χ ∈ T̂1 we set α(χ) = (idA ⊗ χ)ρ. For example, if ρ(x) = x⊗ g then
α(χ)(x) = χ(g)x. Our goal will be to prove the following.

Proposition 8.1. Let A be a centrally closed prime algebra with dimF A > 4, and
L a noncentral Lie ideal of A such that 〈L〉 = A. Let L be G-graded, for an abelian
group G and let ρ : L → L ⊗ H be the Lie comodule map, where H is the group
algebra of G. Adopting the notation and assumptions preceding this proposition,
we write e = eΛ and f = eΛ′ for the central idempotents of H such that given
the extension ρ̃ : A → A ⊗ H we have that a → (1 ⊗ e)ρ̃(a) is an associative
homomorphism while a → (1 ⊗ f)ρ̃(a) is the negative of an antihomomorphism.

Then the mapping α : T̂1 → AutA is a group homomorphism and hence Λ is a

subgroup of index at most 2 in T̂1.

Proof. Let us assume χ ∈ T̂1 and x, x′ ∈ A. We will first show that if χ ∈ Λ
then α(χ) is a homomorphism while if χ /∈ Λ then α(χ) is the negative of an
antihomomorphism. Indeed, we have

α(χ)(xx′) = (idA ⊗ χ)(ρ(xx′)(1⊗ eΛ) + ρ(xx′)(1⊗ eΛ′))

= (idA ⊗ χ)(ρ(x)(1⊗ eΛ)ρ(x′)(1⊗ eΛ)− ρ(x′)(1⊗ eΛ′)ρ(x)(1⊗ eΛ′))

= (idA ⊗ χ)(ρ(x))(idA ⊗ χ)(ρ(x′))(idA ⊗ χ)(1⊗ eΛ)

− (idA ⊗ χ)(ρ(x′))(idA ⊗ χ)(ρ(x))(idA ⊗ χ)(1⊗ eΛ′)

= α(χ)(x)α(χ)(x′)
∑
λ∈Λ

χ(eλ)− α(χ)(x′)α(χ)(x)
∑
µ∈Λ′

χ(eµ).

If χ ∈ Λ then only one term, in the first summand of the latter term survives,
and we have α(χ)(xx′) = α(χ)(x)α(χ)(x′), that is, α(χ) is a homomorphism. Oth-
erwise, only one term of the second summand survives and one has α(χ)(xx′) =
−α(χ)(x′)α(χ)(x), that is, α(χ) is the negative of a antihomomorphism.

Now we would like to show that α(χψ) = α(ψ)α(χ) for any two χ, ψ ∈ T̂1. By
the comodule axiom (2) the elements x with ρ(x) = x⊗ g span L. The restriction
ᾱ(χ) of each α(χ) to L is a Lie algebra automorphism. For any x as just above we
have

α(χψ)(x) = (χψ)(g)x = χ(g)ψ(g)x = α(ψ)(α(χ)(x)).

Thus ᾱ : T̂1 → AutL is a group homomorphism.
Let us show that each α(χ) is bijective. We will prove that α(χ−1) is an inverse

of α(χ). Indeed, for any x ∈ L, we have

(α(χ)α(χ−1))(x) = α(χ)(α(χ−1)(x)) = ᾱ(χ)(ᾱ(χ−1)(x)) = ᾱ(χχ−1)(x) = x.

Thus α(χ)α(χ−1) is a homomorphism or the negative of a homomorphism of A
extending the identity map of L. By Lemma 6.2 this cannot be an antihomomor-
phism. But since A = 〈L〉 we must have α(χ)α(χ−1) = idA, as claimed.

Now choose any χ, ψ ∈ T̂1. Then all the mappings α(χ), α(ψ) and α(χψ)
are bijective which allows us to form the product α(χ)α(ψ)α(χψ)−1. The same
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calculation as before shows that this map is identical on L. Again, we must have

α(χ)α(ψ) = α(χψ). Thus α is a group homomorphism from T̂1 to AutA. �

If we do not impose restrictions on the field of coefficients F then we obtain the
following.

Proposition 8.2. Let A be a centrally closed prime algebra with dimF A > 4,
and L a noncentral Lie ideal of A such that 〈L〉 = A. Let L be G-graded, for an
abelian group G and ρ : L → L ⊗H the Lie comodule map, where H is the group
algebra of G. Suppose e and f are the nontrivial central idempotents of H such
that for an extension ρ̃ : A→ A⊗H we have that a→ (1⊗ e)ρ̃(a) is an associative
homomorphism while a → (1 ⊗ f)ρ̃(a) is the negative of an antihomomorphism.
Then t = e− f is an element of G of order 2.

Proof. Let us assume, for the time being, that our field is algebraically closed. By

[6, Proposition 5.2] we have T1 = 〈a〉 × T ′1, T̂1 = 〈χ0〉 ×∆ where the order of a and
χ0 is 2k, for some k > 0, Λ = 〈χ2

0〉 ×∆. We also have χ0(T ′1) = 1 and δ(a) = 1, for

all δ ∈ ∆. Now each χ ∈ T̂1 is of the form χ = µδ where µ(T ′1) = 1 and δ ∈ ∆. In
this case the idempotent eχ can be transformed as follows:

eχ =
1

m

∑
t∈T1

χ(t)−1t =
1

m

∑
u∈〈a0〉,v∈T ′1

µδ(uv)−1uv

=

 1

2k

∑
u∈〈a0〉

µ(u)−1u

 1

|T ′1|
∑
v∈T ′1

δ(v)−1v

 .

If we fix µ with µ(T ′1) = 1 then the sum of all eµδ with δ ∈ ∆ by the previous
calculation will be equal to the idempotent eµ of the group algebra F 〈a0〉 because
the remaining factor ∑

δ∈∆

1

|T ′1|
∑
v∈T ′1

δ(v)−1v

equals 1 as the sum of all indecomposable idempotents of the group algebra FT ′1.
Now each term of either eΛ or eΛ′ is of that form, which allows us to restrict to
the case where T ′1 is trivial. So we need an explicit computation only in the case
where T1 is a 2-group generated by a single element a of order m = 2k. We have
χ0(a) = ξ−1, where ξ is a primitive 2kth root of 1. Further, we have

e =

2k−1−1∑
i=0

eχ2i
0

and f =

2k−1−1∑
i=0

eχ2i+1
0

.

To compute e− f , we need to use (9), which we will rewrite as follows:

eχs
0

=
1

2k

2k−1∑
r=0

ξsrar.

Let ζr be a primitive 2rth root of 1. Then one can write e− f as follows

(11) e− f =

2k−1∑
r=0

2k−1∑
s=0

(ξζr)
sr

 ar.
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Now
2k−1∑
s=0

(ξζr)
sr =

{
2k if (ξζr)

r = 1
(ξζr)r2

k
−1

(ξζr)r−1 = 0 otherwise

Thus ar enters the right hand side of (11) with nonzero coefficient only if ξr(−1) =
(ξζr)

r = 1, that is ξr = −1. Obviously, then we must have r = 2k−1 and e − f =

a2k−1

, a group element of order 2, as claimed.
At this time we can go back to the original field F because both e and f are

defined over F . From what we have proved, it also follows that ∆(t) = t⊗ t and so
t is a group-like element, hence t ∈ G. Obviously, o(t) = 2. �

Corollary 8.3. Under the same conditions, as in Proposition 8.2, one has ∆(e) =
e⊗ e+ f ⊗ f and ∆(f) = e⊗ f + f ⊗ e. Therefore, in this case, the axioms (1) and
(2) always hold for the extension map ρ̃ : A→ A⊗H.

Proof. Applying ∆ to both sides of the equations e + f = 1 and e − f = t and
considering that t is an element of a group, we obtain ∆(e) + ∆(f) = 1 ⊗ 1 =
(e+ f)⊗ (e+ f), ∆(e)−∆(f) = t⊗ t = (e− f)⊗ (e− f). Adding and subtracting
the sides of these equations, we easily obtain the desired. For the last claim use
Proposition 6.1. �

As shown by example earlier, the map ρ̃ : A → A⊗H we have obtained before
cannot serve as the comodule map making A into a G-graded algebra. So we
have to make an additional assumption that A has an involution compatible with
ρ̃. Namely, if A has an involution ∗ then we can extend it to A ⊗ H by setting
(a⊗ h)∗ = a∗ ⊗ h, for any a ∈ A and h ∈ H. Then we require the following

(i) ρ̃(x∗) = ρ̃(x)∗, for any x ∈ A;
(ii) L∗ = L.

Notice that (ii) will be automatically satisfied in the case L = [A,A]. Both
conditions are satisfied when A = Mn(F ) and L = sln(F ) (see Theorem 8.6)

From these conditions it follows easily that (Lg)
∗ = Lg, for any g ∈ G. Indeed,

for any x ∈ Lg one has x∗ ∈ L and

ρ(x∗) = ρ̃(x∗) = (ρ̃(x))∗ = (ρ(x))∗ = (x⊗ g)∗ = x∗ ⊗ g,
as needed.

Thus each Lg splits into the sum of the space of symmetric and skew-symmetric
elements so that L is spanned by homogeneous symmetric and skew-symmetric
elements.

We set

ρ∗(x) = ρ̃(x)(1⊗ e)− ρ̃(x∗)(1⊗ f).

Next we check that ρ∗ is now an associative homomorphism. Given x, y ∈ A, we
have

ρ∗(xy) = ρ̃(xy)(1⊗ e)− ρ̃((xy)∗)(1⊗ f)

= (ρ̃(x)(1⊗ e))(ρ̃(y)(1⊗ e))− ρ̃(y∗x∗)(1⊗ f)

= (ρ̃(x)(1⊗ e))(ρ̃(y)(1⊗ e)) + (ρ̃(x∗)(1⊗ f))(ρ̃(y∗)(1⊗ f))

= (ρ̃(x)(1⊗ e)− ρ̃(x∗)(1⊗ f))(ρ̃(y)(1⊗ e)− ρ̃(y∗)(1⊗ f))

= ρ∗(x)ρ∗(y).
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Now for any skew-symmetric x ∈ Lg one has

ρ∗(x) = ρ(x)(1⊗ e)− ρ(x∗)(1⊗ f)

= ρ(x)(1⊗ e)− (ρ(x)(1⊗ f))∗

= (x⊗ g)(1⊗ e)− ((x⊗ g)(1⊗ f))∗

= (x⊗ g)(1⊗ e)− (x∗ ⊗ g)(1⊗ f)

= (x⊗ g)(1⊗ e) + (x⊗ g)(1⊗ f)) = (x⊗ g)(1⊗ (e+ f)) = x⊗ g.

Similar computation in the case where x is symmetric gives

ρ∗(x) = ρ(x)(1⊗ e)− ρ(x∗)(1⊗ f)

= (x⊗ g)(1⊗ e)− (x∗ ⊗ g)(1⊗ f)

= (x⊗ g)(1⊗ e)− (x⊗ g)(1⊗ f) = (x⊗ g)(1⊗ (e− f)) = x⊗ (gt).

On skew-symmetric and symmetric elements of L, therefore, the conditions (1) and
(2) are satisfied. For instance, both sides of (1) on a symmetric element x of Lg will
give x⊗ (gt)⊗ (gt). Checking (2) is even simpler. Now since all maps on both sides
of (1) and (2) for ρ∗ are associative homomorphisms, it follows that both conditions
are satisfied on the whole of A provided that A = 〈L〉. In this case ρ∗ induces a
G-grading on A. From the above arguments we have the following result.

Theorem 8.4. Let a perfect Lie algebra L be a Lie ideal generating a centrally
closed prime algebra A, dimF A ≥ 64, L given a grading L =

⊕
g∈G Lg by an

abelian group G, and charF 6= 2. Additionally we assume that G is finite if A is
not simple and unital. Let the following condition be satisfied. If we do not have
Lg = Ag ∩ L for an associative grading of A, then we have an involution ∗ on A
satisfying (i) and (ii) above. Then any grading of L is of one of two types

(1) There exists an associative G-grading of A such that Lg = Ag ∩L, for each
g ∈ G.

(2) There exist an element t of order 2 in G, an involution ∗ on A and an
involution grading A =

⊕
g∈GAg such that

Lg = K(Ag, ∗) ∩ L⊕H(Agt, ∗) ∩ L.

The same conclusion holds if A is a central simple algebra and L = [A,A] where
we need only to require (i) satisfied.

Proof. First of all, under these conditions, ρ extends to ρ̃ which is the sum of a
homomorphism and the negative of an antihomomorphism. As previously, ρ̃ cannot
be an antihomomorphism. If ρ̃ is a homomorphism then ρ̃ makes A into a G-graded
algebra and the first case occurs.

Otherwise, by our assumption, there is an involution satisfying (i) and (ii). Then
the map ρ∗, as shown just before the statement of this theorem, makes A into a G-
graded algebra. We set t = e−f . By Proposition 8.2 t is an element of order 2 in G.
The computation preceding the theorem shows that the skew-symmetric elements
in Lg have degree g in the grading of A induced by ρ∗ while the symmetric elements
have degree gt. This proves that, indeed, Lg = K(Ag, ∗) ∩ L ⊕H(Agt, ∗) ∩ L, for
each g ∈ G.

Checking that ρ∗ is compatible with ∗ is a simple exercise, which we leave to the
reader. �
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In conclusion, we will consider two important cases where the conditions of the
above theorem hold.

Theorem 8.5. Let a perfect Lie algebra L be a Lie ideal generating a centrally
closed prime algebra A, dimF A ≥ 64, L given a grading L =

⊕
g∈G Lg by an

abelian group G, and charF 6= 2. Suppose that G is an abelian group such that the
order of each 2-element is actually 2, and that G is finite if A is not unital and
simple. If L = [A,A] is G-graded, then one of the two cases occur:

(1) There exists an associative G-grading of A such that Lg = Ag ∩L, for each
g ∈ G.

(2) There exist an element t of order 2 in G and an involution ∗ on A such
that Lg = K(Ag, ∗) ∩ L⊕H(Agt, ∗) ∩ L.

The same conclusion holds if A is a central simple algebra and L = [A,A].

Proof. Using the same argument as before, we may assume that the associative
extension ρ̃ : A→ A⊗H is an actual sum of a homomorphism and the negative of
an antihomomorphism. This can be done because otherwise we would have the first
case in our theorem. Extending the field of coefficients to the algebraically closed

F̄ , and applying Proposition 8.2, we will find the subgroup Λ ⊂ T̂1 of index 2.
Therefore, there is an element χ /∈ Λ. By our assumption o(χ) = 2q where q is odd.
In this case χq is still outside of Λ, and we may assume that from the very beginning
we have χ of order 2 being outside of Λ. By the argument preceding Theorem 8.4
we should have that α(χ) is the negative of an involution on A. Thus we may set
x∗ = −α(χ)(x). Notice that because o(χ) = 2 our involution is defined over the
original field F . To apply Theorem 8.4, we only need to check that ρ̃(a∗) = ρ̃(a)∗

and this is enough to do for the homogeneous elements of L. If a ∈ Lg then

ρ̃(a∗) = ρ̃(−α(χ)(a)) = −χ(g)a⊗ g = (−α(χ)(a)⊗ 1)(a⊗ g)

= (−α(χ)⊗ 1)ρ̃(a) = ρ̃(a)∗,

as claimed. �

Finally, we apply our results to the classical Lie algebra L = sln(F ).

Theorem 8.6. Let L = sln(F ) be given a grading L =
⊕

g∈G Lg by a finite abelian
group G, F an algebraically closed field of characteristic 6= 2, n ≥ 8. Set A =
Mn(F ). Then one of the two cases occur:

(1) Lg = Ag is an associative grading of Mn(F )
(2) There is an involution grading A =

⊕
g∈GAg on A = Mn(F ) and an

element t of order 2 in G such that for all g ∈ G one has Lg = K(Ag, ∗)⊕
H(Agt, ∗) ∩ L.

Proof. The existence of the involution in the hypotheses of Theorem 8.4 is proven
in [6, Theorem 5.5, Proposition 6.4]. �

Remark 8.7. (i) The difference between the conclusion in Theorem 8.5 and 8.6
is explained by the fact that in L = sln(F ) we always have K(A, ∗) ⊂ L.

(ii) Theorem 8.6 was proved in [6] in the case of the fields of characteristic zero.
There is no technical restriction of n ≥ 8 in [6] in that paper.

(iii) The following theorem was proved by attracting the techniques of formal
groups in [3].
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Theorem 8.8. Let L = sln(F ) where F is an algebraically closed field of
prime characteristic p 6= 2 such that p - n. Let G be a finite abelian group.
Then any G-grading on L is either of type (1) or of type (2) (as described
above).

(iv) The following theorem was proved in [2] by a nontrivial adaptation of the
proof of [9, Theorem 3.3].

Theorem 8.9. Let R = Mn(F ), n 6= 2, where F is an algebraically closed
field of prime characteristic p 6= 2, and, in the case n = 3, also p 6= 3. Let
Z = [R,R]∩Z(R) and L = [R,R]/Z. Let G be a finite abelian group. Then
any G-grading on L is either of type (1) or of type (2) above. Moreover, if
G is a p-group then any G-grading on L is of type (1), i.e., is induced by
an elementary G-grading of R.
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