
ar
X

iv
:1

01
0.

21
56

v2
  [

m
at

h.
R

A
] 

 2
5 

N
ov

 2
01

0

ON LOCALLY COMPLEX ALGEBRAS AND

LOW-DIMENSIONAL CAYLEY-DICKSON ALGEBRAS

MATEJ BREŠAR, PETER ŠEMRL, ŠPELA ŠPENKO

Abstract. The paper begins with short proofs of classical theorems by Frobe-
nius and (resp.) Zorn on associative and (resp.) alternative real division alge-
bras. These theorems characterize the first three (resp. four) Cayley-Dickson
algebras. Then we introduce and study the class of real unital nonassociative
algebras in which the subalgebra generated by any nonscalar element is isomor-
phic to C. We call them locally complex algebras. In particular, we describe all
such algebras that have dimension at most 4. Our main motivation, however,
for introducing locally complex algebras is that this concept makes it possible
for us to extend Frobenius’ and Zorn’s theorems in a way that it also involves
the fifth Cayley-Dickson algebra, the sedenions.

1. Introduction

The real number field R, the complex number field C, and the division agebra
of real quaternions H are classical examples of associative real division algebras.
In 1878 Frobenius [10] proved that in the finite dimensional context they are also
the only examples. Assuming alternativity instead of associativity, there is another
example: O, the division algebra of octonions. It turns out that this is the only
additional example. This result is attributed to Zorn [21].

In Section 3 we give short and self-contained proofs of these classical theorems
by Frobenius and Zorn. Both proofs are based on the same idea. In fact, the proof
of Zorn’s theorem is a continuation of the proof of Frobenius’ theorem. The proofs
are constructive, it appears like H and O are met "unintentionally".

Our proofs of Frobenius’ and Zorn’s theorems were discovered by accident, when
examining the class of real unital algebras with the following property: the subalge-
bra generated by any element different from a scalar multiple of 1 is isomorphic to
C. These algebras, which we call locally complex, will be first considered in Section
4. In particular, we will classify all locally complex algebras of dimension at most
4.

Unlike real division algebras which exist only in dimensions 1, 2, 4, and 8 [3, 13],
locally complex algebras exist in abundance in any dimension. However, among
alternative (and hence also associative) finite dimensional real algebras, the concepts
of division algebras and locally complex algebras coincide. Frobenius’ and Zorn’s
theorems can be therefore equivalently stated so that one replaces "division" by
"locally complex" in the formulation. This observation paves the way for continuing
in the direction of these two theorems.

The algebras R, C, H, and O are the first four (real) algebras formed in the
Cayley-Dickson process. The next one is the 16-dimensional algebra S of (real)
sedenions. It is the first algebra in this process that is neither a division nor an
alternative algebra. Although it is therefore somewhat less attractive than its fa-
mous predecessors, S has recently gained a considerable attention. Over the last
years it was considered in several papers by algebraists as well as by mathematical
physicists [1, 2, 4, 5, 6, 12, 14, 16]. To the best of our knowledge, however, there
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are no results that characterize S through its abstract algebraic properties. More-
over, one might get an impression when looking at some of these papers that such
characterizations are not really expected (for example, see the introduction in [2]).
One of the goals of this paper is to show that actually they can be established.

In Section 5 we consider locally complex algebras that are simultaneously super-
algebras with the property that all their homogeneous elements satisfy the alter-
nativity conditions (see (1) below). Our main result says that besides the obvious
examples, i.e., R, C, H, O, and S, there are exactly two more algebras having these
properties, one in dimension 8 and another one in dimension 16. As corollaries we
get three characterizations of S: the first one is based on the existence of special
elements satisfying a version of the alternativity condition, the second one is based
on the properties of zero divisors, and the third one is based on the structure of
subalgebras.

Let us remark that among the papers listed above, the one by Calderon and
Martin [5] is philosophically the closest one to our paper since it also considers
superalgebras. However, the two papers do not seem to have any overlap. On
the other hand, in our final results on sedenions we were influenced by the papers
[2, 6, 16].

2. Preliminaries

The purpose of this section is to recall some definitions and elementary properties
of the notions needed in subsequent sections.

Let A be a nonassociative algebra over a field. In this paper we will be actually
interested only in the case where this field is R, although some parts, like the
following definitions and comments, make sense in a more general setting. Recall
that A is said to be a division algebra if for every nonzero a ∈ A, x 7→ ax and
x 7→ xa are bijective maps from A onto A. If A is finite dimensional, then this is
clearly equivalent to the condition that A has no zero divisors. If A is associative,
then it is a division algebra if and only if it is unital (i.e., it has a unity 1) and every
nonzero element in A has a multiplicative inverse. For general algebras this is not
true.

The real Cayley-Dickson algebras An, n ≥ 0, are (nonassociative) real algebras
with involution ∗, defined recursively as follows: A0 = R with trivial involution
a∗ = a, and An is the vector space An−1 × An−1 endowed with multiplication and
involution defined by

(a, b)(c, d) = (ac− d∗b, da+ bc∗),

(a, b)∗ = (a∗,−b).

It is easy to see that An is unital (in fact, the unity of An is (1, 0) where 1 is the
unity of An−1), x + x∗ and xx∗ = x∗x are scalar multiplies of 1 for every x ∈ An,
and dimAn = 2n. Next, it is clear that A1 = C, and one easily notices that A2 = H,
the quaternions. The next algebra in this process is A3 = O, the octonions. For
an excellent survey on octonions we refer the reader to [1]. Let us record here just
a few basic properties of O. First of all, O is an 8-dimensional division algebra.
Denoting its basis by {1, e1, . . . , e7}, the multiplication in O is determined by the
following table:

e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −1
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Note that the linear span of 1, e1, e2, e3 is a subalgebra of O isomorphic to H.
It is well known that O is a division algebra which is not associative. However, it

is "almost" associative - namely, it is alternative. Recall that an algebra A is said
to be alternative if

(1) x2y = x(xy) and yx2 = (yx)x

holds for all x, y ∈ A. Incidentally, Artin’s theorem says that this is equivalent to
the condition that any two elements generate an associative subalgebra [20, p. 36].
We shall need the identities from (1) in their linearized forms:

(2) (xz + zx)y = x(zy) + z(xy), y(xz + zx) = (yx)z + (yz)x.

Let us also record the so-called middle Moufang identity which, as one easily checks
(see, e.g., [20, p. 35]), holds in every alternative algebra:

(3) (xy)(zx) = x(yz)x.

The next algebra obtained by the Cayley-Dickson process is the 16-dimensional
algebra A4 = S, the sedenions. Let {1, e1, . . . , e15} be a basis of S. This is the
multiplication table for S:

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 −1 e3 −e2 e5 −e4 −e7 e6 e9 −e8 −e11 e10 −e13 e12 e15 −e14
e2 −e3 −1 e1 e6 e7 −e4 −e5 e10 e11 −e8 −e9 −e14 −e15 e12 e13
e3 e2 −e1 −1 e7 −e6 e5 −e4 e11 −e10 e9 −e8 −e15 e14 −e13 e12
e4 −e5 −e6 −e7 −1 e1 e2 e3 e12 e13 e14 e15 −e8 −e9 −e10 −e11
e5 e4 −e7 e6 −e1 −1 −e3 e2 e13 −e12 e15 −e14 e9 −e8 e11 −e10
e6 e7 e4 −e5 −e2 e3 −1 −e1 e14 −e15 −e12 e13 e10 −e11 −e8 e9
e7 −e6 e5 e4 −e3 −e2 e1 −1 e15 e14 −e13 −e12 e11 e10 −e9 −e8
e8 −e9 −e10 −e11 −e12 −e13 −e14 −e15 −1 e1 e2 e3 e4 e5 e6 e7
e9 e8 −e11 e10 −e13 e12 e15 −e14 −e1 −1 −e3 e2 −e5 e4 e7 −e6

e10 e11 e8 −e9 −e14 −e15 e12 e13 −e2 e3 −1 −e1 −e6 −e7 e4 e5
e11 −e10 e9 e8 −e15 e14 −e13 e12 −e3 −e2 e1 −1 −e7 e6 −e5 e4
e12 e13 e14 e15 e8 −e9 −e10 −e11 −e4 e5 e6 e7 −1 −e1 −e2 −e3
e13 −e12 e15 −e14 e9 e8 e11 −e10 −e5 −e4 e7 −e6 e1 −1 e3 −e2
e14 −e15 −e12 e13 e10 −e11 e8 e9 −e6 −e7 −e4 e5 e2 −e3 −1 e1
e15 e14 −e13 −e12 e11 e10 −e9 e8 −e7 e6 −e5 −e4 e3 e2 −e1 −1

The sedenions have zero divisors and they are not an alternative algebra. Anyhow,
we shall see that they are close enough to alternative division algebras, so that these
approximate properties are "almost" characteristic for S. Let us recall the definition
of another notion needed for dealing with these properties.

An algebra A is said to be a superalgebra if it is Z2-graded, i.e., there exist linear
subspaces Ai, i ∈ Z2, such that A = A0 ⊕ A1 and AiAj ⊆ Ai+j for all i, j ∈ Z2.
We call A0 an even and A1 an odd part of A. Elements in A0 ∪ A1 are said to be
homogeneous. Note that if A is unital, then 1 ∈ A0.

Cayley-Dickson algebras possess a natural superalgebra structure. Indeed, A =
An becomes a superalgebra by defining A0 = An−1 × 0 and A1 = 0 × An−1. This
simple observation is the concept behind the contents of Section 5.

The algebras An, n ≥ 4, are not alternative, but at least they have certain
nonscalar elements that share many properties with elements in alternative algebras:
these are scalar multiples of the element e = (0, 1), where 1 is of course the unity of
An−1 (see e.g. [2, Section 5]). Let us point out only one property that is sufficient
for our purposes: e satisfies x2e = x(xe) for all x ∈ An. This can be easily verified.
Moreover, this property is "almost" characteristic for e: only elements in the linear
span of 1 and e satisfy this identity for every x [8, Lemma 1.2] (the authors are
thankful to Alberto Elduque for drawing their attention to this result). Now, let
us call an element a in an arbitrary nonassociative algebra A an alter-scalar if a
is not a scalar and satisfies x2a = x(xa) holds for all x ∈ A. (A similar, but not
exactly the same notion of a strongly alternative element was defined in [17]. There
is also a standard notion of an alternative element defined through the condition
a2x = a(ax) for every x, but this is too weak for our goals). What is important for
us is that S contains alter-scalars. With respect to the notation introduced above,
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these are nonzero scalar multiplies of e8. Thus, the standard basis of S has an
element that is in some sense "better" than the others. This does not seem to be
the case with the preceding Cayley-Dickson algebras.

Next we recall that an algebra A is said to be quadratic if it is unital and the
elements 1, x, x2 are linearly dependent for every x ∈ A. Thus, for every x ∈ A there
exist t(x), n(x) ∈ R such that x2 − t(x)x + n(x) = 0. Obviously, t(x) and n(x) are
uniquely determined if x /∈ R. Setting t(λ) = 2λ and n(λ) = λ2 for λ ∈ R, we can
then consider t and n as maps from A into R (the reason for this definition is that in
this way t becomes a linear functional, but we shall not need this). We call t(x) and
n(x) the trace and the norm of x, respectively. For some elementary properties of
quadratic algebras, a characterization of quadratic alternative algebras, and further
references we refer to [9].

From x2−(x+x∗)x+x∗x = 0 we see that all algebras An are quadratic. Further,
every real division algebra A that is algebraic and power-associative (this means that
every subalgebra generated by one element is associative) is automatically quadratic.
Indeed, if x ∈ A then there exists a nonzero polynomial f(X) ∈ R[X ] such that
f(x) = 0. Writing f(X) as the product of linear and quadratic polynomials in R[X ]
it follows that p(x) = 0 for some p(X) ∈ R[X ] of degree 1 or 2. In particular,
algebraic alternative (and hence associative) real division algebras are quadratic.

Finally, if A is a real unital algebra, i.e., an algebra over R with unity 1, then we
shall follow a standard convention and identify R with R1; thus we shall write λ for
λ1, where λ ∈ R.

3. Frobenius’ and Zorn’s theorems

Our first lemma is well known. It describes one of the basic properties of qua-
dratic algebras. We give the proof for the sake of completness.

Lemma 3.1. Let A be a quadratic real algebra. Then U = {u ∈ A\R |u2 ∈ R}∪{0}
is a linear subspace of A, uv + vu ∈ R for all u, v ∈ U , and A = R⊕ U .

Proof. Obviously, U is closed under scalar multiplication. We have to show that
u, v ∈ U implies u + v ∈ U . If u, v, 1 are linearly dependent, then one easily
notices that already u and v are dependent, and the result follows. Thus, let u, v, 1
be independent. We have (u + v)2 + (u − v)2 = 2u2 + 2v2 ∈ R. On the other
hand, as A is quadratic there exist λ, µ ∈ R such that (u+ v)2 − λ(u + v) ∈ R and
(u−v)2−µ(u−v) ∈ R, and hence λ(u+v)+µ(u−v) ∈ R. However, the independence
of 1, u, v implies λ+µ = λ−µ = 0, so that λ = µ = 0. This proves that u± v ∈ U .
Thus U is indeed a subspace of A. Accordingly, uv+vu = (u+v)2−u2−v2 ∈ R for
all u, v ∈ U . Finally, if a ∈ A \ R, then a2 − νa ∈ R for some ν ∈ R, and therefore
u = a− ν

2 ∈ U ; thus, a = ν
2 + u ∈ R⊕ U . �

Remark 3.2. If A is additionally a division algebra, then every nonzero u ∈ U can
be written as u = αv with α ∈ R and v2 = −1. Indeed, since u2 ∈ R and since u2

cannot be ≥ 0 – otherwise (u − α)(u + α) = u2 − α2 would be 0 for some α ∈ R –
we have u2 = −α2 with 0 6= α ∈ R. Thus, v = α−1u is a desired element.

Note that by 〈u, v〉 = − 1
2 (uv + vu) one defines an inner product on U if A is

a division algebra. The next lemma therefore deals with nothing but the Gram-
Schmidt process. Nevertheless, we give the proof.

Lemma 3.3. Let A be a quadratic real division algebra, and let U be as in Lemma
3.1. Suppose e1, . . . , ek ∈ U are such that e2i = −1 for all i ≤ k and eiej = −ejei
for all i, j ≤ k, i 6= j. If U is not equal to the linear span of e1, . . . , ek, then there
exists ek+1 ∈ U such that e2k+1 = −1 and eiek+1 = −ek+1ei for all i ≤ k.

Proof. Pick u ∈ U that is not contained in the linear span of e1, . . . , ek, and set
αi =

1
2 (uei+eiu) ∈ R (by Lemma 3.1). Note that v = u+α1e1+ . . .+αkek satisfies
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eiv = −vei for all i ≤ k. Let ek+1 be a scalar multiple of v such that e2k+1 = −1
(Remark 3.2). Then ek+1 has all desired properties. �

Theorem 3.4. (Frobenius’ theorem) An algebraic associative real division al-
gebra A is isomorphic to R, C, or H.

Proof. As pointed out at the end of Section 2, A is quadratic. We may assume that
n = dimA ≥ 2. By Remark 3.2 we can fix i ∈ A such that i2 = −1. Thus, A ∼= C

if n = 2. Let n > 2. By Lemma 3.3 there is j ∈ A such that j2 = −1 and ij = −ji.
Set k = ij. Now one immediately checks that k2 = −1, ki = j = −ik, jk = i = −kj,
and i, j, k are linearly independent. Therefore A contains a subalgebra isomorphic
to H. It remains to show that n is not > 4. If it was, then by Lemma 3.3 there
would exist e ∈ A such that e 6= 0, ei = −ie, ej = −je, and ek = −ke. However,
from the first two identities we infer eij = −iej = ije; since ij = k, this contradicts
the third identity. �

In standard graduate algebra textbooks one can find different proofs of Frobenius’
theorem. In some of them the advanced theory is used, but there are also such that
use only elementary tools, e.g., [11] and [15]. The proof in [11] is actually based on
similar ideas than our proof, but it is considerably lengthier. The one in [15] (which
is based on [18]) is different, and also short.

We believe that our proof, consisting of four simple steps (Lemma 3.1, Remark
3.2, Lemma 3.3, and the final proof), should be easily understandable to under-
graduate students. Some of these steps, especially both lemmas, are of independent
interest.

We now switch to the proof of Zorn’s theorem. We need a simple lemma:

Lemma 3.5. Let A be an alternative algebra, and let e1, . . . , ek ∈ A be such that
eiej ∈ {e1, . . . , ek} whenever i 6= j. If w ∈ A is such that eiw = −wei for every i,
then (eiej)w = −ei(ejw) and w(eiej) = −(wei)ej whenever i 6= j.

Proof. Just set x = ei, y = ej, and z = w in (2), and the result follows. �

Theorem 3.6. (Zorn’s theorem) An algebraic alternative real division algebra
A is isomorphic to R, C, H, or O.

Proof. Since a subalgebra generated by two elements is associative, the first part
of the proof of Theorem 3.4 remains unchanged in the present context. We may
therefore assume that A contains a copy of H and that n = dimA > 4. Let us
just change the notation and write e1 = i, e2 = j, and e3 = k. By Lemma 3.3
there exists e4 ∈ A such that e24 = −1 and e4ei = −eie4 for i = 1, 2, 3. Now define
e5 = e1e4, e6 = e2e4, e7 = e3e4. Using the alternativity and anticommutativity
relations we see that

e25 = e26 = e27 = −1,

e1e5 = −e5e1 = e2e6 = −e6e2 = e3e7 = −e7e3 = −e4,

e4e5 = −e5e4 = e1, e4e6 = −e6e4 = e2, e4e7 = −e7e4 = e3.

Further, using (3) we obtain

e5e6 = −e6e5 = −e3, e6e7 = −e7e6 = −e1, e7e5 = −e5e7 = −e2.

Finally, use Lemma 3.5 with k = 3 and w = e4, and note that the resulting identites
yield the rest of the multiplication table.

It is easy to see that 1, e1, . . . , e7 are linearly independent. Indeed, by taking

squares we first see that
∑7

i=1 λiei cannot be a nonzero scalar; if
∑7

i=1 λiei = 0,
then after multiplying this relation with ei we get λi = 0. Thus, we have showed
that A contains O.
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It remains to show that n = 8. Suppose n > 8. Then, by Lemma 3.3, there
exists f ∈ A such that f 6= 0 and fei = −eif , 1 ≤ i ≤ 7. Lemma 3.5 tells us that
f also satisfies (eiej)f = −ei(ejf) and f(eiej) = −(fei)ej for i 6= j. Accordingly,

(4) e1(e2(e4f)) = −e1((e2e4)f) = −e1(e6f) = (e1e6)f = −e7f.

Note that for 1 ≤ i ≤ 3 we have

ei(e4f) = −(eie4)f = f(eie4) = −f(e4ei) = (fe4)ei = −(e4f)ei.

This makes it possible for us to apply Lemma 3.5 for k = 3 and w = e4f . In
particular this gives (e1e2)(e4f) = −e1(e2(e4f)). Consequently,

e1(e2(e4f)) = −e3(e4f) = (e3e4)f = e7f,

contradicting (4). �

Remark 3.7. From the first part of the proof we see that if an alternative (not
necessarily a division) real algebra A contains a copy of H and dimA > 4, then it
also contains a copy of O.

Classical versions of Frobenius’ and Zorn’s theorems deal with finite dimensional
algebras rather than with (slightly more general) algebraic ones. Our method,
however, yields these more general versions for free. But actually we shall need the
more general version of Zorn’s theorem in Section 5.

We cannot claim that any of the arguments given in this section is entirely
original. After finding these proofs we have realized, when searching the literature,
that many of these ideas appear in different texts. But to the best of our knowledge
nobody has compiled these arguments in the same way that leads to short and
direct proofs of theorems by Frobenius and Zorn. Therefore we hope and believe
that this section is of some value.

4. Locally complex algebras

As already mentioned, we define a locally complex algebra as a real unital algebra
A such that every a ∈ A \ R generates a subalgebra isomorphic to C. A locally
complex algebra A is obviously quadratic. We can therefore consider the trace t(a)
and the norm n(a) of each a ∈ A.

Lemma 4.1. The following conditions are equivalent for a real unital algebra A:

(i) A is locally complex;
(ii) every 0 6= a ∈ A has a multiplicative inverse lying in Ra+ R;
(iii) A is quadratic and A has no nontrivial idempotents or square-zero elements;
(iv) A is quadratic and n(a) > 0 for every 0 6= a ∈ A.

Moreover, if 2 ≤ dimA = n < ∞, then (i)-(iv) are equivalent to

(v) A has a basis {1, e1, . . . , en−1} such that e2i = −1 for all i and eiej = −ejei
for all i 6= j.

Proof. It is easy to see that (i)=⇒ (ii) and (ii)=⇒ (iii). Suppose A is quadratic

and n(a) ≤ 0 for some 0 6= a ∈ A. Then a /∈ R. Therefore also b = a − t(a)
2 /∈ R.

Note that b2 ≥ 0. If b2 = 0, then A has a nontrivial nilpotent. If b2 > 0, i.e.,
b2 = α2 for some 0 6= α ∈ R, then e = 1

2 (1 − α−1b) is a nontrivial idempotent in
A. Thus, (iii)=⇒ (iv). The proof of (iv)=⇒ (ii) is also straightforward. Therefore

(ii)-(iv) are equivalent. Now assume (ii)-(iv) and pick a ∈ A \R. Then b = a− t(a)
2

satisfies b2 ∈ R. Just as in the argument above we see that b2 cannot be ≥ 0. Hence
b2 = −α2 for some α ∈ R \ {0}, and so i = α−1b satisfies i2 = −1. This yields (i).

Finally, assume 2 ≤ dimA = n < ∞. The implication (i)-(iv) =⇒ (v) follows
from (the proof of) Lemma 3.3. Assuming (v) and writing a ∈ A as a = λ0 +∑n−1

i=1 λiei, we see that a2 − t(a)a+n(a) = 0 with t(a) = 2λ0 and n(a) =
∑n−1

i=0 λ2
i .

Thus, (iv) holds. �
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We can now list various examples of locally complex algebras.

Example 4.2. A quadratic real division algebra is locally complex.

Example 4.3. Let Jn be an n-dimensional real vector space, and let {1, e1, . . . , en−1}
be its basis. Define a multiplication in Jn so that 1 is of course the unity, and the
others are multiplied according to eiej = −δij . Then Jn is a locally complex
algebra and simultaneously a Jordan algebra. Another way of representing Jn
is by identifying it with R × Rn−1, and defining multiplication by (λ, u)(µ, v) =
(λµ− 〈u, v〉, λv + µu), where 〈 . , . 〉 denotes the standard inner product on Rn−1.

Example 4.4. A real unital algebra A is said to be nicely normed if there exists a
linear map ∗ : A → A such that a∗∗ = a, (ab)∗ = b∗a∗ for all a, b ∈ A, and a+a∗ ∈ R,
aa∗ = a∗a > 0 for all 0 6= a ∈ A (cf. [1, p. 154]). These algebras form an important
subclass of locally complex algebras. Namely, every element a in such an algebra A
satisfies a2− t(a)a+n(a) = 0 with t(a) = a+a∗ and n(a) = aa∗, so that A is indeed
locally complex. Note that U = {u ∈ A \ R |u2 ∈ R} ∪ {0} = {u ∈ A |u∗ = −u}.

In particular, the Cayley-Dickson algebras An are nicely normed, and hence
locally complex.

From Lemma 4.1 we can deduce the following characterization of finite dimen-
sional nicely normed algebras.

Corollary 4.5. let A be a real unital algebra. If 2 ≤ dimA = n < ∞, then the
following conditions are equivalent:

(i) A is nicely normed;
(ii) A has a basis {1, e1, . . . , en−1} such that e2i = −1 for all i and eiej =

−ejei ∈ span{e1, . . . , en−1} for all i 6= j.

Proof. Assume (i). By Lemma 4.1 (v) A has a basis {1, e1, . . . , en−1} that has all
desired properties except that we do not know yet that eiej ∈ span{e1, . . . , en−1}.
In view of the observation in Example 4.4 we have span{e1, . . . , en−1} = U = {u ∈
A |u∗ = −u}. Therefore, if i 6= j, (eiej)

∗ = e∗je
∗
i = ejei = −eiej , and hence

eiej ∈ U . Conversely, if (ii) holds, then we can define ∗ according to 1∗ = 1 and
e∗i = −ei, and one easily checks that this makes A a nicely normed algebra. �

If A is a commutative finite dimensional locally complex algebra, then the ei’s
from (v) in Lemma 4.1 must satisfy eiej = 0 if i 6= j. This can be interpreted as
follows.

Corollary 4.6. Let A be a locally complex algebra with 2 ≤ dimA = n < ∞. Then
A is commutative if and only if A ∼= Jn.

Let A be an alternative real algebra. If A is an algebraic division algebra, then
it is quadratic, and hence locally complex. Conversely, if A is locally complex, then
by Lemma 4.1 (ii) for every 0 6= a ∈ A there exist λ, µ ∈ R such that a(λa+µ) = 1.
Since A is alternative it follows that for every y ∈ A the equation ax = y has the
solution x = (λa + µ)y. Similarly one solves the equation xa = y. Therefore A is
an algebraic division algebra. Accordingly, Frobenius’ and Zorn’s theorem can be
equivalently stated as follows.

Theorem 4.7. (Frobenius’ and Zorn’s theorems) An associative locally com-
plex algebra is isomorphic to R, C, or H. An alternative locally complex algebra is
isomorphic to R, C, H, or O.

As already mentioned in the introduction, this version of Frobenius’ and Zorn’s
theorems indicates the direction in which these theorems can be generalized. We
shall deal with this in the next section.
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In the rest of this section we will classify locally complex algebras up to dimesion
4. Clearly, R and C are, up to an isomorphism, the only locally complex algebras
of dimension ≤ 2.

We fix some notation. The members of R × R
2 will be denoted by (λ, x) =

(λ, x1, x2) and the members of R×R3 by (λ, x) = (λ, x1, x2, x3). For each (ordered)

pair x, y ∈ R
2 we denote by |x y| the 2 × 2 determinant

∣∣∣∣
x1 y1
x2 y2

∣∣∣∣. The symbol

x×y stands for the usual vector product (cross product) of x, y ∈ R3, while (x, y, z)
denotes the scalar triple product (x, y, z) = 〈x× y, z〉, x, y, z ∈ R3.

Let t, s be nonnegative real numbers. We denote by At,s the 3-dimensional
algebra At,s = R× R2 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉+ t|x y|, λy + µx+ s|x y|e1),

where e1 = (1, 0) ∈ R2. It follows from Lemma 4.1 (v) that At,s is a locally com-
plex algebra. We will show that each 3-dimensional locally complex algebra A is
isomorphic to At,s for some (t, s) ∈ [0,∞)× [0,∞) and that At,s and At′,s′ are not
isomorphic whenever (t, s) 6= (t′, s′). In short, we have the following classification
theorem for 3-dimensional locally complex algebras.

Theorem 4.8. The map (t, s) 7→ At,s, t, s ≥ 0, induces a bijection between [0,∞)×
[0,∞) and isomorphism classes of 3-dimensional locally complex algebras.

Proof. We first show that each 3-dimensional locally complex algebra A is isomor-
phic to At,s for some (t, s) ∈ [0,∞)× [0,∞). It is a straightforward consequence of
Lemma 4.1 (v) that A is isomorphic to R× R2 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉, λy + µx) + |x y|(t, z)

for some (t, z) ∈ R × R2. So, we may, and we will assume that A is this algebra.
We have two possibilities; either t ≥ 0, or t < 0. Let us consider only the second
one; the case when t ≥ 0 can be handled in a similar, but simpler way. Set s = ‖z‖.
There exists an orthogonal 2 × 2 matrix Q such that Qz = −se1 and detQ = −1.
Observe that |Qx Qy| = (detQ)|x y| = −|x y| and 〈Qx,Qy〉 = 〈x, y〉, x, y ∈ R

2.
We claim that the map ϕ : A → A|t|,s given by ϕ(λ, x) = (λ,Qx), (λ, x) ∈ R× R2,
is an isomorphism. Clearly, it is linear and bijective. Moreover, we have

ϕ((λ, x) (µ, y)) = ϕ((λµ − 〈x, y〉+ t|x y|, λy + µx+ |x y|z))

= (λµ − 〈x, y〉+ t|x y|, λQy + µQx− s|x y|e1).

On the other hand,
ϕ(λ, x)ϕ(µ, y) = (λ,Qx) (µ,Qy)

= (λµ− 〈Qx,Qy〉+ |t| |Qx Qy|, λQy + µQx+ s|Qx Qy|e1)

= (λµ − 〈x, y〉+ t|x y|, λQy + µQx− s|x y|e1).

Hence, ϕ is an isomorphism. It remains to show that if At,s and At′,s′ are isomorphic
for some (t, s), (t′, s′) ∈ [0,∞)× [0,∞), then (t, s) = (t′, s′).

So, let ϕ : At,s → At′,s′ be an isomorphism. Then ϕ is linear and unital. In
particular, ϕ(λ, 0) = (λ, 0) for every λ ∈ R. Furthermore, we have

{(0, x) ∈ At,s |x ∈ R
2} = {u ∈ At,s |u

2 ∈ R and u 6∈ R} ∪ {0}.

It follows that
ϕ(λ, x) = (λ,Qx)

for some linear map Q : R2 → R2. From

(λ2 − ‖Qx‖2, 2λQx) = (λ,Qx)2 = (ϕ(λ, x))2

= ϕ((λ, x)2) = ϕ(λ2 − ‖x‖2, 2λx) = (λ2 − ‖x‖2, 2λQx)

we get that ‖Qx‖2 = ‖x‖2 for every x ∈ R2. Thus, Q is orthogonal. The equation

ϕ((λ, x) (µ, y)) = ϕ(λ, x)ϕ(µ, y)
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can be rewritten as

(λµ− 〈x, y〉+ t|x y|, λQy + µQx+ s|x y|Qe1)

= (λµ− 〈x, y〉+ t′(detQ) |x y|, λQy + µQx+ s′(detQ) |x y|e1).

We conclude that t = t′ detQ and sQe1 = s′(detQ)e1. Applying the fact that
| detQ| = 1 and ‖Qe1‖ = ‖e1‖ = 1 we get |t| = |t′| and |s| = |s′|. As all t, t′, s, s′

are nonnegative, we have t = t′ and s = s′, as desired. �

It follows directly from Corollary 4.5 that At,s is nicely normed if and only if
t = 0. So, the above statement shows that there is a natural bijection between
[0,∞) and isomorphism classes of 3-dimensional nicely normed algebras.

The next result owes a lot to the paper [7] classifying 4-dimensional real quadratic
division algebras. Our approach covers a more general class of real algebras. It is
self-contained and completely elementary using just simple linear algebra tools.

We identify linear maps on R3 with 3 × 3 real matrices. Let M3 denote the set
of all 3× 3 real matrices. For (T, u), (T ′, u′) ∈ M3 ×R3 we write (T, u) ∼ (T ′, u′) if
and only if there exists an orthogonal 3× 3 matrix Q such that T ′ = (detQ)QTQT

and u′ = (detQ)Qu. It is clear that ∼ is an equivalence relation on M3 × R
3. The

set of equivalence classes will be denoted by (M3 × R3)/ ∼.
For T ∈ M3 and u ∈ R3 we denote by AT,u the 4-dimensional algebra AT,u =

R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉+ (x, y, u), λy + µx+ T (x× y)).

As in the 3-dimensional case one can easily verify that AT,u is a locally complex
algebra. We will show that each 4-dimensional locally complex algebra A is isomor-
phic to AT,u for some (T, u) ∈ M3 ×R3 and that AT,u and AT ′,u′ are isomorphic if
and only if (T, u) ∼ (T ′, u′). In other words, we will prove the following.

Theorem 4.9. The map (T, u) 7→ AT,u, T ∈ M3, u ∈ R
3, induces a bijection

between (M3 × R3)/ ∼ and isomorphism classes of 4-dimensional locally complex
algebras.

Proof. We will first show that each 4-dimensional locally complex algebra A is
isomorphic to AT,u for some (T, u) ∈ M3 ×R

3. It is a straightforward consequence
of Lemma 4.1 (v) that A is isomorphic to R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉, λy + µx) + S(x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2)

for some linear map S : R3 → R × R3. Observe that S : R3 → R × R3 can be
decomposed into a direct sum of a linear functional on R3 and an endomorphism on
R

3. Recall that every linear functional on R
3 can be represented in a unique way

as an inner product with a fixed vector in R3. Finally, observe that the coordinates
of the vector (x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2) are up to a permutation and
a multiplication by ±1 the coordinates of the vector product x × y. Thus, A is
isomorphic to R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ − 〈x, y〉+ (x, y, u), λy + µx+ T (x× y))

for some u ∈ R3 and some endomorphism T of R3. Hence, A is isomorphic to AT,u,
as desired.

Assume now that AT,u and AT ′,u′ are isomorphic for some (T, u), (T ′, u′) ∈ M3×
R3. We have to show that (T, u) ∼ (T ′, u′).

So, let ϕ : AT,u → AT ′,u′ be an isomorphism. Exactly in the same way as in the
3-dimensional case we show that

ϕ(λ, x) = (λ,Qx)

for some orthogonal 3× 3 matrix Q. The equation

ϕ((λ, x) (µ, y)) = ϕ(λ, x)ϕ(µ, y)
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can be rewritten as

(λµ − 〈x, y〉+ (x, y, u), λQy + µQx+QT (x× y))

= (λµ− 〈x, y〉+ (Qx,Qy, u′), λQy + µQx+ T ′(Qx×Qy)).

We conclude that

(x, y, u) = (Qx,Qy, u′)

and

QT (x× y) = T ′(Qx×Qy)

for all x, y ∈ R3. As Q is orthogonal we have Q(x × y) = (detQ)(Qx × Qy), and
consequently,

(x, y, u) = (detQ) (x, y,QTu′) and QT (x× y) = (detQ)T ′Q(x× y), x, y ∈ R
3.

It follows that u′ = (detQ)Qu and T ′ = (detQ)QTQT , as desired.
Finally, if (T, u) ∼ (T ′, u′) for some T, T ′ ∈ M3 and u, u′ ∈ R3 then there exists

an orthogonal 3 × 3 matrix Q such that T ′ = (detQ)QTQT and u′ = (detQ)Qu.
It is then straightforward to check that the map ϕ : AT,u → AT ′,u′ defined by
ϕ(λ, x) = (λ,Qx), (λ, x) ∈ AT,u, is an isomorphism. �

It is rather easy to verify that AT,u is nicely normed if and only if u = 0. We will
next show that AT,u is a division algebra if and only if 〈Tx, x〉 6= 0 for each nonzero
x ∈ R3 (that is, the quadratic form q(x) = 〈Tx, x〉 is either positive definite, or
negative definite). Indeed, assume first that AT,u is not a division algebra. Then

(λµ− 〈x, y〉+ (x, y, u), λy + µx+ T (x× y)) = 0

for some nonzero (λ, x), (µ, y) ∈ AT,u. In particular,

T (x× y) = −λy − µx.

Set z = x× y. We have z 6= 0, since otherwise x and y are linearly dependent and
therefore

• either λ = 0 and then 〈x, y〉 = 0 and µx = 0 which further yields that
(λ, x) = 0 or (µ, y) = 0, a contradiction; or

• µ = 0 which yields a contradiction in exactly the same way; or
• λ 6= 0 and µ 6= 0 and then y = −µλ−1x and λµ = 〈x, y〉 yield 0 < λ2 =
−〈x, x〉 ≤ 0, a contradiction.

Hence, z 6= 0 and because z is orthogonal to both x and y we have 〈Tz, z〉 = 0.
To prove the other direction we assume that there exists z ∈ R3 with ‖z‖ = 1

and 〈Tz, z〉 = 0. Then Tz = −tw for some real number t and some w ∈ R3 with
w ⊥ z and ‖w‖ = 1. There is a unique v ∈ R3 such that z = w × v and v ⊥ w.
Set s = −(w, v, u). Then (0, w) and (t, v− sw) are nonzero elements of AT,u whose
product is equal to zero. Hence, AT,u is not a division algebra, as desired.

Following Dieterich’s idea [7] we will now disscuss a geometric interpretation of
the classification of 4-dimensional locally complex algebras. Let us start with a
simple observation concerning 3× 3 skew-symmetric matrices. If x, y ∈ R3 are any
two vectors such that x× y = (c1, c2, c3), then

R =




0 c3 −c2
−c3 0 c1
c2 −c1 0


 = xyT − yxT ,

where x and y are represented as 3 × 1 matrices. If Q is any orthogonal matrix,
then QRQT = (Qx)(Qy)T − (Qy)(Qx)T . As Qx×Qy = (detQ)Q(x× y), we have

Q




0 c3 −c2
−c3 0 c1
c2 −c1 0


QT =




0 d3 −d2
−d3 0 d1
d2 −d1 0


 ,
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where



d1
d2
d3


 = (detQ)Q




c1
c2
c3


 .

If we choose Q ∈ SO(3) such that




0
0√

c21 + c22 + c23



 = Q




c1
c2
c3



 ,

then

QRQT =




0 d 0
−d 0 0
0 0 0


 ,

where d =
√
c21 + c22 + c23. In particular, d = ‖R‖.

Any 3 × 3 matrix T can be uniquely decomposed into its symmetric and skew-
symmetric part, T = P + R, P = (1/2)(T + T T ), R = (1/2)(T − T T ). If T ′ =
(detQ)QTQT and T ′ = P ′ + R′ with P ′ symmetric and R′ skew-symmetric, then
P ′ = (detQ)QPQT and R′ = (detQ)QRQT . We will say that AT,u is of rank
3,2,1,0, respectively, if the symmetric part P of T is of rank 3,2,1,0, respectively.
By the previous remark, two isomorphic algebras AT,u have the same rank.

Let us start with algebras AT,u of rank 3. We have two possibilities: either all
eigenvalues of P = T +T T have the same sign, or P has both positive and negative
eigenvalues. In the first case we will say that AT,u is an ellipsoid locally complex
algebra of dimension 4, while in the second case we call AT,u a hyperboloid locally
complex algebra of dimension 4. As we are interested in isomorphism classes we
can use the fact that AT,u is isomorphic to A−T,u to restrict our attention to the
case when all the eigenvalues of P are positive (the ellipsoid case) or to the case
when two eigenvalues of P are positive and one is negative (the hyperboloid case).
Once we have done this restriction two algebras AT,u and AT ′,u′ of the above types
are isomorphic if and only if T ′ = QTQT and u′ = Qu for some Q ∈ SO(3).

To consider isomorphism classes of hyperboloid locally complex algebras of di-
mension 4 (a 4-dimensional locally complex algebra is hyperboloid if it is isomorphic
to some hyperboloid algebra AT,u) we set τ = {δ ∈ R3 | δ1 ≥ δ2 > 0 > δ3} and
κ = τ × R3 × R3. The elements of κ will be called configurations. Each configu-
ration consists of a hyperboloid Hδ = {x ∈ R3 | 〈∆δx, x〉 = 1} (a hyperboloid in
principal axis form) and a pair of points. Here, ∆δ is the diagonal matrix with the
diagonal entries: δ1, δ2, δ3. The symmetry group of the hyperboloid Hδ is defined
to be Gδ = {Q ∈ SO(3) |Q∆δQ

T = ∆δ} (the requirement that detQ = 1 tells that
we allow only symmetries that preserve the orientation). Note that this symmetry
group consists of 4 elements whenever δ1 > δ2. Namely, in this case the symmetry
group consists of the identity and all diagonal matrices with two eigenvalues -1 and
one eigenvalue 1. The symmetry group is infinite if and only if the hyperboloid Hδ

is circular, that is, δ1 = δ2. Two configurations (δ, u, c) and (δ′, u′, c′) are said to be
equivalent, (δ, u, c) ≡ (δ′, u′, c′), if and only if their hyperboloids coincide and their
pairs of points lie in the same orbit under the operation of the symmetry group
of the hyperboloid, that is, if and only if δ = δ′ and (u′, c′) = (Qu,Qc) for some
Q ∈ Gδ. We denote by κ/ ≡ the set of equivalence classes of κ. We have a natural
bijection between κ/ ≡ and the set of equivalence classes of hyperboloid locally
complex algebras of dimension 4. Indeed, the bijection is induced by the map

(δ, u, c) 7→ A∆δ+Rc,u
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where

∆δ +Rc =




δ1 c3 −c2
−c3 δ2 c1
c2 −c1 δ3


 .

Clearly, A∆δ+Rc,u is a hyperboloid locally complex algebra. We have to show that
each hyperboloid algebra AT,v is isomorphic to some A∆δ+Rc,u and that A∆δ+Rc,u

and A∆
δ′
+R

c′
,u′ are isomorphic if and only if (δ, u, c) ≡ (δ′, u′, c′). The second

statement is trivial. To verify the first one we write T = P + R with P symmetric
with two positive eigenvalues and R skew-symmetric. Then there exists Q ∈ SO(3)
such that QPQT = ∆δ for some δ ∈ τ . We have QRQT = Rc for some c ∈ R3. Set
u = Qv to complete the proof.

In a similar fashion we can consider isomorphism classes of ellipsoid locally com-
plex algebras of dimension 4. Note that a locally complex algebra AT,u is a division
algebra if and only if it is an ellipsoid algebra. As above we can consider config-
urations which consist of an ellipsoid in principal axis form and a pair of points.
To each such configuration there corresponds a 4-dimensional real division algebra
and this correspondence induces a bijection between the equivalence classes of con-
figurations (the equivalence being defined via the symmetry group of the ellipsoid)
and the isomorphism classes of 4-dimensional real quadratic division algebras. We
omit the details that can be found in [7]. It is clear that locally complex algebras
of rank 2 are either elliptic cylinder algebras or hyperbolic cylinder algebras. We
leave the details to the reader. In the same way one can classify also isomorphism
classes of locally complex algebras of rank 1. Let us conclude with the detailed
disscussion on 4-dimensional locally complex algebras of rank 0. By e3 we denote
e3 = (0, 0, 1) ∈ R3. We define an equivalence relation on the set [0,∞) × R3 as
follows: (d, u), (d′, u′) ∈ [0,∞) × R3 are said to be equivalent, (d, u) ≡ (d′, u′), if
either

• d = d′ = 0 and ‖u‖ = ‖u′‖; or
• d = d′ > 0, ‖u‖ = ‖u′‖, and 〈u, e3〉 = 〈u′, e3〉.

Note that the equivalence class of (d, u) ∈ [0,∞)×R3 with d > 0 contains infinitely
many elements if u and e3 are linearly independent, and is a singleton when u is a
scalar multiple of e3. There is a natural bijection between the isomorphism classes
of 4-dimensional locally complex algebras of rank 0 and the set ([0,∞) × R3)/ ≡.
The bijection is induced by the map from [0,∞) × R3 which maps the pair (d, u),
d ≥ 0, u ∈ R

3, into ATd,u with

Td =




0 d 0
−d 0 0
0 0 0



 .

Obviously, ATd,u is a locally complex algebra of rank 0 and one can easily verify that
each 4-dimensional locally complex algebra of rank 0 is isomorphic to some ATd,u. It
remains to show that ATd,u and AT

d′
,u′ are isomorphic if and only if (d, u) ≡ (d′, u′).

So, assume that ATd,u and AT
d′
,u′ are isomorphic for some (d, u), (d′, u′) ∈ [0,∞)×

R3. Then there exists an orthogonal matrix Q such that Td′ = (detQ)QTdQ
T

and u′ = (detQ)Qu. In particular, d′ = ‖Td′‖ = ‖Td‖ = d and ‖u′‖ = ‖u‖. If
d = 0, then d′ = 0, and hence, (d, u) ≡ (d′, u′) in this special case. Therefore
we may assume that d = d′ > 0. From Td′ = (detQ)QTdQ

T we conclude that
Qe3 = (detQ)e3. Consequently,

〈u′, e3〉 = 〈(detQ)Qu, (detQ)Qe3〉 = 〈u, e3〉.

To prove the converse we assume that (d, u) ≡ (d′, u′). We have one of the two
possibilities and we will consider just the second one. So, assume that d = d′ > 0,
‖u‖ = ‖u′‖, and 〈u, e3〉 = 〈u′, e3〉. Then there exists an orthogonal matrix Q such
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that Qe3 = e3 and Qu = u′. The orthogonal complement of e3 and u is one-
dimensional (if e3 and u are linearly independent) or two-dimensional (if e3 and
u are linearly dependent). We have a freedom to choose the action of Q on the
orthogonal complement of e3 and u (of course, up to the requirement that Q is an
orthogonal matrix). In particular, we can choose Q in such a way that detQ = 1.
It follows that Td′ = QTdQ

T and u′ = Qu, as desired.

5. Super-alternative locally complex algebras

Let us call an algebra A a super-alternative algebra if it is a superalgebra, A =
A0⊕A1, and the alternativity conditions (1) hold for all its homogeneous elements.
Equivalently,

(5) u2x = u(ux), xu2 = (xu)u for all u ∈ Ai, i ∈ Z2, x ∈ A,

or, in the linearized form,

(uv + vu)x = u(vx) + v(ux),

x(uv + vu) = (xu)v + (xv)u for all u, v ∈ Ai, i ∈ Z2 , x ∈ A.(6)

The notion of a super-alternative algebra should not be confused with the notion
of an alternative superalgebra. The latter is defined through the alternativity of
the Grassmann envelope of A. It turns out that nontrivial examples of alterna-
tive superalgebras exist only very exceptionally: prime alternative superalgebras of
characteristic different from 2 and 3 are either associative or their odd part is zero
[19]. As we shall see, super-alternative algebras are more easy to find.

Throughout this section A will be a super-alternative locally complex algebra.
Our goal is to to classify all such algebras A. Obvious examples are R, C, H, and O,
as we can always take the trivial Z2-grading (the odd part is 0). Further, one can
check by a straigtforward calculation that if An−1 is an alternative algebra, then
every u ∈ (An−1 × 0) ∪ (0 × An−1) satisfies (5) for every x ∈ An. Therefore, C,
H, O, and S are super-alternative algebras with respect to the natural Z2-grading
mentioned in Section 2. Of course, the important information for us in this context
is that S is also a super-alternative locally complex algebra. As we shall see, besides
R, C, H, O and S only two more algebras must be added to the complete list of
such algebras.

We continue by recording several simple but useful observations. First, the fol-
lowing special case of (6) will be often used:

(a) If u, v ∈ Ai, i ∈ Z2, are such that uv + vu = 0, then u(vx) = −v(ux) and
(xu)v = −(xv)u for all x ∈ A.

If v ∈ A1, then v2 ∈ A0; on the other hand, v2 = λv+µ for some λ, µ ∈ R. Since
v /∈ A0, we must have λ = 0 and hence v2 = µ ∈ R. Since A is locally complex, it
follows that µ < 0 if v 6= 0. Thus, we have

(b) If 0 6= v ∈ A1, then there is α ∈ R such that (αv)2 = −1.

Let u ∈ A0 and v ∈ A1 be such that u2 = v2 = −1. Using Lemma 3.1 we
have uv + vu ∈ R ∩ A1 = 0. Therefore v(uv) = −v(vu) = −v2u = u. Next,
(uv)v = uv2 = −u. Similarly we see that (uv)u = −u(uv) = v. Finally, using (a)
we get (uv)(uv) = −(uv)(vu) = v((uv)u) = v2 = −1. We have proved:

(c) If u ∈ A0 and v ∈ A1 are such that u2 = v2 = −1, then uv = −vu,
v(uv) = −(uv)v = u, (uv)u = −u(uv) = v, and (uv)2 = −1.

Let u be a homogeneous element and suppose that ux = 0 for some x ∈ A. If
u 6= 0, then by multiplying this identity from the left by u− t(u) it follows from (5)
that n(u)x = 0, and hence x = 0. Similarly, xu = 0 implies x = 0 if u 6= 0. Thus:

(d) Homogeneous elements are not zero divisors.
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It is clear that our conditions on A imply that A0 is a locally complex alternative
algebra. Theorem 4.7 therefore tells us that A0 is isomorphic to R, C, H, or O. If
A1 = 0, then we get the desired conclusion that A = A0 is one of the algebras from
the expected list. Without loss of generality we may therefore assume that A1 6= 0.
Given 0 6= u ∈ A1, it follows from (d) that x 7→ ux is an injective linear map from
A0 into A1; the same rule defines an injective linear map from A1 into A0. We may
therefore conclude that

(e) dimA0 = dimA1.

In particular we now know that a super-alternative locally complex algebra must
be finite dimensional. Moreover, its dimension can be only 1, 2, 4, 8, or 16.

We shall now consider separately each of the four possibilities concerning A0.

Lemma 5.1. If A0
∼= R, then A ∼= C.

Proof. By (b) there is i ∈ A1 with i2 = −1, and hence A ∼= C by (e). �

Lemma 5.2. If A0
∼= C, then A ∼= H.

Proof. We have A0 = R⊕ Ri with i2 = −1. By (b) we may pick j ∈ A1 such that
j2 = −1. Setting k = ij ∈ A1 it follows from (c) that A contains a copy of H.
However, in view of (e) we actually have A ∼= H. �

Let us now introduce another (an unexpected one for us) example of a super-

alternative locally complex algebra. Let Õ be the 8-dimensional algebra with basis
{1, f1, . . . , f7} and multiplication table

f1 f2 f3 f4 f5 f6 f7

f1 −1 f3 −f2 f5 −f4 f7 −f6

f2 −f3 −1 f1 f6 −f7 −f4 f5

f3 f2 −f1 −1 f7 f6 −f5 −f4

f4 −f5 −f6 −f7 −1 f1 f2 f3

f5 f4 f7 −f6 −f1 −1 f3 −f2

f6 −f7 f4 f5 −f2 −f3 −1 f1

f7 f6 −f5 f4 −f3 f2 −f1 −1

Lemma 5.3. Õ is a super-alternative locally complex algebra with zero divisors and

without alter-scalar elements (and hence Õ 6∼= O).

Proof. The fact that Õ is locally complex follows from Lemma 4.1 (v). Let Õ0 be

the linear span of 1, f1, f2, f3, and let Õ1 be the linear span of f4, f5, f6, f7. Then

Õ becomes a superalgebra with the even part Õ0
∼= H. From the way we shall

arrive at Õ in the next proof it is not really surprising that Õ is super-alternative.
But we used Mathematica for the actual checking that this is indeed true. Note

that (f1 − f4)(f3 − f6) = 0, so that Õ has zero divisors. Let a ∈ A be such that

x2a = x(xa) for all x ∈ Õ. From (fi + fj)
2a = (fi + fj)((fi + fj)a), together

with fi(fia) = fj(fja) = −a, it follows that fi(fja) + fj(fia) = 0 whenever i 6= j.

Writing a = λ0 +
∑7

k=1 λkfk we thus have

(7)

7∑

k=1

λk

(
fi(fjfk) + fj(fifk)

)
= 0 whenever i 6= j.

Chosing i = 1 and j = 4 it follows that λ2 = λ3 = λ6 = λ7 = 0. Chosing, for
example, i = 2 and j = 7 we further get λ1 = λ4 = 0, and chosing i = 3 and j = 4
finally leads to λ5 = 0. Therefore a = λ0 is a scalar. �

Lemma 5.4. If A0
∼= H, then A ∼= O or A ∼= Õ.
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Proof. Let {1, i, j, k} be a basis of A0 where these elements have the usual meaning.
Pick f ∈ A1 with f2 = −1. Then f anticommutes with i, j, k by (c). It is clear that
{f, if, jf, kf} is a basis of A1. We claim that all elements in this basis pairwise
anticommute. It is easy to see that f anticommutes with each of if, jf, kf . Using
(a) repeatedly we obtain (if)(jf) = −(i(jf))f = (j(if))f = −(jf)(if). Other
identities can be checked analogously.

Since i(jf) ∈ A1, we have

(8) i(jf) = λ1f + λ2if + λ3jf + λ4kf

for some λi ∈ R. From (a) we infer that (i(jf))f = −(if)(jf). Similarly, using (a)
and (c) we get

f(i(jf)) = −f((jf)i) = (jf)(fi) = −(jf)(if) = (if)(jf).

The last two identities show that i(jf) anticommutes with f . Consequently, anti-
commuting (8) with f it follows that λ1 = 0. A similar arguing shows that i(jf)
anticommutes with both if and jf , which leads to λ2 = λ3 = 0. Note that (c)
implies that the squares of both kf and i(jf) are equal −1. But then λ2

4 = 1, i.e.,
λ4 = 1 or λ4 = −1. If λ4 = 1, i.e., i(jf) = kf , then we set f1 = i, f2 = j, f3 = k,
f4 = f , f5 = if , f6 = jf , and f7 = kf . Using the information we have, it is now

just a matter of a routine calculation to verify that A ∼= Õ. Since we know that
O is a super-alternative locally complex algebra, the other possibility λ4 = −1 can
lead only to A ∼= O. �

The 16-dimensional analogue of Õ is the algebra which we denote by S̃ and define
as follows: if {1, f1, . . . , f15} is its basis, then the multiplication table is

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
f1 −1 f3 −f2 f5 −f4 −f7 f6 f9 −f8 −f11 f10 −f13 f12 −f15 f14
f2 −f3 −1 f1 f6 f7 −f4 −f5 f10 f11 −f8 −f9 −f14 f15 f12 −f13
f3 f2 −f1 −1 f7 −f6 f5 −f4 f11 −f10 f9 −f8 f15 f14 −f13 −f12
f4 −f5 −f6 −f7 −1 f1 f2 f3 f12 f13 f14 −f15 −f8 −f9 −f10 f11
f5 f4 −f7 f6 −f1 −1 −f3 f2 f13 −f12 −f15 −f14 f9 −f8 f11 f10
f6 f7 f4 −f5 −f2 f3 −1 −f1 f14 f15 −f12 f13 f10 −f11 −f8 −f9
f7 −f6 f5 f4 −f3 −f2 f1 −1 f15 −f14 f13 f12 −f11 −f10 f9 −f8
f8 −f9 −f10 −f11 −f12 −f13 −f14 −f15 −1 f1 f2 f3 f4 f5 f6 f7
f9 f8 −f11 f10 −f13 f12 −f15 f14 −f1 −1 −f3 f2 −f5 f4 −f7 f6

f10 f11 f8 −f9 −f14 f15 f12 −f13 −f2 f3 −1 −f1 −f6 f7 f4 −f5
f11 −f10 f9 f8 f15 f14 −f13 −f12 −f3 −f2 f1 −1 f7 f6 −f5 −f4
f12 f13 f14 −f15 f8 −f9 −f10 f11 −f4 f5 f6 −f7 −1 −f1 −f2 f3
f13 −f12 −f15 −f14 f9 f8 f11 f10 −f5 −f4 −f7 −f6 f1 −1 f3 f2
f14 f15 −f12 f13 f10 −f11 f8 −f9 −f6 f7 −f4 f5 f2 −f3 −1 −f1
f15 −f14 f13 f12 −f11 −f10 f9 f8 −f7 −f6 f5 f4 −f3 −f2 f1 −1

The proof of the next lemma is similar to that of Lemma 5.3. Therefore we omit
details.

Lemma 5.5. S̃ is a super-alternative locally complex algebra without alter-scalar

elements (and hence S̃ 6∼= S).

The final lemma has a similar statement than Lemma 5.4, but the proof is some-
what more complicated. One of the problems that we have to face in this proof is
that we do not have a complete freedom in the selection of an element playing the
role of f from the proof of Lemma 5.4. While f was an arbitrary element in A1

with square −1, now we shall have to find a special one.

Lemma 5.6. If A0
∼= O, then A ∼= S or A ∼= S̃.

Proof. Let {1, e1, . . . , e7} be a basis of A0 whose multiplication table is given in
Section 2. We begin with three claims needed for future reference.

Claim 1: Let i, j ∈ {1, 2, . . . , 7}, i 6= j. If p ∈ A1, then q = p + (eiej)(ei(ejp))
satisfies (eiej)q = −ei(ejq).
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Indeed, by (5) we have (eiej)q = (eiej)p− ei(ejp), while using (a) and (5) we get

ei(ejq) = ei(ejp) + ei(ej((eiej)(ei(ejp)))) = ei(ejp)− ei((eiej)(ej(ei(ejp))))

= ei(ejp) + (eiej)(ei(ej(ei(ejp))) = ei(ejp)− (eiej)(ej(ei(ei(ejp)))

= ei(ejp) + (eiej)(ej(ejp)) = ei(ejp)− (eiej)p,

so that (eiej)q = −ei(ejq).

Claim 2: Let i, j, k ∈ {1, 2, . . . , 7} be such that ei, ej , eiej, ek are linearly in-
dependent, and let s ∈ A1 be such that (eiej)s = −ei(ejs). Then t = s +
(eiek)(ei(eks)) also satisfies (eiej)t = −ei(ejt).

(Let us add that (a) implies t = s+ (ekei)(ek(eis)), and that (eiej)z = −ei(ejz)
is equivalent to (ejei)z = −ej(eiz); the order of indices is thus irrelevant.)

Indeed, by now already familiar arguing we have

(eiej)t = (eiej)s+ (eiej)((eiek)(ei(eks))) = (eiej)s− (eiek)((eiej)(ei(eks)))

= (eiej)s+ (eiek)(ei((eiej)(eks))) = (eiej)s− (eiek)(ei(ek((eiej)s)))

= −
(
ei(ejs)− (eiek)(ei(ek(ei(ejs))))

)
= −

(
ei(ejs) + (eiek)(ek(ei(ei(ejs))))

)

= −
(
ei(ejs)− (eiek)(ek(ejs))

)
= −

(
ei(ejs) + ei(ei((eiek)(ek(ejs))))

)

= −
(
ei(ejs)− ei((eiek)(ei(ek(ejs))))

)
= −

(
ei(ejs) + ei((eiek)(ei(ej(eks))))

)

= −
(
ei(ejs)− ei((eiek)(ej(ei(eks))))

)
= −

(
ei(ejs) + ei(ej((eiek)(ei(eks))))

)

= −ei(ejt).

Claim 3: Let i, j, k ∈ {1, 2, . . . , 7}, i 6= j, and let ǫ ∈ R and w ∈ A1 be such
that (eiej)w = ǫei(ejw). Set u = ekw. If k ∈ {i, j}, then (eiej)u = ǫei(eju), and if
k /∈ {i, j}, then (eiej)u = −ǫei(eju).

If k ∈ {i, j}, then we may assume k = j without loss of generality. We have

(eiej)(u) = (eiej)(ejw) = −ej((eiej)w) = −ǫej(ei(ejw)) = ǫei(eju).

If k /∈ {i, j}, then we have

(eiej)(u) = (eiej)(ekw) = −ek((eiej)w)

=− ǫek(ei(ejw)) = ǫei(ek(ejw)) = −ǫei(eju).

After establishing these auxiliary claims, we now begin the actual proof by picking
a nonzero u ∈ A1. As mentioned above, an arbitrary chosen u may not be the right
choice, so we have to "remedy" it. Let v′ = u + (e1e2)(e1(e2u)) ∈ A1. By Claim
1, v′ satisfies (e1e2)v

′ = −e1(e2v
′). If v′ = 0, then we have (e1e2)u = e1(e2u). But

then v′′ = e3u satisfies (e1e2)v
′′ = −e1(e2v

′′) by Claim 3. Thus, in any case there
is a nonzero v ∈ A1 such that

(e1e2)v = −e1(e2v).

Now consider w′ = v + (e1e4)(e1(e4v)). By Claim 1 we have (e1e4)w
′ = −e1(e4w

′),
and by Claim 2 we have (e1e2)w

′ = −e1(e2w
′). If w′ = 0, then (e1e4)v = e1(e4v).

But then w′′ = e2v satisfies (e1e2)w
′′ = −e1(e2w

′′) and (e1e4)w
′′ = −e1(e4w

′′).
Thus, there exists a nonzero w ∈ A1 satisfying

(e1e2)w = −e1(e2w), (e1e4)w = −e1(e4w).

We now repeat the same procedure with respect to e2 and e4. That is, we in-
troduce x′ = w + (e2e4)(e2(e4w)), and apply Claims 1 and 2 to conclude that
(e1e2)x

′ = −e1(e2x
′), (e1e4)x

′ = −e1(e4x
′), and (e2e4)x

′ = −e2(e4x
′). If x′ = 0,

then (e2e4)w = e2(e4w), and therefore Claim 3 tells us that (e1e2)x
′′ = −e1(e2x

′′),
(e1e4)x

′′ = −e1(e4x
′′), and (e2e4)x

′′ = −e2(e4x
′′), where x′′ = e1w. In any case we

have found a a nonzero x ∈ A1 satisfying

(e1e2)x = −e1(e2x), (e1e4)x = −e1(e4x), (e2e4)x = −e2(e4x).
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Considering y′ = x+(e3e4)(e3(e4x)) we see from Claim 2 that (e1e4)y
′ = −e1(e4y

′)
and (e2e4)y

′ = −e2(e4y
′), while apparently we cannot conclude that also (e1e2)y

′ =
−e1(e2y

′). However, multiplying (e1e2)x = −e1(e2x) from the left by e1 we get
e1((e1e2)x) = e2x, which can be written as e1(e3x) = −(e1e3)x. Therefore Claim
2 yields e1(e3y

′) = −(e1e3)y
′. Multiplying this from the left by e1 we arrive at the

desired identity (e1e2)y
′ = −e1(e2y

′). Also, (e3e4)y
′ = −e3(e4y

′) holds by Claim 1.
We still have to deal with the case where y′ = 0, i.e., (e3e4)x = e3(e4x). The usual
reasoning now does not work, since we do not have "enough room" to apply Claim
3. Thus, the final conclusion is that there exists a nonzero y ∈ A1 such that

(e1e2)y = −e1(e2y), (e1e4)y = −e1(e4y), (e2e4)y = −e2(e4y), (e3e4)y = ±e3(e4y).

In view of (b) we may assume without loss of generality that y2 = −1. Let us first
consider the case where (e3e4)y = e3(e4y). We set f8 = y and fi = ei, fi+8 = fif8,

i = 1, . . . , 7. By standard calculations one can now verify that A ∼= S̃; checking
all details is lengthy and tedious, but straigtforward. The other possibility where
(e3e4)y = −e3(e4y) of course leads to A ∼= S. �

All lemmas together yield our main result.

Theorem 5.7. A super-alternative locally complex algebra is isomorphic to R, C,

H, O, Õ, S, or S̃.

Remark 5.8. In the course of the proof we did not use the assumption that (5) holds
for all u, x ∈ A1. Therefore we can replace the super-alternativity assumption by a
slightly milder one.

This list reduces to Cayley-Dickson algebras under the additional assumption
that there exist alter-scalar elements.

Corollary 5.9. A super-alternative locally complex algebra containing alter-scalar
elements is isomorphic to R, C, H, O, or S.

Corollary 5.10. A super-alternative locally complex algebra which contains alter-
scalar elements, but is not alternative, is isomorphic to S.

Let A be an algebra, and let x ∈ A. The annihilator of x is the space Ann(x) =
{y ∈ A |xy = 0}. If A = An is a Cayley-Dickson algebra, then the dimension of
Ann(x) is a multiple of 4 [2, 16]. Moreover, if A = A4 = S, then the dimension of

Ann(x) is exactly 4 for every zero divisor x in A [2, Section 12]. The algebras Õ

and S̃ do not have this property. It is easy to check that x = f1 − f4 ∈ Õ has the
2-dimensional annihilator spanned by f2+f7 and f3−f6. Further, the dimension of

the annihilator of x = f3 + f12 ∈ S̃ is 6; it is spanned by f1 + f14, f2− f13, f4+ f11,
f5 + f10, f6 − f9, and f7 − f8. Thus, we have

Corollary 5.11. Let A be a super-alternative locally complex algebra which is not
a division algebra. If the dimension of Ann(x) is 4 for every zero divisor in A, then
A ∼= S.

One can check that

1 7→ 1, e1 7→ f1, e2 7→ f2, e3 7→ f3, e4 7→ f12, e5 7→ −f13, e6 7→ −f14, e7 7→ −f15

defines an embedding of Õ into S. Thus, both O and Õ can be viewed as subalge-
bras of S. Chan and Ðoković proved that S has 6-dimensional subalgebras, which,
however, are not contained in 8-dimensional subalgebras of S [6, Corollary 3.6, The-

orem 8.1]. Accordingly, O and Õ do not have 6-dimensional subalgebras. Further,
S does not contain 5-dimensional subalgebras [6, Proposition 4.4]. This does not

hold for S̃. For example, the linear span of 1, f1+ f14, f3− f12, f6− f9, and f7− f8
is a 5-dimensional subalgebra of S̃. Combining all these we get our final corollary.
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Corollary 5.12. Let A be a super-alternative locally complex algebra. If A contains
6-dimensional subalgebras, but does not contain 5-dimensional subalgebras, then A ∼=
S.
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ON LOCALLY COMPLEX ALGEBRAS AND

LOW-DIMENSIONAL CAYLEY-DICKSON ALGEBRAS

MATEJ BREŠAR, PETER ŠEMRL, ŠPELA ŠPENKO

Abstract. The paper begins with short proofs of classical theorems by Frobe-
nius and (resp.) Zorn on associative and (resp.) alternative real division alge-
bras. These theorems characterize the first three (resp. four) Cayley-Dickson
algebras. Then we introduce and study the class of real unital nonassociative
algebras in which the subalgebra generated by any nonscalar element is isomor-
phic to C. We call them locally complex algebras. In particular, we describe all
such algebras that have dimension at most 4. Our main motivation, however,
for introducing locally complex algebras is that this concept makes it possible
for us to extend Frobenius’ and Zorn’s theorems in a way that it also involves
the fifth Cayley-Dickson algebra, the sedenions.

1. Introduction

The real number field R, the complex number field C, and the division agebra
of real quaternions H are classical examples of associative real division algebras.
In 1878 Frobenius [10] proved that in the finite dimensional context they are also
the only examples. Assuming alternativity instead of associativity, there is another
example: O, the division algebra of octonions. It turns out that this is the only
additional example. This result is attributed to Zorn [21].

In Section 3 we give short and self-contained proofs of these classical theorems
by Frobenius and Zorn. Both proofs are based on the same idea. In fact, the proof
of Zorn’s theorem is a continuation of the proof of Frobenius’ theorem. The proofs
are constructive, it appears like H and O are met "unintentionally".

Our proofs of Frobenius’ and Zorn’s theorems were discovered by accident, when
examining the class of real unital algebras with the following property: the subalge-
bra generated by any element different from a scalar multiple of 1 is isomorphic to
C. These algebras, which we call locally complex, will be first considered in Section
4. In particular, we will classify all locally complex algebras of dimension at most
4.

Unlike real division algebras which exist only in dimensions 1, 2, 4, and 8 [3, 13],
locally complex algebras exist in abundance in any dimension. However, among
alternative (and hence also associative) finite dimensional real algebras, the concepts
of division algebras and locally complex algebras coincide. Frobenius’ and Zorn’s
theorems can be therefore equivalently stated so that one replaces "division" by
"locally complex" in the formulation. This observation paves the way for continuing
in the direction of these two theorems.

The algebras R, C, H, and O are the first four (real) algebras formed in the
Cayley-Dickson process. The next one is the 16-dimensional algebra S of (real)
sedenions. It is the first algebra in this process that is neither a division nor an
alternative algebra. Although it is therefore somewhat less attractive than its fa-
mous predecessors, S has recently gained a considerable attention. Over the last
years it was considered in several papers by algebraists as well as by mathematical
physicists [1, 2, 4, 5, 6, 12, 14, 16]. To the best of our knowledge, however, there

2010 Math. Subj. Class. 17A35, 17A45, 17A70, 17D05.
Supported by the Slovenian Research Agency (program No. P1-0288).
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are no results that characterize S through its abstract algebraic properties. More-
over, one might get an impression when looking at some of these papers that such
characterizations are not really expected (for example, see the introduction in [2]).
One of the goals of this paper is to show that actually they can be established.

In Section 5 we consider locally complex algebras that are simultaneously super-
algebras with the property that all their homogeneous elements satisfy the alter-
nativity conditions (see (1) below). Our main result says that besides the obvious
examples, i.e., R, C, H, O, and S, there are exactly two more algebras having these
properties, one in dimension 8 and another one in dimension 16. As corollaries we
get three characterizations of S: the first one is based on the existence of special
elements satisfying a version of the alternativity condition, the second one is based
on the properties of zero divisors, and the third one is based on the structure of
subalgebras.

Let us remark that among the papers listed above, the one by Calderon and
Martin [5] is philosophically the closest one to our paper since it also considers
superalgebras. However, the two papers do not seem to have any overlap. On
the other hand, in our final results on sedenions we were influenced by the papers
[2, 6, 16].

2. Preliminaries

The purpose of this section is to recall some definitions and elementary properties
of the notions needed in subsequent sections.

Let A be a nonassociative algebra over a field. In this paper we will be actually
interested only in the case where this field is R, although some parts, like the
following definitions and comments, make sense in a more general setting. Recall
that A is said to be a division algebra if for every nonzero a ∈ A, x 7→ ax and
x 7→ xa are bijective maps from A onto A. If A is finite dimensional, then this is
clearly equivalent to the condition that A has no zero divisors. If A is associative,
then it is a division algebra if and only if it is unital (i.e., it has a unity 1) and every
nonzero element in A has a multiplicative inverse. For general algebras this is not
true.

The real Cayley-Dickson algebras An, n ≥ 0, are (nonassociative) real algebras
with involution ∗, defined recursively as follows: A0 = R with trivial involution
a∗ = a, and An is the vector space An−1 × An−1 endowed with multiplication and
involution defined by

(a, b)(c, d) = (ac− d∗b, da+ bc∗),

(a, b)∗ = (a∗,−b).

It is easy to see that An is unital (in fact, the unity of An is (1, 0) where 1 is the
unity of An−1), x + x∗ and xx∗ = x∗x are scalar multiplies of 1 for every x ∈ An,
and dimAn = 2n. Next, it is clear that A1 = C, and one easily notices that A2 = H,
the quaternions. The next algebra in this process is A3 = O, the octonions. For
an excellent survey on octonions we refer the reader to [1]. Let us record here just
a few basic properties of O. First of all, O is an 8-dimensional division algebra.
Denoting its basis by {1, e1, . . . , e7}, the multiplication in O is determined by the
following table:

e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −1
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Note that the linear span of 1, e1, e2, e3 is a subalgebra of O isomorphic to H.
It is well known that O is a division algebra which is not associative. However, it

is "almost" associative - namely, it is alternative. Recall that an algebra A is said
to be alternative if

(1) x2y = x(xy) and yx2 = (yx)x

holds for all x, y ∈ A. Incidentally, Artin’s theorem says that this is equivalent to
the condition that any two elements generate an associative subalgebra [20, p. 36].
We shall need the identities from (1) in their linearized forms:

(2) (xz + zx)y = x(zy) + z(xy), y(xz + zx) = (yx)z + (yz)x.

Let us also record the so-called middle Moufang identity which, as one easily checks
(see, e.g., [20, p. 35]), holds in every alternative algebra:

(3) (xy)(zx) = x(yz)x.

With regard to the right-hand side of (3) it should be pointed out that alternative
algebras are flexible, i.e., x(yx) = (xy)x holds (after all, this follows from Artin’s
theorem), and therefore there is a convention to write xyx instead of (xy)x or x(yx).

The next algebra obtained by the Cayley-Dickson process is the 16-dimensional
algebra A4 = S, the sedenions. Let {1, e1, . . . , e15} be a basis of S. This is the
multiplication table for S:

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 −1 e3 −e2 e5 −e4 −e7 e6 e9 −e8 −e11 e10 −e13 e12 e15 −e14
e2 −e3 −1 e1 e6 e7 −e4 −e5 e10 e11 −e8 −e9 −e14 −e15 e12 e13
e3 e2 −e1 −1 e7 −e6 e5 −e4 e11 −e10 e9 −e8 −e15 e14 −e13 e12
e4 −e5 −e6 −e7 −1 e1 e2 e3 e12 e13 e14 e15 −e8 −e9 −e10 −e11
e5 e4 −e7 e6 −e1 −1 −e3 e2 e13 −e12 e15 −e14 e9 −e8 e11 −e10
e6 e7 e4 −e5 −e2 e3 −1 −e1 e14 −e15 −e12 e13 e10 −e11 −e8 e9
e7 −e6 e5 e4 −e3 −e2 e1 −1 e15 e14 −e13 −e12 e11 e10 −e9 −e8
e8 −e9 −e10 −e11 −e12 −e13 −e14 −e15 −1 e1 e2 e3 e4 e5 e6 e7
e9 e8 −e11 e10 −e13 e12 e15 −e14 −e1 −1 −e3 e2 −e5 e4 e7 −e6

e10 e11 e8 −e9 −e14 −e15 e12 e13 −e2 e3 −1 −e1 −e6 −e7 e4 e5
e11 −e10 e9 e8 −e15 e14 −e13 e12 −e3 −e2 e1 −1 −e7 e6 −e5 e4
e12 e13 e14 e15 e8 −e9 −e10 −e11 −e4 e5 e6 e7 −1 −e1 −e2 −e3
e13 −e12 e15 −e14 e9 e8 e11 −e10 −e5 −e4 e7 −e6 e1 −1 e3 −e2
e14 −e15 −e12 e13 e10 −e11 e8 e9 −e6 −e7 −e4 e5 e2 −e3 −1 e1
e15 e14 −e13 −e12 e11 e10 −e9 e8 −e7 e6 −e5 −e4 e3 e2 −e1 −1

The sedenions have zero divisors and they are not an alternative algebra. Anyhow,
we shall see that they are close enough to alternative division algebras, so that these
approximate properties are "almost" characteristic for S. Let us recall the definition
of another notion needed for dealing with these properties.

An algebra A is said to be a superalgebra if it is Z2-graded, i.e., there exist linear
subspaces Ai, i ∈ Z2, such that A = A0 ⊕ A1 and AiAj ⊆ Ai+j for all i, j ∈ Z2.
We call A0 an even and A1 an odd part of A. Elements in A0 ∪ A1 are said to be
homogeneous. Note that if A is unital, then 1 ∈ A0.

Cayley-Dickson algebras possess a natural superalgebra structure. Indeed, A =
An becomes a superalgebra by defining A0 = An−1 × 0 and A1 = 0 × An−1. This
simple observation is the concept behind the contents of Section 5.

The algebras An, n ≥ 4, are not alternative, but at least they have certain
nonscalar elements that share many properties with elements in alternative algebras:
these are scalar multiples of the element e = (0, 1), where 1 is of course the unity of
An−1 (see e.g. [2, Section 5]). Let us point out only one property that is sufficient
for our purposes: e satisfies x2e = x(xe) for all x ∈ An. This can be easily verified.
Moreover, this property is "almost" characteristic for e: only elements in the linear
span of 1 and e satisfy this identity for every x [8, Lemma 1.2] (the authors are
thankful to Alberto Elduque for drawing their attention to this result). Now, let
us call an element a in an arbitrary nonassociative algebra A an alter-scalar if a
is not a scalar and satisfies x2a = x(xa) holds for all x ∈ A. (A similar, but not
exactly the same notion of a strongly alternative element was defined in [17]. There
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is also a standard notion of an alternative element defined through the condition
a2x = a(ax) for every x, but this is too weak for our goals). What is important for
us is that S contains alter-scalars. With respect to the notation introduced above,
these are nonzero scalar multiplies of e8. Thus, the standard basis of S has an
element that is in some sense "better" than the others. This does not seem to be
the case with the preceding Cayley-Dickson algebras.

Next we recall that an algebra A is said to be quadratic if it is unital and the
elements 1, x, x2 are linearly dependent for every x ∈ A. Thus, for every x ∈ A there
exist t(x), n(x) ∈ R such that x2 − t(x)x + n(x) = 0. Obviously, t(x) and n(x) are
uniquely determined if x /∈ R. Setting t(λ) = 2λ and n(λ) = λ2 for λ ∈ R, we can
then consider t and n as maps from A into R (the reason for this definition is that in
this way t becomes a linear functional, but we shall not need this). We call t(x) and
n(x) the trace and the norm of x, respectively. For some elementary properties of
quadratic algebras, a characterization of quadratic alternative algebras, and further
references we refer to [9].

From x2−(x+x∗)x+x∗x = 0 we see that all algebras An are quadratic. Further,
every real division algebra A that is algebraic and power-associative (this means that
every subalgebra generated by one element is associative) is automatically quadratic.
Indeed, if x ∈ A then there exists a nonzero polynomial f(X) ∈ R[X ] such that
f(x) = 0. Writing f(X) as the product of linear and quadratic polynomials in R[X ]
it follows that p(x) = 0 for some p(X) ∈ R[X ] of degree 1 or 2. In particular,
algebraic alternative (and hence associative) real division algebras are quadratic.

Finally, if A is a real unital algebra, i.e., an algebra over R with unity 1, then we
shall follow a standard convention and identify R with R1; thus we shall write λ for
λ1, where λ ∈ R.

3. Frobenius’ and Zorn’s theorems

Our first lemma is well known. It describes one of the basic properties of qua-
dratic algebras. We give the proof for the sake of completness.

Lemma 3.1. Let A be a quadratic real algebra. Then U = {u ∈ A\R |u2 ∈ R}∪{0}
is a linear subspace of A, uv + vu ∈ R for all u, v ∈ U , and A = R⊕ U .

Proof. Obviously, U is closed under scalar multiplication. We have to show that
u, v ∈ U implies u + v ∈ U . If u, v, 1 are linearly dependent, then one easily
notices that already u and v are dependent, and the result follows. Thus, let u, v, 1
be independent. We have (u + v)2 + (u − v)2 = 2u2 + 2v2 ∈ R. On the other
hand, as A is quadratic there exist λ, µ ∈ R such that (u+ v)2 − λ(u + v) ∈ R and
(u−v)2−µ(u−v) ∈ R, and hence λ(u+v)+µ(u−v) ∈ R. However, the independence
of 1, u, v implies λ+µ = λ−µ = 0, so that λ = µ = 0. This proves that u± v ∈ U .
Thus U is indeed a subspace of A. Accordingly, uv+vu = (u+v)2−u2−v2 ∈ R for
all u, v ∈ U . Finally, if a ∈ A \ R, then a2 − νa ∈ R for some ν ∈ R, and therefore
u = a− ν

2 ∈ U ; thus, a = ν
2 + u ∈ R⊕ U . �

Remark 3.2. If A is additionally a division algebra, then every nonzero u ∈ U can
be written as u = αv with α ∈ R and v2 = −1. Indeed, since u2 ∈ R and since u2

cannot be ≥ 0 (otherwise (u− α)(u+ α) = u2 − α2 would be 0 for some α ∈ R) we
have u2 = −α2 with 0 6= α ∈ R. Thus, v = α−1u is a desired element.

Note that by 〈u, v〉 = − 1
2 (uv + vu) one defines an inner product on U if A is

a division algebra. The next lemma therefore deals with nothing but the Gram-
Schmidt process. Nevertheless, we give the proof.

Lemma 3.3. Let A be a quadratic real division algebra, and let U be as in Lemma
3.1. Suppose e1, . . . , ek ∈ U are such that e2i = −1 for all i ≤ k and eiej = −ejei
for all i, j ≤ k, i 6= j. If U is not equal to the linear span of e1, . . . , ek, then there
exists ek+1 ∈ U such that e2k+1 = −1 and eiek+1 = −ek+1ei for all i ≤ k.
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Proof. Pick u ∈ U that is not contained in the linear span of e1, . . . , ek, and set
αi =

1
2 (uei+eiu) ∈ R (by Lemma 3.1). Note that v = u+α1e1+ . . .+αkek satisfies

eiv = −vei for all i ≤ k. Let ek+1 be a scalar multiple of v such that e2k+1 = −1
(Remark 3.2). Then ek+1 has all desired properties. �

Theorem 3.4. (Frobenius’ theorem) An algebraic associative real division al-
gebra A is isomorphic to R, C, or H.

Proof. As pointed out at the end of Section 2, A is quadratic. We may assume that
n = dimA ≥ 2. By Remark 3.2 we can fix i ∈ A such that i2 = −1. Thus, A ∼= C

if n = 2. Let n > 2. By Lemma 3.3 there is j ∈ A such that j2 = −1 and ij = −ji.
Set k = ij. Now one immediately checks that k2 = −1, ki = j = −ik, jk = i = −kj,
and i, j, k are linearly independent. Therefore A contains a subalgebra isomorphic
to H. It remains to show that n is not > 4. If it was, then by Lemma 3.3 there
would exist e ∈ A such that e 6= 0, ei = −ie, ej = −je, and ek = −ke. However,
from the first two identities we infer eij = −iej = ije; since ij = k, this contradicts
the third identity. �

In standard graduate algebra textbooks one can find different proofs of Frobenius’
theorem. In some of them the advanced theory is used, but there are also such that
use only elementary tools, e.g., [11] and [15]. The proof in [11] is actually based on
similar ideas than our proof, but it is considerably lengthier. The one in [15] (which
is based on [18]) is different, and also short.

We believe that our proof, consisting of four simple steps (Lemma 3.1, Remark
3.2, Lemma 3.3, and the final proof), should be easily understandable to under-
graduate students. Some of these steps, especially both lemmas, are of independent
interest.

We now switch to the proof of Zorn’s theorem. We need a simple lemma:

Lemma 3.5. Let A be an alternative algebra, and let e1, . . . , ek ∈ A be such that
eiej ∈ {e1, . . . , ek} whenever i 6= j. If w ∈ A is such that eiw = −wei for every i,
then (eiej)w = −ei(ejw) and w(eiej) = −(wei)ej whenever i 6= j.

Proof. Just set x = ei, y = ej, and z = w in (2), and the result follows. �

Theorem 3.6. (Zorn’s theorem) An algebraic alternative real division algebra
A is isomorphic to R, C, H, or O.

Proof. Since a subalgebra generated by two elements is associative, the first part
of the proof of Theorem 3.4 remains unchanged in the present context. We may
therefore assume that A contains a copy of H and that n = dimA > 4. Let us
just change the notation and write e1 = i, e2 = j, and e3 = k. By Lemma 3.3
there exists e4 ∈ A such that e24 = −1 and e4ei = −eie4 for i = 1, 2, 3. Now define
e5 = e1e4, e6 = e2e4, e7 = e3e4. Using the alternativity and anticommutativity
relations we see that

e25 = e26 = e27 = −1,

e1e5 = −e5e1 = e2e6 = −e6e2 = e3e7 = −e7e3 = −e4,

e4e5 = −e5e4 = e1, e4e6 = −e6e4 = e2, e4e7 = −e7e4 = e3.

Further, using (3) we obtain

e5e6 = −e6e5 = −e3, e6e7 = −e7e6 = −e1, e7e5 = −e5e7 = −e2.

Finally, use Lemma 3.5 with k = 3 and w = e4, and note that the resulting identites
yield the rest of the multiplication table.

It is easy to see that 1, e1, . . . , e7 are linearly independent. Indeed, by taking

squares we first see that
∑7

i=1 λiei cannot be a nonzero scalar; if
∑7

i=1 λiei = 0,
then after multiplying this relation with ei we get λi = 0. Thus, we have showed
that A contains O.



6 MATEJ BREŠAR, PETER ŠEMRL, ŠPELA ŠPENKO

It remains to show that n = 8. Suppose n > 8. Then, by Lemma 3.3, there
exists f ∈ A such that f 6= 0 and fei = −eif , 1 ≤ i ≤ 7. Lemma 3.5 tells us that
f also satisfies (eiej)f = −ei(ejf) and f(eiej) = −(fei)ej for i 6= j. Accordingly,

(4) e1(e2(e4f)) = −e1((e2e4)f) = −e1(e6f) = (e1e6)f = −e7f.

Note that for 1 ≤ i ≤ 3 we have

ei(e4f) = −(eie4)f = f(eie4) = −f(e4ei) = (fe4)ei = −(e4f)ei.

This makes it possible for us to apply Lemma 3.5 for k = 3 and w = e4f . In
particular this gives (e1e2)(e4f) = −e1(e2(e4f)). Consequently,

e1(e2(e4f)) = −e3(e4f) = (e3e4)f = e7f,

contradicting (4). �

Remark 3.7. From the first part of the proof we see that if an alternative (not
necessarily a division) real algebra A contains a copy of H and dimA > 4, then it
also contains a copy of O.

Classical versions of Frobenius’ and Zorn’s theorems deal with finite dimensional
algebras rather than with (slightly more general) algebraic ones. Our method,
however, yields these more general versions for free. But actually we shall need the
more general version of Zorn’s theorem in Section 5.

We cannot claim that any of the arguments given in this section is entirely
original. After finding these proofs we have realized, when searching the literature,
that many of these ideas appear in different texts. But to the best of our knowledge
nobody has compiled these arguments in the same way that leads to short and
direct proofs of theorems by Frobenius and Zorn. Therefore we hope and believe
that this section is of some value.

4. Locally complex algebras

As already mentioned, we define a locally complex algebra as a real unital algebra
A such that every a ∈ A \ R generates a subalgebra isomorphic to C. A locally
complex algebra A is obviously quadratic. We can therefore consider the trace t(a)
and the norm n(a) of each a ∈ A.

Lemma 4.1. The following conditions are equivalent for a real unital algebra A:

(i) A is locally complex;
(ii) every 0 6= a ∈ A has a multiplicative inverse lying in Ra+ R;
(iii) A is quadratic and A has no nontrivial idempotents or square-zero elements;
(iv) A is quadratic and n(a) > 0 for every 0 6= a ∈ A.

Moreover, if 2 ≤ dimA = n < ∞, then (i)-(iv) are equivalent to

(v) A has a basis {1, e1, . . . , en−1} such that e2i = −1 for all i and eiej = −ejei
for all i 6= j.

Proof. It is easy to see that (i)=⇒ (ii) and (ii)=⇒ (iii). Suppose A is quadratic

and n(a) ≤ 0 for some 0 6= a ∈ A. Then a /∈ R. Therefore also b = a − t(a)
2 /∈ R.

Note that b2 ≥ 0. If b2 = 0, then A has a nontrivial nilpotent. If b2 > 0, i.e.,
b2 = α2 for some 0 6= α ∈ R, then e = 1

2 (1 − α−1b) is a nontrivial idempotent in
A. Thus, (iii)=⇒ (iv). The proof of (iv)=⇒ (ii) is also straightforward. Therefore

(ii)-(iv) are equivalent. Now assume (ii)-(iv) and pick a ∈ A \R. Then b = a− t(a)
2

satisfies b2 ∈ R. Just as in the argument above we see that b2 cannot be ≥ 0. Hence
b2 = −α2 for some α ∈ R \ {0}, and so i = α−1b satisfies i2 = −1. This yields (i).

Finally, assume 2 ≤ dimA = n < ∞. The implication (i)-(iv) =⇒ (v) follows
from (the proof of) Lemma 3.3. Assuming (v) and writing a ∈ A as a = λ0 +∑n−1

i=1 λiei, we see that a2 − t(a)a+n(a) = 0 with t(a) = 2λ0 and n(a) =
∑n−1

i=0 λ2
i .

Thus, (iv) holds. �



LOCALLY COMPLEX AND CAYLEY-DICKSON ALGEBRAS 7

We can now list various examples of locally complex algebras.

Example 4.2. A quadratic real division algebra is locally complex.

Example 4.3. Let Jn be an n-dimensional real vector space, and let {1, e1, . . . , en−1}
be its basis. Define a multiplication in Jn so that 1 is of course the unity, and the
others are multiplied according to eiej = −δij . Then Jn is a locally complex
algebra and simultaneously a Jordan algebra. Another way of representing Jn
is by identifying it with R × Rn−1, and defining multiplication by (λ, u)(µ, v) =
(λµ− 〈u, v〉, λv + µu), where 〈 . , . 〉 denotes the standard inner product on Rn−1.

Example 4.4. A real unital algebra A is said to be nicely normed if there exists a
linear map ∗ : A → A such that a∗∗ = a, (ab)∗ = b∗a∗ for all a, b ∈ A, and a+a∗ ∈ R,
aa∗ = a∗a > 0 for all 0 6= a ∈ A (cf. [1, p. 154]). These algebras form an important
subclass of locally complex algebras. Namely, every element a in such an algebra A
satisfies a2− t(a)a+n(a) = 0 with t(a) = a+a∗ and n(a) = aa∗, so that A is indeed
locally complex. Note that U = {u ∈ A \ R |u2 ∈ R} ∪ {0} = {u ∈ A |u∗ = −u}.

In particular, the Cayley-Dickson algebras An are nicely normed, and hence
locally complex.

From Lemma 4.1 we can deduce the following characterization of finite dimen-
sional nicely normed algebras.

Corollary 4.5. let A be a real unital algebra. If 2 ≤ dimA = n < ∞, then the
following conditions are equivalent:

(i) A is nicely normed;
(ii) A has a basis {1, e1, . . . , en−1} such that e2i = −1 for all i and eiej =

−ejei ∈ span{e1, . . . , en−1} for all i 6= j.

Proof. Assume (i). By Lemma 4.1 (v) A has a basis {1, e1, . . . , en−1} that has all
desired properties except that we do not know yet that eiej ∈ span{e1, . . . , en−1}.
In view of the observation in Example 4.4 we have span{e1, . . . , en−1} = U = {u ∈
A |u∗ = −u}. Therefore, if i 6= j, (eiej)

∗ = e∗je
∗
i = ejei = −eiej , and hence

eiej ∈ U . Conversely, if (ii) holds, then we can define ∗ according to 1∗ = 1 and
e∗i = −ei, and one easily checks that this makes A a nicely normed algebra. �

If A is a commutative finite dimensional locally complex algebra, then the ei’s
from (v) in Lemma 4.1 must satisfy eiej = 0 if i 6= j. This can be interpreted as
follows.

Corollary 4.6. Let A be a locally complex algebra with 2 ≤ dimA = n < ∞. Then
A is commutative if and only if A ∼= Jn.

Let A be an alternative real algebra. If A is an algebraic division algebra, then
it is quadratic, and hence , as already mentioned, locally complex. Conversely, if A
is locally complex, then by Lemma 4.1 (ii) for every 0 6= a ∈ A there exist λ, µ ∈ R

such that a(λa + µ) = 1. Since A is alternative it follows that for every y ∈ A the
equation ax = y has the solution x = (λa + µ)y. Similarly one solves the equation
xa = y. Therefore A is an algebraic division algebra. Accordingly, Frobenius’ and
Zorn’s theorem can be equivalently stated as follows.

Theorem 4.7. (Frobenius’ and Zorn’s theorems) An associative locally com-
plex algebra is isomorphic to R, C, or H. An alternative locally complex algebra is
isomorphic to R, C, H, or O.

As already mentioned in the introduction, this version of Frobenius’ and Zorn’s
theorems indicates the direction in which these theorems can be generalized. We
shall deal with this in the next section.
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In the rest of this section we will classify locally complex algebras up to dimesion
4. Clearly, R and C are, up to an isomorphism, the only locally complex algebras
of dimension ≤ 2.

We fix some notation. The members of R × R
2 will be denoted by (λ, x) =

(λ, x1, x2) and the members of R×R3 by (λ, x) = (λ, x1, x2, x3). For each (ordered)

pair x, y ∈ R
2 we denote by |x y| the 2 × 2 determinant

∣∣∣∣
x1 y1
x2 y2

∣∣∣∣. The symbol

x×y stands for the usual vector product (cross product) of x, y ∈ R3, while (x, y, z)
denotes the scalar triple product (x, y, z) = 〈x× y, z〉, x, y, z ∈ R3.

Let t, s be nonnegative real numbers. We denote by At,s the 3-dimensional
algebra At,s = R× R2 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉+ t|x y|, λy + µx+ s|x y|e1),

where e1 = (1, 0) ∈ R2. It follows from Lemma 4.1 (v) that At,s is a locally com-
plex algebra. We will show that each 3-dimensional locally complex algebra A is
isomorphic to At,s for some (t, s) ∈ [0,∞)× [0,∞) and that At,s and At′,s′ are not
isomorphic whenever (t, s) 6= (t′, s′). In short, we have the following classification
theorem for 3-dimensional locally complex algebras.

Theorem 4.8. The map (t, s) 7→ At,s, t, s ≥ 0, induces a bijection between [0,∞)×
[0,∞) and isomorphism classes of 3-dimensional locally complex algebras.

Proof. We first show that each 3-dimensional locally complex algebra A is isomor-
phic to At,s for some (t, s) ∈ [0,∞)× [0,∞). It is a straightforward consequence of
Lemma 4.1 (v) that A is isomorphic to R× R2 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉, λy + µx) + |x y|(t, z)

for some (t, z) ∈ R × R2. So, we may, and we will assume that A is this algebra.
We have two possibilities; either t ≥ 0, or t < 0. Let us consider only the second
one; the case when t ≥ 0 can be handled in a similar, but simpler way. Set s = ‖z‖.
There exists an orthogonal 2 × 2 matrix Q such that Qz = −se1 and detQ = −1.
Observe that |Qx Qy| = (detQ)|x y| = −|x y| and 〈Qx,Qy〉 = 〈x, y〉, x, y ∈ R

2.
We claim that the map ϕ : A → A|t|,s given by ϕ(λ, x) = (λ,Qx), (λ, x) ∈ R× R2,
is an isomorphism. Clearly, it is linear and bijective. Moreover, we have

ϕ((λ, x) (µ, y)) = ϕ((λµ − 〈x, y〉+ t|x y|, λy + µx+ |x y|z))

= (λµ − 〈x, y〉+ t|x y|, λQy + µQx− s|x y|e1).

On the other hand,
ϕ(λ, x)ϕ(µ, y) = (λ,Qx) (µ,Qy)

= (λµ− 〈Qx,Qy〉+ |t| |Qx Qy|, λQy + µQx+ s|Qx Qy|e1)

= (λµ − 〈x, y〉+ t|x y|, λQy + µQx− s|x y|e1).

Hence, ϕ is an isomorphism. It remains to show that if At,s and At′,s′ are isomorphic
for some (t, s), (t′, s′) ∈ [0,∞)× [0,∞), then (t, s) = (t′, s′).

So, let ϕ : At,s → At′,s′ be an isomorphism. Then ϕ is linear and unital. In
particular, ϕ(λ, 0) = (λ, 0) for every λ ∈ R. Furthermore, we have

{(0, x) ∈ At,s |x ∈ R
2} = {u ∈ At,s |u

2 ∈ R and u 6∈ R} ∪ {0}.

It follows that
ϕ(λ, x) = (λ,Qx)

for some linear map Q : R2 → R2. From

(λ2 − ‖Qx‖2, 2λQx) = (λ,Qx)2 = (ϕ(λ, x))2

= ϕ((λ, x)2) = ϕ(λ2 − ‖x‖2, 2λx) = (λ2 − ‖x‖2, 2λQx)

we get that ‖Qx‖2 = ‖x‖2 for every x ∈ R2. Thus, Q is orthogonal. The equation

ϕ((λ, x) (µ, y)) = ϕ(λ, x)ϕ(µ, y)
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can be rewritten as

(λµ− 〈x, y〉+ t|x y|, λQy + µQx+ s|x y|Qe1)

= (λµ− 〈x, y〉+ t′(detQ) |x y|, λQy + µQx+ s′(detQ) |x y|e1).

We conclude that t = t′ detQ and sQe1 = s′(detQ)e1. Applying the fact that
| detQ| = 1 and ‖Qe1‖ = ‖e1‖ = 1 we get |t| = |t′| and |s| = |s′|. As all t, t′, s, s′

are nonnegative, we have t = t′ and s = s′, as desired. �

It follows directly from Corollary 4.5 that At,s is nicely normed if and only if
t = 0. So, the above statement shows that there is a natural bijection between
[0,∞) and isomorphism classes of 3-dimensional nicely normed algebras.

The next result owes a lot to the paper [7] classifying 4-dimensional real quadratic
division algebras. Our approach covers a more general class of real algebras. It is
self-contained and completely elementary using just simple linear algebra tools.

We identify linear maps on R3 with 3 × 3 real matrices. Let M3 denote the set
of all 3× 3 real matrices. For (T, u), (T ′, u′) ∈ M3 ×R3 we write (T, u) ∼ (T ′, u′) if
and only if there exists an orthogonal 3× 3 matrix Q such that T ′ = (detQ)QTQT

and u′ = (detQ)Qu. It is clear that ∼ is an equivalence relation on M3 × R
3. The

set of equivalence classes will be denoted by (M3 × R3)/ ∼.
For T ∈ M3 and u ∈ R3 we denote by AT,u the 4-dimensional algebra AT,u =

R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉+ (x, y, u), λy + µx+ T (x× y)).

As in the 3-dimensional case one can easily verify that AT,u is a locally complex
algebra. We will show that each 4-dimensional locally complex algebra A is isomor-
phic to AT,u for some (T, u) ∈ M3 ×R3 and that AT,u and AT ′,u′ are isomorphic if
and only if (T, u) ∼ (T ′, u′). In other words, we will prove the following.

Theorem 4.9. The map (T, u) 7→ AT,u, T ∈ M3, u ∈ R
3, induces a bijection

between (M3 × R3)/ ∼ and isomorphism classes of 4-dimensional locally complex
algebras.

Proof. We will first show that each 4-dimensional locally complex algebra A is
isomorphic to AT,u for some (T, u) ∈ M3 ×R

3. It is a straightforward consequence
of Lemma 4.1 (v) that A is isomorphic to R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉, λy + µx) + S(x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2)

for some linear map S : R3 → R × R3. Observe that S : R3 → R × R3 can be
decomposed into a direct sum of a linear functional on R3 and an endomorphism on
R

3. Recall that every linear functional on R
3 can be represented in a unique way

as an inner product with a fixed vector in R3. Finally, observe that the coordinates
of the vector (x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2) are up to a permutation and
a multiplication by ±1 the coordinates of the vector product x × y. Thus, A is
isomorphic to R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ − 〈x, y〉+ (x, y, u), λy + µx+ T (x× y))

for some u ∈ R3 and some endomorphism T of R3. Hence, A is isomorphic to AT,u,
as desired.

Assume now that AT,u and AT ′,u′ are isomorphic for some (T, u), (T ′, u′) ∈ M3×
R3. We have to show that (T, u) ∼ (T ′, u′).

So, let ϕ : AT,u → AT ′,u′ be an isomorphism. Exactly in the same way as in the
3-dimensional case we show that

ϕ(λ, x) = (λ,Qx)

for some orthogonal 3× 3 matrix Q. The equation

ϕ((λ, x) (µ, y)) = ϕ(λ, x)ϕ(µ, y)
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can be rewritten as

(λµ − 〈x, y〉+ (x, y, u), λQy + µQx+QT (x× y))

= (λµ− 〈x, y〉+ (Qx,Qy, u′), λQy + µQx+ T ′(Qx×Qy)).

We conclude that

(x, y, u) = (Qx,Qy, u′)

and

QT (x× y) = T ′(Qx×Qy)

for all x, y ∈ R3. As Q is orthogonal we have Q(x × y) = (detQ)(Qx × Qy), and
consequently,

(x, y, u) = (detQ) (x, y,QTu′) and QT (x× y) = (detQ)T ′Q(x× y), x, y ∈ R
3.

It follows that u′ = (detQ)Qu and T ′ = (detQ)QTQT , as desired.
Finally, if (T, u) ∼ (T ′, u′) for some T, T ′ ∈ M3 and u, u′ ∈ R3 then there exists

an orthogonal 3 × 3 matrix Q such that T ′ = (detQ)QTQT and u′ = (detQ)Qu.
It is then straightforward to check that the map ϕ : AT,u → AT ′,u′ defined by
ϕ(λ, x) = (λ,Qx), (λ, x) ∈ AT,u, is an isomorphism. �

It is rather easy to verify that AT,u is nicely normed if and only if u = 0. We will
next show that AT,u is a division algebra if and only if 〈Tx, x〉 6= 0 for each nonzero
x ∈ R3 (that is, the quadratic form q(x) = 〈Tx, x〉 is either positive definite, or
negative definite). Indeed, assume first that AT,u is not a division algebra. Then

(λµ− 〈x, y〉+ (x, y, u), λy + µx+ T (x× y)) = 0

for some nonzero (λ, x), (µ, y) ∈ AT,u. In particular,

T (x× y) = −λy − µx.

Set z = x× y. We have z 6= 0, since otherwise x and y are linearly dependent and
therefore

• either λ = 0 and then 〈x, y〉 = 0 and µx = 0 which further yields that
(λ, x) = 0 or (µ, y) = 0, a contradiction; or

• µ = 0 which yields a contradiction in exactly the same way; or
• λ 6= 0 and µ 6= 0 and then y = −µλ−1x and λµ = 〈x, y〉 yield 0 < λ2 =
−〈x, x〉 ≤ 0, a contradiction.

Hence, z 6= 0 and because z is orthogonal to both x and y we have 〈Tz, z〉 = 0.
To prove the other direction we assume that there exists z ∈ R3 with ‖z‖ = 1

and 〈Tz, z〉 = 0. Then Tz = −tw for some real number t and some w ∈ R3 with
w ⊥ z and ‖w‖ = 1. There is a unique v ∈ R3 such that z = w × v and v ⊥ w.
Set s = −(w, v, u). Then (0, w) and (t, v− sw) are nonzero elements of AT,u whose
product is equal to zero. Hence, AT,u is not a division algebra, as desired.

Following Dieterich’s idea [7] we will now disscuss a geometric interpretation of
the classification of 4-dimensional locally complex algebras. Let us start with a
simple observation concerning 3× 3 skew-symmetric matrices. If x, y ∈ R3 are any
two vectors such that x× y = (c1, c2, c3), then

R =




0 c3 −c2
−c3 0 c1
c2 −c1 0


 = xyT − yxT ,

where x and y are represented as 3 × 1 matrices. If Q is any orthogonal matrix,
then QRQT = (Qx)(Qy)T − (Qy)(Qx)T . As Qx×Qy = (detQ)Q(x× y), we have

Q




0 c3 −c2
−c3 0 c1
c2 −c1 0


QT =




0 d3 −d2
−d3 0 d1
d2 −d1 0


 ,
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where



d1
d2
d3


 = (detQ)Q




c1
c2
c3


 .

If we choose Q ∈ SO(3) such that




0
0√

c21 + c22 + c23



 = Q




c1
c2
c3



 ,

then

QRQT =




0 d 0
−d 0 0
0 0 0


 ,

where d =
√
c21 + c22 + c23. In particular, d = ‖R‖.

Any 3 × 3 matrix T can be uniquely decomposed into its symmetric and skew-
symmetric part, T = P + R, P = (1/2)(T + T T ), R = (1/2)(T − T T ). If T ′ =
(detQ)QTQT and T ′ = P ′ + R′ with P ′ symmetric and R′ skew-symmetric, then
P ′ = (detQ)QPQT and R′ = (detQ)QRQT . We will say that AT,u is of rank
3,2,1,0, respectively, if the symmetric part P of T is of rank 3,2,1,0, respectively.
By the previous remark, two isomorphic algebras AT,u have the same rank.

Let us start with algebras AT,u of rank 3. We have two possibilities: either all
eigenvalues of P = T +T T have the same sign, or P has both positive and negative
eigenvalues. In the first case we will say that AT,u is an ellipsoid locally complex
algebra of dimension 4, while in the second case we call AT,u a hyperboloid locally
complex algebra of dimension 4. As we are interested in isomorphism classes we
can use the fact that AT,u is isomorphic to A−T,u to restrict our attention to the
case when all the eigenvalues of P are positive (the ellipsoid case) or to the case
when two eigenvalues of P are positive and one is negative (the hyperboloid case).
Once we have done this restriction two algebras AT,u and AT ′,u′ of the above types
are isomorphic if and only if T ′ = QTQT and u′ = Qu for some Q ∈ SO(3).

To consider isomorphism classes of hyperboloid locally complex algebras of di-
mension 4 (a 4-dimensional locally complex algebra is hyperboloid if it is isomorphic
to some hyperboloid algebra AT,u) we set τ = {δ ∈ R3 | δ1 ≥ δ2 > 0 > δ3} and
κ = τ × R3 × R3. The elements of κ will be called configurations. Each configu-
ration consists of a hyperboloid Hδ = {x ∈ R3 | 〈∆δx, x〉 = 1} (a hyperboloid in
principal axis form) and a pair of points. Here, ∆δ is the diagonal matrix with the
diagonal entries: δ1, δ2, δ3. The symmetry group of the hyperboloid Hδ is defined
to be Gδ = {Q ∈ SO(3) |Q∆δQ

T = ∆δ} (the requirement that detQ = 1 tells that
we allow only symmetries that preserve the orientation). Note that this symmetry
group consists of 4 elements whenever δ1 > δ2. Namely, in this case the symmetry
group consists of the identity and all diagonal matrices with two eigenvalues -1 and
one eigenvalue 1. The symmetry group is infinite if and only if the hyperboloid Hδ

is circular, that is, δ1 = δ2. Two configurations (δ, u, c) and (δ′, u′, c′) are said to be
equivalent, (δ, u, c) ≡ (δ′, u′, c′), if and only if their hyperboloids coincide and their
pairs of points lie in the same orbit under the operation of the symmetry group
of the hyperboloid, that is, if and only if δ = δ′ and (u′, c′) = (Qu,Qc) for some
Q ∈ Gδ. We denote by κ/ ≡ the set of equivalence classes of κ. We have a natural
bijection between κ/ ≡ and the set of equivalence classes of hyperboloid locally
complex algebras of dimension 4. Indeed, the bijection is induced by the map

(δ, u, c) 7→ A∆δ+Rc,u
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where

∆δ +Rc =




δ1 c3 −c2
−c3 δ2 c1
c2 −c1 δ3


 .

Clearly, A∆δ+Rc,u is a hyperboloid locally complex algebra. We have to show that
each hyperboloid algebra AT,v is isomorphic to some A∆δ+Rc,u and that A∆δ+Rc,u

and A∆
δ′
+R

c′
,u′ are isomorphic if and only if (δ, u, c) ≡ (δ′, u′, c′). The second

statement is trivial. To verify the first one we write T = P + R with P symmetric
with two positive eigenvalues and R skew-symmetric. Then there exists Q ∈ SO(3)
such that QPQT = ∆δ for some δ ∈ τ . We have QRQT = Rc for some c ∈ R3. Set
u = Qv to complete the proof.

In a similar fashion we can consider isomorphism classes of ellipsoid locally com-
plex algebras of dimension 4. Note that a locally complex algebra AT,u is a division
algebra if and only if it is an ellipsoid algebra. As above we can consider config-
urations which consist of an ellipsoid in principal axis form and a pair of points.
To each such configuration there corresponds a 4-dimensional real division algebra
and this correspondence induces a bijection between the equivalence classes of con-
figurations (the equivalence being defined via the symmetry group of the ellipsoid)
and the isomorphism classes of 4-dimensional real quadratic division algebras. We
omit the details that can be found in [7]. It is clear that locally complex algebras
of rank 2 are either elliptic cylinder algebras or hyperbolic cylinder algebras. We
leave the details to the reader. In the same way one can classify also isomorphism
classes of locally complex algebras of rank 1. Let us conclude with the detailed
disscussion on 4-dimensional locally complex algebras of rank 0. By e3 we denote
e3 = (0, 0, 1) ∈ R3. We define an equivalence relation on the set [0,∞) × R3 as
follows: (d, u), (d′, u′) ∈ [0,∞) × R3 are said to be equivalent, (d, u) ≡ (d′, u′), if
either

• d = d′ = 0 and ‖u‖ = ‖u′‖; or
• d = d′ > 0, ‖u‖ = ‖u′‖, and 〈u, e3〉 = 〈u′, e3〉.

Note that the equivalence class of (d, u) ∈ [0,∞)×R3 with d > 0 contains infinitely
many elements if u and e3 are linearly independent, and is a singleton when u is a
scalar multiple of e3. There is a natural bijection between the isomorphism classes
of 4-dimensional locally complex algebras of rank 0 and the set ([0,∞) × R3)/ ≡.
The bijection is induced by the map from [0,∞) × R3 which maps the pair (d, u),
d ≥ 0, u ∈ R

3, into ATd,u with

Td =




0 d 0
−d 0 0
0 0 0



 .

Obviously, ATd,u is a locally complex algebra of rank 0 and one can easily verify that
each 4-dimensional locally complex algebra of rank 0 is isomorphic to some ATd,u. It
remains to show that ATd,u and AT

d′
,u′ are isomorphic if and only if (d, u) ≡ (d′, u′).

So, assume that ATd,u and AT
d′
,u′ are isomorphic for some (d, u), (d′, u′) ∈ [0,∞)×

R3. Then there exists an orthogonal matrix Q such that Td′ = (detQ)QTdQ
T

and u′ = (detQ)Qu. In particular, d′ = ‖Td′‖ = ‖Td‖ = d and ‖u′‖ = ‖u‖. If
d = 0, then d′ = 0, and hence, (d, u) ≡ (d′, u′) in this special case. Therefore
we may assume that d = d′ > 0. From Td′ = (detQ)QTdQ

T we conclude that
Qe3 = (detQ)e3. Consequently,

〈u′, e3〉 = 〈(detQ)Qu, (detQ)Qe3〉 = 〈u, e3〉.

To prove the converse we assume that (d, u) ≡ (d′, u′). We have one of the two
possibilities and we will consider just the second one. So, assume that d = d′ > 0,
‖u‖ = ‖u′‖, and 〈u, e3〉 = 〈u′, e3〉. Then there exists an orthogonal matrix Q such
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that Qe3 = e3 and Qu = u′. The orthogonal complement of e3 and u is one-
dimensional (if e3 and u are linearly independent) or two-dimensional (if e3 and
u are linearly dependent). We have a freedom to choose the action of Q on the
orthogonal complement of e3 and u (of course, up to the requirement that Q is an
orthogonal matrix). In particular, we can choose Q in such a way that detQ = 1.
It follows that Td′ = QTdQ

T and u′ = Qu, as desired.

5. Super-alternative locally complex algebras

Let us call an algebra A a super-alternative algebra if it is Z2-graded, A = A0 ⊕
A1, and the alternativity conditions (1) hold for all its homogeneous elements.
Equivalently,

(5) u2x = u(ux), xu2 = (xu)u for all u ∈ Ai, i ∈ Z2, x ∈ A,

or, in the linearized form,

(uv + vu)x = u(vx) + v(ux),

x(uv + vu) = (xu)v + (xv)u for all u, v ∈ Ai, i ∈ Z2 , x ∈ A.(6)

The notion of a super-alternative algebra should not be confused with the notion
of an alternative superalgebra. The latter is defined through the alternativity of
the Grassmann envelope of A. It turns out that nontrivial examples of alterna-
tive superalgebras exist only very exceptionally: prime alternative superalgebras of
characteristic different from 2 and 3 are either associative or their odd part is zero
[19]. As we shall see, super-alternative algebras are more easy to find.

Throughout this section A will be a super-alternative locally complex algebra.
Our goal is to to classify all such algebras A. Obvious examples are R, C, H, and O,
as we can always take the trivial Z2-grading (the odd part is 0). Further, one can
check by a straigtforward calculation that if An−1 is an alternative algebra, then
every u ∈ (An−1 × 0) ∪ (0 × An−1) satisfies (5) for every x ∈ An. Therefore, C,
H, O, and S are super-alternative algebras with respect to the natural Z2-grading
mentioned in Section 2. Of course, the important information for us in this context
is that S is also a super-alternative locally complex algebra. As we shall see, besides
R, C, H, O and S only two more algebras must be added to the complete list of
such algebras.

We continue by recording several simple but useful observations. First, the fol-
lowing special case of (6) will be often used:

(a) If u, v ∈ Ai, i ∈ Z2, are such that uv + vu = 0, then u(vx) = −v(ux) and
(xu)v = −(xv)u for all x ∈ A.

If v ∈ A1, then v2 ∈ A0; on the other hand, v2 = λv+µ for some λ, µ ∈ R. Since
v /∈ A0, we must have λ = 0 and hence v2 = µ ∈ R. Since A is locally complex, it
follows that µ < 0 if v 6= 0. Thus, we have

(b) If 0 6= v ∈ A1, then there is α ∈ R such that (αv)2 = −1.

Let u ∈ A0 and v ∈ A1 be such that u2 = v2 = −1. Using Lemma 3.1 we
have uv + vu ∈ R ∩ A1 = 0. Therefore v(uv) = −v(vu) = −v2u = u. Next,
(uv)v = uv2 = −u. Similarly we see that (uv)u = −u(uv) = v. Finally, using (a)
we get (uv)(uv) = −(uv)(vu) = v((uv)u) = v2 = −1. We have proved:

(c) If u ∈ A0 and v ∈ A1 are such that u2 = v2 = −1, then uv = −vu,
v(uv) = −(uv)v = u, (uv)u = −u(uv) = v, and (uv)2 = −1.

Let u be a homogeneous element and suppose that ux = 0 for some x ∈ A. If
u 6= 0, then by multiplying this identity from the left by u− t(u) it follows from (5)
that n(u)x = 0, and hence x = 0. Similarly, xu = 0 implies x = 0 if u 6= 0. Thus:

(d) Homogeneous elements are not zero divisors.
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It is clear that our conditions on A imply that A0 is a locally complex alternative
algebra. Theorem 4.7 therefore tells us that A0 is isomorphic to R, C, H, or O. If
A1 = 0, then we get the desired conclusion that A = A0 is one of the algebras from
the expected list. Without loss of generality we may therefore assume that A1 6= 0.
Given 0 6= u ∈ A1, it follows from (d) that x 7→ ux is an injective linear map from
A0 into A1; the same rule defines an injective linear map from A1 into A0. We may
therefore conclude that

(e) dimA0 = dimA1.

In particular we now know that a super-alternative locally complex algebra must
be finite dimensional. Moreover, its dimension can be only 1, 2, 4, 8, or 16.

We shall now consider separately each of the four possibilities concerning A0.

Lemma 5.1. If A0
∼= R, then A ∼= C.

Proof. By (b) there is i ∈ A1 with i2 = −1, and hence A ∼= C by (e). �

Lemma 5.2. If A0
∼= C, then A ∼= H.

Proof. We have A0 = R⊕ Ri with i2 = −1. By (b) we may pick j ∈ A1 such that
j2 = −1. Setting k = ij ∈ A1 it follows from (c) that A contains a copy of H.
However, in view of (e) we actually have A ∼= H. �

Let us now introduce another (an unexpected one for us) example of a super-

alternative locally complex algebra. Let Õ be the 8-dimensional algebra with basis
{1, f1, . . . , f7} and multiplication table

f1 f2 f3 f4 f5 f6 f7

f1 −1 f3 −f2 f5 −f4 f7 −f6

f2 −f3 −1 f1 f6 −f7 −f4 f5

f3 f2 −f1 −1 f7 f6 −f5 −f4

f4 −f5 −f6 −f7 −1 f1 f2 f3

f5 f4 f7 −f6 −f1 −1 f3 −f2

f6 −f7 f4 f5 −f2 −f3 −1 f1

f7 f6 −f5 f4 −f3 f2 −f1 −1

Lemma 5.3. Õ is a super-alternative locally complex algebra with zero divisors and

without alter-scalar elements (and hence Õ 6∼= O).

Proof. The fact that Õ is locally complex follows from Lemma 4.1 (v). Let Õ0 be

the linear span of 1, f1, f2, f3, and let Õ1 be the linear span of f4, f5, f6, f7. Then

Õ becomes a superalgebra with the even part Õ0
∼= H. From the way we shall

arrive at Õ in the next proof it is not really surprising that Õ is super-alternative.
But we used Mathematica for the actual checking that this is indeed true. Note

that (f1 − f4)(f3 − f6) = 0, so that Õ has zero divisors. Let a ∈ Õ be such that

x2a = x(xa) for all x ∈ Õ. From (fi + fj)
2a = (fi + fj)((fi + fj)a), together

with fi(fia) = fj(fja) = −a, it follows that fi(fja) + fj(fia) = 0 whenever i 6= j.

Writing a = λ0 +
∑7

k=1 λkfk we thus have

(7)

7∑

k=1

λk

(
fi(fjfk) + fj(fifk)

)
= 0 whenever i 6= j.

Chosing i = 1 and j = 4 it follows that λ2 = λ3 = λ6 = λ7 = 0. Chosing, for
example, i = 2 and j = 7 we further get λ1 = λ4 = 0, and chosing i = 3 and j = 4
finally leads to λ5 = 0. Therefore a = λ0 is a scalar. �

Lemma 5.4. If A0
∼= H, then A ∼= O or A ∼= Õ.
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Proof. Let {1, i, j, k} be a basis of A0 where these elements have the usual meaning.
Pick f ∈ A1 with f2 = −1. Then f anticommutes with i, j, k by (c). It is clear that
{f, if, jf, kf} is a basis of A1. We claim that all elements in this basis pairwise
anticommute. It is easy to see that f anticommutes with each of if, jf, kf . Using
(a) repeatedly we obtain (if)(jf) = −(i(jf))f = (j(if))f = −(jf)(if). Other
identities can be checked analogously.

Since i(jf) ∈ A1, we have

(8) i(jf) = λ1f + λ2if + λ3jf + λ4kf

for some λi ∈ R. From (a) we infer that (i(jf))f = −(if)(jf). Similarly, using (a)
and (c) we get

f(i(jf)) = −f((jf)i) = (jf)(fi) = −(jf)(if) = (if)(jf).

The last two identities show that i(jf) anticommutes with f . Consequently, anti-
commuting (8) with f it follows that λ1 = 0. A similar arguing shows that i(jf)
anticommutes with both if and jf , which leads to λ2 = λ3 = 0. Note that (c)
implies that the squares of both kf and i(jf) are equal −1. But then λ2

4 = 1, i.e.,
λ4 = 1 or λ4 = −1. If λ4 = 1, i.e., i(jf) = kf , then we set f1 = i, f2 = j, f3 = k,
f4 = f , f5 = if , f6 = jf , and f7 = kf . Using the information we have, it is now

just a matter of a routine calculation to verify that A ∼= Õ. Since we know that
O is a super-alternative locally complex algebra, the other possibility λ4 = −1 can
lead only to A ∼= O. �

The 16-dimensional analogue of Õ is the algebra which we denote by S̃ and define
as follows: if {1, f1, . . . , f15} is its basis, then the multiplication table is

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
f1 −1 f3 −f2 f5 −f4 −f7 f6 f9 −f8 −f11 f10 −f13 f12 −f15 f14
f2 −f3 −1 f1 f6 f7 −f4 −f5 f10 f11 −f8 −f9 −f14 f15 f12 −f13
f3 f2 −f1 −1 f7 −f6 f5 −f4 f11 −f10 f9 −f8 f15 f14 −f13 −f12
f4 −f5 −f6 −f7 −1 f1 f2 f3 f12 f13 f14 −f15 −f8 −f9 −f10 f11
f5 f4 −f7 f6 −f1 −1 −f3 f2 f13 −f12 −f15 −f14 f9 −f8 f11 f10
f6 f7 f4 −f5 −f2 f3 −1 −f1 f14 f15 −f12 f13 f10 −f11 −f8 −f9
f7 −f6 f5 f4 −f3 −f2 f1 −1 f15 −f14 f13 f12 −f11 −f10 f9 −f8
f8 −f9 −f10 −f11 −f12 −f13 −f14 −f15 −1 f1 f2 f3 f4 f5 f6 f7
f9 f8 −f11 f10 −f13 f12 −f15 f14 −f1 −1 −f3 f2 −f5 f4 −f7 f6

f10 f11 f8 −f9 −f14 f15 f12 −f13 −f2 f3 −1 −f1 −f6 f7 f4 −f5
f11 −f10 f9 f8 f15 f14 −f13 −f12 −f3 −f2 f1 −1 f7 f6 −f5 −f4
f12 f13 f14 −f15 f8 −f9 −f10 f11 −f4 f5 f6 −f7 −1 −f1 −f2 f3
f13 −f12 −f15 −f14 f9 f8 f11 f10 −f5 −f4 −f7 −f6 f1 −1 f3 f2
f14 f15 −f12 f13 f10 −f11 f8 −f9 −f6 f7 −f4 f5 f2 −f3 −1 −f1
f15 −f14 f13 f12 −f11 −f10 f9 f8 −f7 −f6 f5 f4 −f3 −f2 f1 −1

The proof of the next lemma is similar to that of Lemma 5.3. Therefore we omit
details.

Lemma 5.5. S̃ is a super-alternative locally complex algebra without alter-scalar

elements (and hence S̃ 6∼= S).

The final lemma is similar to Lemma 5.4, but the proof is somewhat more com-
plicated. One of the problems that we have to face in this proof is that we do not
have a complete freedom in the selection of an element playing the role of f from
the proof of Lemma 5.4. While f was an arbitrary element in A1 with square −1,
now we shall have to find a special one.

Lemma 5.6. If A0
∼= O, then A ∼= S or A ∼= S̃.

Proof. Let {1, e1, . . . , e7} be a basis of A0 whose multiplication table is given in
Section 2. We begin with three claims needed for future reference.

Claim 1: Let i, j ∈ {1, 2, . . . , 7}, i 6= j. If p ∈ A1, then q = p + (eiej)(ei(ejp))
satisfies (eiej)q = −ei(ejq).
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Indeed, by (5) we have (eiej)q = (eiej)p− ei(ejp), while using (a) and (5) we get

ei(ejq) = ei(ejp) + ei(ej((eiej)(ei(ejp)))) = ei(ejp)− ei((eiej)(ej(ei(ejp))))

= ei(ejp) + (eiej)(ei(ej(ei(ejp))) = ei(ejp)− (eiej)(ej(ei(ei(ejp)))

= ei(ejp) + (eiej)(ej(ejp)) = ei(ejp)− (eiej)p,

so that (eiej)q = −ei(ejq).

Claim 2: Let i, j, k ∈ {1, 2, . . . , 7} be such that ei, ej , eiej, ek are linearly in-
dependent, and let s ∈ A1 be such that (eiej)s = −ei(ejs). Then t = s +
(eiek)(ei(eks)) also satisfies (eiej)t = −ei(ejt).

(Let us add that (a) implies t = s+ (ekei)(ek(eis)), and that (eiej)z = −ei(ejz)
is equivalent to (ejei)z = −ej(eiz); the order of indices is thus irrelevant.)

Indeed, by now already familiar arguing we have

(eiej)t = (eiej)s+ (eiej)((eiek)(ei(eks))) = (eiej)s− (eiek)((eiej)(ei(eks)))

= (eiej)s+ (eiek)(ei((eiej)(eks))) = (eiej)s− (eiek)(ei(ek((eiej)s)))

= −
(
ei(ejs)− (eiek)(ei(ek(ei(ejs))))

)
= −

(
ei(ejs) + (eiek)(ek(ei(ei(ejs))))

)

= −
(
ei(ejs)− (eiek)(ek(ejs))

)
= −

(
ei(ejs) + ei(ei((eiek)(ek(ejs))))

)

= −
(
ei(ejs)− ei((eiek)(ei(ek(ejs))))

)
= −

(
ei(ejs) + ei((eiek)(ei(ej(eks))))

)

= −
(
ei(ejs)− ei((eiek)(ej(ei(eks))))

)
= −

(
ei(ejs) + ei(ej((eiek)(ei(eks))))

)

= −ei(ejt).

Claim 3: Let i, j, k ∈ {1, 2, . . . , 7}, i 6= j, and let ǫ ∈ R and w ∈ A1 be such
that (eiej)w = ǫei(ejw). Set u = ekw. If k ∈ {i, j}, then (eiej)u = ǫei(eju), and if
k /∈ {i, j}, then (eiej)u = −ǫei(eju).

If k ∈ {i, j}, then we may assume k = j without loss of generality. We have

(eiej)(u) = (eiej)(ejw) = −ej((eiej)w) = −ǫej(ei(ejw)) = ǫei(eju).

If k /∈ {i, j}, then we have

(eiej)(u) = (eiej)(ekw) = −ek((eiej)w)

=− ǫek(ei(ejw)) = ǫei(ek(ejw)) = −ǫei(eju).

After establishing these auxiliary claims, we now begin the actual proof by picking
a nonzero u ∈ A1. As mentioned above, an arbitrary chosen u may not be the right
choice, so we have to "remedy" it. Let v′ = u + (e1e2)(e1(e2u)) ∈ A1. By Claim
1, v′ satisfies (e1e2)v

′ = −e1(e2v
′). If v′ = 0, then we have (e1e2)u = e1(e2u). But

then v′′ = e3u satisfies (e1e2)v
′′ = −e1(e2v

′′) by Claim 3. Thus, in any case there
is a nonzero v ∈ A1 such that

(e1e2)v = −e1(e2v).

Now consider w′ = v + (e1e4)(e1(e4v)). By Claim 1 we have (e1e4)w
′ = −e1(e4w

′),
and by Claim 2 we have (e1e2)w

′ = −e1(e2w
′). If w′ = 0, then (e1e4)v = e1(e4v).

But then w′′ = e2v satisfies (e1e2)w
′′ = −e1(e2w

′′) and (e1e4)w
′′ = −e1(e4w

′′).
Thus, there exists a nonzero w ∈ A1 satisfying

(e1e2)w = −e1(e2w), (e1e4)w = −e1(e4w).

We now repeat the same procedure with respect to e2 and e4. That is, we in-
troduce x′ = w + (e2e4)(e2(e4w)), and apply Claims 1 and 2 to conclude that
(e1e2)x

′ = −e1(e2x
′), (e1e4)x

′ = −e1(e4x
′), and (e2e4)x

′ = −e2(e4x
′). If x′ = 0,

then (e2e4)w = e2(e4w), and therefore Claim 3 tells us that (e1e2)x
′′ = −e1(e2x

′′),
(e1e4)x

′′ = −e1(e4x
′′), and (e2e4)x

′′ = −e2(e4x
′′), where x′′ = e1w. In any case we

have found a a nonzero x ∈ A1 satisfying

(e1e2)x = −e1(e2x), (e1e4)x = −e1(e4x), (e2e4)x = −e2(e4x).
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Considering y′ = x+(e3e4)(e3(e4x)) we see from Claim 2 that (e1e4)y
′ = −e1(e4y

′)
and (e2e4)y

′ = −e2(e4y
′), while apparently we cannot conclude that also (e1e2)y

′ =
−e1(e2y

′). However, multiplying (e1e2)x = −e1(e2x) from the left by e1 we get
e1((e1e2)x) = e2x, which can be written as e1(e3x) = −(e1e3)x. Therefore Claim
2 yields e1(e3y

′) = −(e1e3)y
′. Multiplying this from the left by e1 we arrive at the

desired identity (e1e2)y
′ = −e1(e2y

′). Also, (e3e4)y
′ = −e3(e4y

′) holds by Claim 1.
We still have to deal with the case where y′ = 0, i.e., (e3e4)x = e3(e4x). The usual
reasoning now does not work, since we do not have "enough room" to apply Claim
3. Thus, the final conclusion is that there exists a nonzero y ∈ A1 such that

(e1e2)y = −e1(e2y), (e1e4)y = −e1(e4y), (e2e4)y = −e2(e4y), (e3e4)y = ±e3(e4y).

In view of (b) we may assume without loss of generality that y2 = −1. Let us first
consider the case where (e3e4)y = e3(e4y). We set f8 = y and fi = ei, fi+8 = fif8,

i = 1, . . . , 7. By standard calculations one can now verify that A ∼= S̃; checking
all details is lengthy and tedious, but straigtforward. The other possibility where
(e3e4)y = −e3(e4y) of course leads to A ∼= S. �

All lemmas together yield our main result.

Theorem 5.7. A super-alternative locally complex algebra is isomorphic to R, C,

H, O, Õ, S, or S̃.

Remark 5.8. In the course of the proof we did not use the assumption that (5) holds
for all u, x ∈ A1. Therefore we can replace the super-alternativity assumption by a
slightly milder one.

This list reduces to Cayley-Dickson algebras under the additional assumption
that there exist alter-scalar elements.

Corollary 5.9. A super-alternative locally complex algebra containing alter-scalar
elements is isomorphic to R, C, H, O, or S.

Corollary 5.10. A super-alternative locally complex algebra which contains alter-
scalar elements, but is not alternative, is isomorphic to S.

Let A be an algebra, and let x ∈ A. The annihilator of x is the space Ann(x) =
{y ∈ A |xy = 0}. If A = An is a Cayley-Dickson algebra, then the dimension of
Ann(x) is a multiple of 4 [2, 16]. Moreover, if A = A4 = S, then the dimension of

Ann(x) is exactly 4 for every zero divisor x in A [2, Section 12]. The algebras Õ

and S̃ do not have this property. It is easy to check that x = f1 − f4 ∈ Õ has the
2-dimensional annihilator spanned by f2+f7 and f3−f6. Further, the dimension of

the annihilator of x = f3 + f12 ∈ S̃ is 6; it is spanned by f1 + f14, f2− f13, f4+ f11,
f5 + f10, f6 − f9, and f7 − f8. Thus, we have

Corollary 5.11. Let A be a super-alternative locally complex algebra which is not
a division algebra. If the dimension of Ann(x) is 4 for every zero divisor in A, then
A ∼= S.

One can check that

1 7→ 1, e1 7→ f1, e2 7→ f2, e3 7→ f3, e4 7→ f12, e5 7→ −f13, e6 7→ −f14, e7 7→ −f15

defines an embedding of Õ into S. Thus, both O and Õ can be viewed as subalge-
bras of S. Chan and Ðoković proved that S has 6-dimensional subalgebras, which,
however, are not contained in 8-dimensional subalgebras of S [6, Corollary 3.6, The-

orem 8.1]. Accordingly, O and Õ do not have 6-dimensional subalgebras. Further,
S does not contain 5-dimensional subalgebras [6, Proposition 4.4]. This does not

hold for S̃. For example, the linear span of 1, f1+ f14, f3− f12, f6− f9, and f7− f8
is a 5-dimensional subalgebra of S̃. Combining all these we get our final corollary.
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Corollary 5.12. Let A be a super-alternative locally complex algebra. If A has 6-
dimensional subalgebras, but does not have 5-dimensional subalgebras, then A ∼= S.

Acknowledgement. The authors are grateful to the referee for careful reading
of the paper and the resulting useful remarks.
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ON LOCALLY COMPLEX ALGEBRAS AND

LOW-DIMENSIONAL CAYLEY-DICKSON ALGEBRAS

MATEJ BREŠAR, PETER ŠEMRL, ŠPELA ŠPENKO

Abstract. The paper begins with short proofs of classical theorems by Frobe-
nius and (resp.) Zorn on associative and (resp.) alternative real division alge-
bras. These theorems characterize the first three (resp. four) Cayley-Dickson
algebras. Then we introduce and study the class of real unital nonassociative
algebras in which the subalgebra generated by any nonscalar element is isomor-
phic to C. We call them locally complex algebras. In particular, we describe all
such algebras that have dimension at most 4. Our main motivation, however,
for introducing locally complex algebras is that this concept makes it possible
for us to extend Frobenius’ and Zorn’s theorems in a way that it also involves
the fifth Cayley-Dickson algebra, the sedenions.

1. Introduction

The real number field R, the complex number field C, and the division agebra
of real quaternions H are classical examples of associative real division algebras.
In 1878 Frobenius [10] proved that in the finite dimensional context they are also
the only examples. Assuming alternativity instead of associativity, there is another
example: O, the division algebra of octonions. It turns out that this is the only
additional example. This result is attributed to Zorn [21].

In Section 3 we give short and self-contained proofs of these classical theorems
by Frobenius and Zorn. Both proofs are based on the same idea. In fact, the proof
of Zorn’s theorem is a continuation of the proof of Frobenius’ theorem. The proofs
are constructive, it appears like H and O are met "unintentionally".

Our proofs of Frobenius’ and Zorn’s theorems were discovered by accident, when
examining the class of real unital algebras with the following property: the subalge-
bra generated by any element different from a scalar multiple of 1 is isomorphic to
C. These algebras, which we call locally complex, will be first considered in Section
4. In particular, we will classify all locally complex algebras of dimension at most
4.

Unlike real division algebras which exist only in dimensions 1, 2, 4, and 8 [3, 13],
locally complex algebras exist in abundance in any dimension. However, among
alternative (and hence also associative) finite dimensional real algebras, the concepts
of division algebras and locally complex algebras coincide. Frobenius’ and Zorn’s
theorems can be therefore equivalently stated so that one replaces "division" by
"locally complex" in the formulation. This observation paves the way for continuing
in the direction of these two theorems.

The algebras R, C, H, and O are the first four (real) algebras formed in the
Cayley-Dickson process. The next one is the 16-dimensional algebra S of (real)
sedenions. It is the first algebra in this process that is neither a division nor an
alternative algebra. Although it is therefore somewhat less attractive than its fa-
mous predecessors, S has recently gained a considerable attention. Over the last
years it was considered in several papers by algebraists as well as by mathematical
physicists [1, 2, 4, 5, 6, 12, 14, 16]. To the best of our knowledge, however, there

2010 Math. Subj. Class. 17A35, 17A45, 17A70, 17D05.
Supported by the Slovenian Research Agency (program No. P1-0288).
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are no results that characterize S through its abstract algebraic properties. More-
over, one might get an impression when looking at some of these papers that such
characterizations are not really expected (for example, see the introduction in [2]).
One of the goals of this paper is to show that actually they can be established.

In Section 5 we consider locally complex algebras that are simultaneously super-
algebras with the property that all their homogeneous elements satisfy the alter-
nativity conditions (see (1) below). Our main result says that besides the obvious
examples, i.e., R, C, H, O, and S, there are exactly two more algebras having these
properties, one in dimension 8 and another one in dimension 16. As corollaries we
get three characterizations of S: the first one is based on the existence of special
elements satisfying a version of the alternativity condition, the second one is based
on the properties of zero divisors, and the third one is based on the structure of
subalgebras.

Let us remark that among the papers listed above, the one by Calderon and
Martin [5] is philosophically the closest one to our paper since it also considers
superalgebras. However, the two papers do not seem to have any overlap. On
the other hand, in our final results on sedenions we were influenced by the papers
[2, 6, 16].

2. Preliminaries

The purpose of this section is to recall some definitions and elementary properties
of the notions needed in subsequent sections.

Let A be a nonassociative algebra over a field. In this paper we will be actually
interested only in the case where this field is R, although some parts, like the
following definitions and comments, make sense in a more general setting. Recall
that A is said to be a division algebra if for every nonzero a ∈ A, x 7→ ax and
x 7→ xa are bijective maps from A onto A. If A is finite dimensional, then this is
clearly equivalent to the condition that A has no zero divisors. If A is associative,
then it is a division algebra if and only if it is unital (i.e., it has a unity 1) and every
nonzero element in A has a multiplicative inverse. For general algebras this is not
true.

The real Cayley-Dickson algebras An, n ≥ 0, are (nonassociative) real algebras
with involution ∗, defined recursively as follows: A0 = R with trivial involution
a∗ = a, and An is the vector space An−1 × An−1 endowed with multiplication and
involution defined by

(a, b)(c, d) = (ac− d∗b, da+ bc∗),

(a, b)∗ = (a∗,−b).

It is easy to see that An is unital (in fact, the unity of An is (1, 0) where 1 is the
unity of An−1), x + x∗ and xx∗ = x∗x are scalar multiplies of 1 for every x ∈ An,
and dimAn = 2n. Next, it is clear that A1 = C, and one easily notices that A2 = H,
the quaternions. The next algebra in this process is A3 = O, the octonions. For
an excellent survey on octonions we refer the reader to [1]. Let us record here just
a few basic properties of O. First of all, O is an 8-dimensional division algebra.
Denoting its basis by {1, e1, . . . , e7}, the multiplication in O is determined by the
following table:

e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −1
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Note that the linear span of 1, e1, e2, e3 is a subalgebra of O isomorphic to H.
It is well known that O is a division algebra which is not associative. However, it

is "almost" associative - namely, it is alternative. Recall that an algebra A is said
to be alternative if

(1) x2y = x(xy) and yx2 = (yx)x

holds for all x, y ∈ A. Incidentally, Artin’s theorem says that this is equivalent to
the condition that any two elements generate an associative subalgebra [20, p. 36].
We shall need the identities from (1) in their linearized forms:

(2) (xz + zx)y = x(zy) + z(xy), y(xz + zx) = (yx)z + (yz)x.

Let us also record the so-called middle Moufang identity which, as one easily checks
(see, e.g., [20, p. 35]), holds in every alternative algebra:

(3) (xy)(zx) = x(yz)x.

With regard to the right-hand side of (3) it should be pointed out that alternative
algebras are flexible, i.e., x(yx) = (xy)x holds (after all, this follows from Artin’s
theorem), and therefore there is a convention to write xyx instead of (xy)x or x(yx).

The next algebra obtained by the Cayley-Dickson process is the 16-dimensional
algebra A4 = S, the sedenions. Let {1, e1, . . . , e15} be a basis of S. This is the
multiplication table for S:

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 −1 e3 −e2 e5 −e4 −e7 e6 e9 −e8 −e11 e10 −e13 e12 e15 −e14
e2 −e3 −1 e1 e6 e7 −e4 −e5 e10 e11 −e8 −e9 −e14 −e15 e12 e13
e3 e2 −e1 −1 e7 −e6 e5 −e4 e11 −e10 e9 −e8 −e15 e14 −e13 e12
e4 −e5 −e6 −e7 −1 e1 e2 e3 e12 e13 e14 e15 −e8 −e9 −e10 −e11
e5 e4 −e7 e6 −e1 −1 −e3 e2 e13 −e12 e15 −e14 e9 −e8 e11 −e10
e6 e7 e4 −e5 −e2 e3 −1 −e1 e14 −e15 −e12 e13 e10 −e11 −e8 e9
e7 −e6 e5 e4 −e3 −e2 e1 −1 e15 e14 −e13 −e12 e11 e10 −e9 −e8
e8 −e9 −e10 −e11 −e12 −e13 −e14 −e15 −1 e1 e2 e3 e4 e5 e6 e7
e9 e8 −e11 e10 −e13 e12 e15 −e14 −e1 −1 −e3 e2 −e5 e4 e7 −e6

e10 e11 e8 −e9 −e14 −e15 e12 e13 −e2 e3 −1 −e1 −e6 −e7 e4 e5
e11 −e10 e9 e8 −e15 e14 −e13 e12 −e3 −e2 e1 −1 −e7 e6 −e5 e4
e12 e13 e14 e15 e8 −e9 −e10 −e11 −e4 e5 e6 e7 −1 −e1 −e2 −e3
e13 −e12 e15 −e14 e9 e8 e11 −e10 −e5 −e4 e7 −e6 e1 −1 e3 −e2
e14 −e15 −e12 e13 e10 −e11 e8 e9 −e6 −e7 −e4 e5 e2 −e3 −1 e1
e15 e14 −e13 −e12 e11 e10 −e9 e8 −e7 e6 −e5 −e4 e3 e2 −e1 −1

The sedenions have zero divisors and they are not an alternative algebra. Anyhow,
we shall see that they are close enough to alternative division algebras, so that these
approximate properties are "almost" characteristic for S. Let us recall the definition
of another notion needed for dealing with these properties.

An algebra A is said to be a superalgebra if it is Z2-graded, i.e., there exist linear
subspaces Ai, i ∈ Z2, such that A = A0 ⊕ A1 and AiAj ⊆ Ai+j for all i, j ∈ Z2.
We call A0 an even and A1 an odd part of A. Elements in A0 ∪ A1 are said to be
homogeneous. Note that if A is unital, then 1 ∈ A0.

Cayley-Dickson algebras possess a natural superalgebra structure. Indeed, A =
An becomes a superalgebra by defining A0 = An−1 × 0 and A1 = 0 × An−1. This
simple observation is the concept behind the contents of Section 5.

The algebras An, n ≥ 4, are not alternative, but at least they have certain
nonscalar elements that share many properties with elements in alternative algebras:
these are scalar multiples of the element e = (0, 1), where 1 is of course the unity of
An−1 (see e.g. [2, Section 5]). Let us point out only one property that is sufficient
for our purposes: e satisfies x2e = x(xe) for all x ∈ An. This can be easily verified.
Moreover, this property is "almost" characteristic for e: only elements in the linear
span of 1 and e satisfy this identity for every x [8, Lemma 1.2] (the authors are
thankful to Alberto Elduque for drawing their attention to this result). Now, let
us call an element a in an arbitrary nonassociative algebra A an alter-scalar if a
is not a scalar and satisfies x2a = x(xa) holds for all x ∈ A. (A similar, but not
exactly the same notion of a strongly alternative element was defined in [17]. There
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is also a standard notion of an alternative element defined through the condition
a2x = a(ax) for every x, but this is too weak for our goals). What is important for
us is that S contains alter-scalars. With respect to the notation introduced above,
these are nonzero scalar multiplies of e8. Thus, the standard basis of S has an
element that is in some sense "better" than the others. This does not seem to be
the case with the preceding Cayley-Dickson algebras.

Next we recall that an algebra A is said to be quadratic if it is unital and the
elements 1, x, x2 are linearly dependent for every x ∈ A. Thus, for every x ∈ A there
exist t(x), n(x) ∈ R such that x2 − t(x)x + n(x) = 0. Obviously, t(x) and n(x) are
uniquely determined if x /∈ R. Setting t(λ) = 2λ and n(λ) = λ2 for λ ∈ R, we can
then consider t and n as maps from A into R (the reason for this definition is that in
this way t becomes a linear functional, but we shall not need this). We call t(x) and
n(x) the trace and the norm of x, respectively. For some elementary properties of
quadratic algebras, a characterization of quadratic alternative algebras, and further
references we refer to [9].

From x2−(x+x∗)x+x∗x = 0 we see that all algebras An are quadratic. Further,
every real division algebra A that is algebraic and power-associative (this means that
every subalgebra generated by one element is associative) is automatically quadratic.
Indeed, if x ∈ A then there exists a nonzero polynomial f(X) ∈ R[X ] such that
f(x) = 0. Writing f(X) as the product of linear and quadratic polynomials in R[X ]
it follows that p(x) = 0 for some p(X) ∈ R[X ] of degree 1 or 2. In particular,
algebraic alternative (and hence associative) real division algebras are quadratic.

Finally, if A is a real unital algebra, i.e., an algebra over R with unity 1, then we
shall follow a standard convention and identify R with R1; thus we shall write λ for
λ1, where λ ∈ R.

3. Frobenius’ and Zorn’s theorems

Our first lemma is well known. It describes one of the basic properties of qua-
dratic algebras. We give the proof for the sake of completness.

Lemma 3.1. Let A be a quadratic real algebra. Then U = {u ∈ A\R |u2 ∈ R}∪{0}
is a linear subspace of A, uv + vu ∈ R for all u, v ∈ U , and A = R⊕ U .

Proof. Obviously, U is closed under scalar multiplication. We have to show that
u, v ∈ U implies u + v ∈ U . If u, v, 1 are linearly dependent, then one easily
notices that already u and v are dependent, and the result follows. Thus, let u, v, 1
be independent. We have (u + v)2 + (u − v)2 = 2u2 + 2v2 ∈ R. On the other
hand, as A is quadratic there exist λ, µ ∈ R such that (u+ v)2 − λ(u + v) ∈ R and
(u−v)2−µ(u−v) ∈ R, and hence λ(u+v)+µ(u−v) ∈ R. However, the independence
of 1, u, v implies λ+µ = λ−µ = 0, so that λ = µ = 0. This proves that u± v ∈ U .
Thus U is indeed a subspace of A. Accordingly, uv+vu = (u+v)2−u2−v2 ∈ R for
all u, v ∈ U . Finally, if a ∈ A \ R, then a2 − νa ∈ R for some ν ∈ R, and therefore
u = a− ν

2 ∈ U ; thus, a = ν
2 + u ∈ R⊕ U . �

Remark 3.2. If A is additionally a division algebra, then every nonzero u ∈ U can
be written as u = αv with α ∈ R and v2 = −1. Indeed, since u2 ∈ R and since u2

cannot be ≥ 0 (otherwise (u− α)(u+ α) = u2 − α2 would be 0 for some α ∈ R) we
have u2 = −α2 with 0 6= α ∈ R. Thus, v = α−1u is a desired element.

Note that by 〈u, v〉 = − 1
2 (uv + vu) one defines an inner product on U if A is

a division algebra. The next lemma therefore deals with nothing but the Gram-
Schmidt process. Nevertheless, we give the proof.

Lemma 3.3. Let A be a quadratic real division algebra, and let U be as in Lemma
3.1. Suppose e1, . . . , ek ∈ U are such that e2i = −1 for all i ≤ k and eiej = −ejei
for all i, j ≤ k, i 6= j. If U is not equal to the linear span of e1, . . . , ek, then there
exists ek+1 ∈ U such that e2k+1 = −1 and eiek+1 = −ek+1ei for all i ≤ k.
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Proof. Pick u ∈ U that is not contained in the linear span of e1, . . . , ek, and set
αi =

1
2 (uei+eiu) ∈ R (by Lemma 3.1). Note that v = u+α1e1+ . . .+αkek satisfies

eiv = −vei for all i ≤ k. Let ek+1 be a scalar multiple of v such that e2k+1 = −1
(Remark 3.2). Then ek+1 has all desired properties. �

Theorem 3.4. (Frobenius’ theorem) An algebraic associative real division al-
gebra A is isomorphic to R, C, or H.

Proof. As pointed out at the end of Section 2, A is quadratic. We may assume that
n = dimA ≥ 2. By Remark 3.2 we can fix i ∈ A such that i2 = −1. Thus, A ∼= C

if n = 2. Let n > 2. By Lemma 3.3 there is j ∈ A such that j2 = −1 and ij = −ji.
Set k = ij. Now one immediately checks that k2 = −1, ki = j = −ik, jk = i = −kj,
and i, j, k are linearly independent. Therefore A contains a subalgebra isomorphic
to H. It remains to show that n is not > 4. If it was, then by Lemma 3.3 there
would exist e ∈ A such that e 6= 0, ei = −ie, ej = −je, and ek = −ke. However,
from the first two identities we infer eij = −iej = ije; since ij = k, this contradicts
the third identity. �

In standard graduate algebra textbooks one can find different proofs of Frobenius’
theorem. In some of them the advanced theory is used, but there are also such that
use only elementary tools, e.g., [11] and [15]. The proof in [11] is actually based on
similar ideas than our proof, but it is considerably lengthier. The one in [15] (which
is based on [18]) is different, and also short.

We believe that our proof, consisting of four simple steps (Lemma 3.1, Remark
3.2, Lemma 3.3, and the final proof), should be easily understandable to under-
graduate students. Some of these steps, especially both lemmas, are of independent
interest.

We now switch to the proof of Zorn’s theorem. We need a simple lemma:

Lemma 3.5. Let A be an alternative algebra, and let e1, . . . , ek ∈ A be such that
eiej ∈ {e1, . . . , ek} whenever i 6= j. If w ∈ A is such that eiw = −wei for every i,
then (eiej)w = −ei(ejw) and w(eiej) = −(wei)ej whenever i 6= j.

Proof. Just set x = ei, y = ej, and z = w in (2), and the result follows. �

Theorem 3.6. (Zorn’s theorem) An algebraic alternative real division algebra
A is isomorphic to R, C, H, or O.

Proof. Since a subalgebra generated by two elements is associative, the first part
of the proof of Theorem 3.4 remains unchanged in the present context. We may
therefore assume that A contains a copy of H and that n = dimA > 4. Let us
just change the notation and write e1 = i, e2 = j, and e3 = k. By Lemma 3.3
there exists e4 ∈ A such that e24 = −1 and e4ei = −eie4 for i = 1, 2, 3. Now define
e5 = e1e4, e6 = e2e4, e7 = e3e4. Using the alternativity and anticommutativity
relations we see that

e25 = e26 = e27 = −1,

e1e5 = −e5e1 = e2e6 = −e6e2 = e3e7 = −e7e3 = −e4,

e4e5 = −e5e4 = e1, e4e6 = −e6e4 = e2, e4e7 = −e7e4 = e3.

Further, using (3) we obtain

e5e6 = −e6e5 = −e3, e6e7 = −e7e6 = −e1, e7e5 = −e5e7 = −e2.

Finally, use Lemma 3.5 with k = 3 and w = e4, and note that the resulting identites
yield the rest of the multiplication table.

It is easy to see that 1, e1, . . . , e7 are linearly independent. Indeed, by taking

squares we first see that
∑7

i=1 λiei cannot be a nonzero scalar; if
∑7

i=1 λiei = 0,
then after multiplying this relation with ei we get λi = 0. Thus, we have showed
that A contains O.
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It remains to show that n = 8. Suppose n > 8. Then, by Lemma 3.3, there
exists f ∈ A such that f 6= 0 and fei = −eif , 1 ≤ i ≤ 7. Lemma 3.5 tells us that
f also satisfies (eiej)f = −ei(ejf) and f(eiej) = −(fei)ej for i 6= j. Accordingly,

(4) e1(e2(e4f)) = −e1((e2e4)f) = −e1(e6f) = (e1e6)f = −e7f.

Note that for 1 ≤ i ≤ 3 we have

ei(e4f) = −(eie4)f = f(eie4) = −f(e4ei) = (fe4)ei = −(e4f)ei.

This makes it possible for us to apply Lemma 3.5 for k = 3 and w = e4f . In
particular this gives (e1e2)(e4f) = −e1(e2(e4f)). Consequently,

e1(e2(e4f)) = −e3(e4f) = (e3e4)f = e7f,

contradicting (4). �

Remark 3.7. From the first part of the proof we see that if an alternative (not
necessarily a division) real algebra A contains a copy of H and dimA > 4, then it
also contains a copy of O.

Classical versions of Frobenius’ and Zorn’s theorems deal with finite dimensional
algebras rather than with (slightly more general) algebraic ones. Our method,
however, yields these more general versions for free. But actually we shall need the
more general version of Zorn’s theorem in Section 5.

We cannot claim that any of the arguments given in this section is entirely
original. After finding these proofs we have realized, when searching the literature,
that many of these ideas appear in different texts. But to the best of our knowledge
nobody has compiled these arguments in the same way that leads to short and
direct proofs of theorems by Frobenius and Zorn. Therefore we hope and believe
that this section is of some value.

4. Locally complex algebras

As already mentioned, we define a locally complex algebra as a real unital algebra
A such that every a ∈ A \ R generates a subalgebra isomorphic to C. A locally
complex algebra A is obviously quadratic. We can therefore consider the trace t(a)
and the norm n(a) of each a ∈ A.

Lemma 4.1. The following conditions are equivalent for a real unital algebra A:

(i) A is locally complex;
(ii) every 0 6= a ∈ A has a multiplicative inverse lying in Ra+ R;
(iii) A is quadratic and A has no nontrivial idempotents or square-zero elements;
(iv) A is quadratic and n(a) > 0 for every 0 6= a ∈ A.

Moreover, if 2 ≤ dimA = n < ∞, then (i)-(iv) are equivalent to

(v) A has a basis {1, e1, . . . , en−1} such that e2i = −1 for all i and eiej = −ejei
for all i 6= j.

Proof. It is easy to see that (i)=⇒ (ii) and (ii)=⇒ (iii). Suppose A is quadratic

and n(a) ≤ 0 for some 0 6= a ∈ A. Then a /∈ R. Therefore also b = a − t(a)
2 /∈ R.

Note that b2 ≥ 0. If b2 = 0, then A has a nontrivial nilpotent. If b2 > 0, i.e.,
b2 = α2 for some 0 6= α ∈ R, then e = 1

2 (1 − α−1b) is a nontrivial idempotent in
A. Thus, (iii)=⇒ (iv). The proof of (iv)=⇒ (ii) is also straightforward. Therefore

(ii)-(iv) are equivalent. Now assume (ii)-(iv) and pick a ∈ A \R. Then b = a− t(a)
2

satisfies b2 ∈ R. Just as in the argument above we see that b2 cannot be ≥ 0. Hence
b2 = −α2 for some α ∈ R \ {0}, and so i = α−1b satisfies i2 = −1. This yields (i).

Finally, assume 2 ≤ dimA = n < ∞. The implication (i)-(iv) =⇒ (v) follows
from (the proof of) Lemma 3.3. Assuming (v) and writing a ∈ A as a = λ0 +∑n−1

i=1 λiei, we see that a2 − t(a)a+n(a) = 0 with t(a) = 2λ0 and n(a) =
∑n−1

i=0 λ2
i .

Thus, (iv) holds. �
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We can now list various examples of locally complex algebras.

Example 4.2. A quadratic real division algebra is locally complex.

Example 4.3. Let Jn be an n-dimensional real vector space, and let {1, e1, . . . , en−1}
be its basis. Define a multiplication in Jn so that 1 is of course the unity, and the
others are multiplied according to eiej = −δij . Then Jn is a locally complex
algebra and simultaneously a Jordan algebra. Another way of representing Jn
is by identifying it with R × Rn−1, and defining multiplication by (λ, u)(µ, v) =
(λµ− 〈u, v〉, λv + µu), where 〈 . , . 〉 denotes the standard inner product on Rn−1.

Example 4.4. A real unital algebra A is said to be nicely normed if there exists a
linear map ∗ : A → A such that a∗∗ = a, (ab)∗ = b∗a∗ for all a, b ∈ A, and a+a∗ ∈ R,
aa∗ = a∗a > 0 for all 0 6= a ∈ A (cf. [1, p. 154]). These algebras form an important
subclass of locally complex algebras. Namely, every element a in such an algebra A
satisfies a2− t(a)a+n(a) = 0 with t(a) = a+a∗ and n(a) = aa∗, so that A is indeed
locally complex. Note that U = {u ∈ A \ R |u2 ∈ R} ∪ {0} = {u ∈ A |u∗ = −u}.

In particular, the Cayley-Dickson algebras An are nicely normed, and hence
locally complex.

From Lemma 4.1 we can deduce the following characterization of finite dimen-
sional nicely normed algebras.

Corollary 4.5. let A be a real unital algebra. If 2 ≤ dimA = n < ∞, then the
following conditions are equivalent:

(i) A is nicely normed;
(ii) A has a basis {1, e1, . . . , en−1} such that e2i = −1 for all i and eiej =

−ejei ∈ span{e1, . . . , en−1} for all i 6= j.

Proof. Assume (i). By Lemma 4.1 (v) A has a basis {1, e1, . . . , en−1} that has all
desired properties except that we do not know yet that eiej ∈ span{e1, . . . , en−1}.
In view of the observation in Example 4.4 we have span{e1, . . . , en−1} = U = {u ∈
A |u∗ = −u}. Therefore, if i 6= j, (eiej)

∗ = e∗je
∗
i = ejei = −eiej , and hence

eiej ∈ U . Conversely, if (ii) holds, then we can define ∗ according to 1∗ = 1 and
e∗i = −ei, and one easily checks that this makes A a nicely normed algebra. �

If A is a commutative finite dimensional locally complex algebra, then the ei’s
from (v) in Lemma 4.1 must satisfy eiej = 0 if i 6= j. This can be interpreted as
follows.

Corollary 4.6. Let A be a locally complex algebra with 2 ≤ dimA = n < ∞. Then
A is commutative if and only if A ∼= Jn.

Let A be an alternative real algebra. If A is an algebraic division algebra, then
it is quadratic, and hence , as already mentioned, locally complex. Conversely, if A
is locally complex, then by Lemma 4.1 (ii) for every 0 6= a ∈ A there exist λ, µ ∈ R

such that a(λa + µ) = 1. Since A is alternative it follows that for every y ∈ A the
equation ax = y has the solution x = (λa + µ)y. Similarly one solves the equation
xa = y. Therefore A is an algebraic division algebra. Accordingly, Frobenius’ and
Zorn’s theorem can be equivalently stated as follows.

Theorem 4.7. (Frobenius’ and Zorn’s theorems) An associative locally com-
plex algebra is isomorphic to R, C, or H. An alternative locally complex algebra is
isomorphic to R, C, H, or O.

As already mentioned in the introduction, this version of Frobenius’ and Zorn’s
theorems indicates the direction in which these theorems can be generalized. We
shall deal with this in the next section.
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In the rest of this section we will classify locally complex algebras up to dimesion
4. Clearly, R and C are, up to an isomorphism, the only locally complex algebras
of dimension ≤ 2.

We fix some notation. The members of R × R
2 will be denoted by (λ, x) =

(λ, x1, x2) and the members of R×R3 by (λ, x) = (λ, x1, x2, x3). For each (ordered)

pair x, y ∈ R
2 we denote by |x y| the 2 × 2 determinant

∣∣∣∣
x1 y1
x2 y2

∣∣∣∣. The symbol

x×y stands for the usual vector product (cross product) of x, y ∈ R3, while (x, y, z)
denotes the scalar triple product (x, y, z) = 〈x× y, z〉, x, y, z ∈ R3.

Let t, s be nonnegative real numbers. We denote by At,s the 3-dimensional
algebra At,s = R× R2 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉+ t|x y|, λy + µx+ s|x y|e1),

where e1 = (1, 0) ∈ R2. It follows from Lemma 4.1 (v) that At,s is a locally com-
plex algebra. We will show that each 3-dimensional locally complex algebra A is
isomorphic to At,s for some (t, s) ∈ [0,∞)× [0,∞) and that At,s and At′,s′ are not
isomorphic whenever (t, s) 6= (t′, s′). In short, we have the following classification
theorem for 3-dimensional locally complex algebras.

Theorem 4.8. The map (t, s) 7→ At,s, t, s ≥ 0, induces a bijection between [0,∞)×
[0,∞) and isomorphism classes of 3-dimensional locally complex algebras.

Proof. We first show that each 3-dimensional locally complex algebra A is isomor-
phic to At,s for some (t, s) ∈ [0,∞)× [0,∞). It is a straightforward consequence of
Lemma 4.1 (v) that A is isomorphic to R× R2 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉, λy + µx) + |x y|(t, z)

for some (t, z) ∈ R × R2. So, we may, and we will assume that A is this algebra.
We have two possibilities; either t ≥ 0, or t < 0. Let us consider only the second
one; the case when t ≥ 0 can be handled in a similar, but simpler way. Set s = ‖z‖.
There exists an orthogonal 2 × 2 matrix Q such that Qz = −se1 and detQ = −1.
Observe that |Qx Qy| = (detQ)|x y| = −|x y| and 〈Qx,Qy〉 = 〈x, y〉, x, y ∈ R

2.
We claim that the map ϕ : A → A|t|,s given by ϕ(λ, x) = (λ,Qx), (λ, x) ∈ R× R2,
is an isomorphism. Clearly, it is linear and bijective. Moreover, we have

ϕ((λ, x) (µ, y)) = ϕ((λµ − 〈x, y〉+ t|x y|, λy + µx+ |x y|z))

= (λµ − 〈x, y〉+ t|x y|, λQy + µQx− s|x y|e1).

On the other hand,
ϕ(λ, x)ϕ(µ, y) = (λ,Qx) (µ,Qy)

= (λµ− 〈Qx,Qy〉+ |t| |Qx Qy|, λQy + µQx+ s|Qx Qy|e1)

= (λµ − 〈x, y〉+ t|x y|, λQy + µQx− s|x y|e1).

Hence, ϕ is an isomorphism. It remains to show that if At,s and At′,s′ are isomorphic
for some (t, s), (t′, s′) ∈ [0,∞)× [0,∞), then (t, s) = (t′, s′).

So, let ϕ : At,s → At′,s′ be an isomorphism. Then ϕ is linear and unital. In
particular, ϕ(λ, 0) = (λ, 0) for every λ ∈ R. Furthermore, we have

{(0, x) ∈ At,s |x ∈ R
2} = {u ∈ At,s |u

2 ∈ R and u 6∈ R} ∪ {0}.

It follows that
ϕ(λ, x) = (λ,Qx)

for some linear map Q : R2 → R2. From

(λ2 − ‖Qx‖2, 2λQx) = (λ,Qx)2 = (ϕ(λ, x))2

= ϕ((λ, x)2) = ϕ(λ2 − ‖x‖2, 2λx) = (λ2 − ‖x‖2, 2λQx)

we get that ‖Qx‖2 = ‖x‖2 for every x ∈ R2. Thus, Q is orthogonal. The equation

ϕ((λ, x) (µ, y)) = ϕ(λ, x)ϕ(µ, y)
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can be rewritten as

(λµ− 〈x, y〉+ t|x y|, λQy + µQx+ s|x y|Qe1)

= (λµ− 〈x, y〉+ t′(detQ) |x y|, λQy + µQx+ s′(detQ) |x y|e1).

We conclude that t = t′ detQ and sQe1 = s′(detQ)e1. Applying the fact that
| detQ| = 1 and ‖Qe1‖ = ‖e1‖ = 1 we get |t| = |t′| and |s| = |s′|. As all t, t′, s, s′

are nonnegative, we have t = t′ and s = s′, as desired. �

It follows directly from Corollary 4.5 that At,s is nicely normed if and only if
t = 0. So, the above statement shows that there is a natural bijection between
[0,∞) and isomorphism classes of 3-dimensional nicely normed algebras.

The next result owes a lot to the paper [7] classifying 4-dimensional real quadratic
division algebras. Our approach covers a more general class of real algebras. It is
self-contained and completely elementary using just simple linear algebra tools.

We identify linear maps on R3 with 3 × 3 real matrices. Let M3 denote the set
of all 3× 3 real matrices. For (T, u), (T ′, u′) ∈ M3 ×R3 we write (T, u) ∼ (T ′, u′) if
and only if there exists an orthogonal 3× 3 matrix Q such that T ′ = (detQ)QTQT

and u′ = (detQ)Qu. It is clear that ∼ is an equivalence relation on M3 × R
3. The

set of equivalence classes will be denoted by (M3 × R3)/ ∼.
For T ∈ M3 and u ∈ R3 we denote by AT,u the 4-dimensional algebra AT,u =

R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉+ (x, y, u), λy + µx+ T (x× y)).

As in the 3-dimensional case one can easily verify that AT,u is a locally complex
algebra. We will show that each 4-dimensional locally complex algebra A is isomor-
phic to AT,u for some (T, u) ∈ M3 ×R3 and that AT,u and AT ′,u′ are isomorphic if
and only if (T, u) ∼ (T ′, u′). In other words, we will prove the following.

Theorem 4.9. The map (T, u) 7→ AT,u, T ∈ M3, u ∈ R
3, induces a bijection

between (M3 × R3)/ ∼ and isomorphism classes of 4-dimensional locally complex
algebras.

Proof. We will first show that each 4-dimensional locally complex algebra A is
isomorphic to AT,u for some (T, u) ∈ M3 ×R

3. It is a straightforward consequence
of Lemma 4.1 (v) that A is isomorphic to R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ− 〈x, y〉, λy + µx) + S(x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2)

for some linear map S : R3 → R × R3. Observe that S : R3 → R × R3 can be
decomposed into a direct sum of a linear functional on R3 and an endomorphism on
R

3. Recall that every linear functional on R
3 can be represented in a unique way

as an inner product with a fixed vector in R3. Finally, observe that the coordinates
of the vector (x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2) are up to a permutation and
a multiplication by ±1 the coordinates of the vector product x × y. Thus, A is
isomorphic to R× R3 with the multiplication given by

(λ, x) (µ, y) = (λµ − 〈x, y〉+ (x, y, u), λy + µx+ T (x× y))

for some u ∈ R3 and some endomorphism T of R3. Hence, A is isomorphic to AT,u,
as desired.

Assume now that AT,u and AT ′,u′ are isomorphic for some (T, u), (T ′, u′) ∈ M3×
R3. We have to show that (T, u) ∼ (T ′, u′).

So, let ϕ : AT,u → AT ′,u′ be an isomorphism. Exactly in the same way as in the
3-dimensional case we show that

ϕ(λ, x) = (λ,Qx)

for some orthogonal 3× 3 matrix Q. The equation

ϕ((λ, x) (µ, y)) = ϕ(λ, x)ϕ(µ, y)
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can be rewritten as

(λµ − 〈x, y〉+ (x, y, u), λQy + µQx+QT (x× y))

= (λµ− 〈x, y〉+ (Qx,Qy, u′), λQy + µQx+ T ′(Qx×Qy)).

We conclude that

(x, y, u) = (Qx,Qy, u′)

and

QT (x× y) = T ′(Qx×Qy)

for all x, y ∈ R3. As Q is orthogonal we have Q(x × y) = (detQ)(Qx × Qy), and
consequently,

(x, y, u) = (detQ) (x, y,QTu′) and QT (x× y) = (detQ)T ′Q(x× y), x, y ∈ R
3.

It follows that u′ = (detQ)Qu and T ′ = (detQ)QTQT , as desired.
Finally, if (T, u) ∼ (T ′, u′) for some T, T ′ ∈ M3 and u, u′ ∈ R3 then there exists

an orthogonal 3 × 3 matrix Q such that T ′ = (detQ)QTQT and u′ = (detQ)Qu.
It is then straightforward to check that the map ϕ : AT,u → AT ′,u′ defined by
ϕ(λ, x) = (λ,Qx), (λ, x) ∈ AT,u, is an isomorphism. �

It is rather easy to verify that AT,u is nicely normed if and only if u = 0. We will
next show that AT,u is a division algebra if and only if 〈Tx, x〉 6= 0 for each nonzero
x ∈ R3 (that is, the quadratic form q(x) = 〈Tx, x〉 is either positive definite, or
negative definite). Indeed, assume first that AT,u is not a division algebra. Then

(λµ− 〈x, y〉+ (x, y, u), λy + µx+ T (x× y)) = 0

for some nonzero (λ, x), (µ, y) ∈ AT,u. In particular,

T (x× y) = −λy − µx.

Set z = x× y. We have z 6= 0, since otherwise x and y are linearly dependent and
therefore

• either λ = 0 and then 〈x, y〉 = 0 and µx = 0 which further yields that
(λ, x) = 0 or (µ, y) = 0, a contradiction; or

• µ = 0 which yields a contradiction in exactly the same way; or
• λ 6= 0 and µ 6= 0 and then y = −µλ−1x and λµ = 〈x, y〉 yield 0 < λ2 =
−〈x, x〉 ≤ 0, a contradiction.

Hence, z 6= 0 and because z is orthogonal to both x and y we have 〈Tz, z〉 = 0.
To prove the other direction we assume that there exists z ∈ R3 with ‖z‖ = 1

and 〈Tz, z〉 = 0. Then Tz = −tw for some real number t and some w ∈ R3 with
w ⊥ z and ‖w‖ = 1. There is a unique v ∈ R3 such that z = w × v and v ⊥ w.
Set s = −(w, v, u). Then (0, w) and (t, v− sw) are nonzero elements of AT,u whose
product is equal to zero. Hence, AT,u is not a division algebra, as desired.

Following Dieterich’s idea [7] we will now disscuss a geometric interpretation of
the classification of 4-dimensional locally complex algebras. Let us start with a
simple observation concerning 3× 3 skew-symmetric matrices. If x, y ∈ R3 are any
two vectors such that x× y = (c1, c2, c3), then

R =




0 c3 −c2
−c3 0 c1
c2 −c1 0


 = xyT − yxT ,

where x and y are represented as 3 × 1 matrices. If Q is any orthogonal matrix,
then QRQT = (Qx)(Qy)T − (Qy)(Qx)T . As Qx×Qy = (detQ)Q(x× y), we have

Q




0 c3 −c2
−c3 0 c1
c2 −c1 0


QT =




0 d3 −d2
−d3 0 d1
d2 −d1 0


 ,
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where



d1
d2
d3


 = (detQ)Q




c1
c2
c3


 .

If we choose Q ∈ SO(3) such that




0
0√

c21 + c22 + c23



 = Q




c1
c2
c3



 ,

then

QRQT =




0 d 0
−d 0 0
0 0 0


 ,

where d =
√
c21 + c22 + c23. In particular, d = ‖R‖.

Any 3 × 3 matrix T can be uniquely decomposed into its symmetric and skew-
symmetric part, T = P + R, P = (1/2)(T + T T ), R = (1/2)(T − T T ). If T ′ =
(detQ)QTQT and T ′ = P ′ + R′ with P ′ symmetric and R′ skew-symmetric, then
P ′ = (detQ)QPQT and R′ = (detQ)QRQT . We will say that AT,u is of rank
3,2,1,0, respectively, if the symmetric part P of T is of rank 3,2,1,0, respectively.
By the previous remark, two isomorphic algebras AT,u have the same rank.

Let us start with algebras AT,u of rank 3. We have two possibilities: either all
eigenvalues of P = T +T T have the same sign, or P has both positive and negative
eigenvalues. In the first case we will say that AT,u is an ellipsoid locally complex
algebra of dimension 4, while in the second case we call AT,u a hyperboloid locally
complex algebra of dimension 4. As we are interested in isomorphism classes we
can use the fact that AT,u is isomorphic to A−T,u to restrict our attention to the
case when all the eigenvalues of P are positive (the ellipsoid case) or to the case
when two eigenvalues of P are positive and one is negative (the hyperboloid case).
Once we have done this restriction two algebras AT,u and AT ′,u′ of the above types
are isomorphic if and only if T ′ = QTQT and u′ = Qu for some Q ∈ SO(3).

To consider isomorphism classes of hyperboloid locally complex algebras of di-
mension 4 (a 4-dimensional locally complex algebra is hyperboloid if it is isomorphic
to some hyperboloid algebra AT,u) we set τ = {δ ∈ R3 | δ1 ≥ δ2 > 0 > δ3} and
κ = τ × R3 × R3. The elements of κ will be called configurations. Each configu-
ration consists of a hyperboloid Hδ = {x ∈ R3 | 〈∆δx, x〉 = 1} (a hyperboloid in
principal axis form) and a pair of points. Here, ∆δ is the diagonal matrix with the
diagonal entries: δ1, δ2, δ3. The symmetry group of the hyperboloid Hδ is defined
to be Gδ = {Q ∈ SO(3) |Q∆δQ

T = ∆δ} (the requirement that detQ = 1 tells that
we allow only symmetries that preserve the orientation). Note that this symmetry
group consists of 4 elements whenever δ1 > δ2. Namely, in this case the symmetry
group consists of the identity and all diagonal matrices with two eigenvalues -1 and
one eigenvalue 1. The symmetry group is infinite if and only if the hyperboloid Hδ

is circular, that is, δ1 = δ2. Two configurations (δ, u, c) and (δ′, u′, c′) are said to be
equivalent, (δ, u, c) ≡ (δ′, u′, c′), if and only if their hyperboloids coincide and their
pairs of points lie in the same orbit under the operation of the symmetry group
of the hyperboloid, that is, if and only if δ = δ′ and (u′, c′) = (Qu,Qc) for some
Q ∈ Gδ. We denote by κ/ ≡ the set of equivalence classes of κ. We have a natural
bijection between κ/ ≡ and the set of equivalence classes of hyperboloid locally
complex algebras of dimension 4. Indeed, the bijection is induced by the map

(δ, u, c) 7→ A∆δ+Rc,u
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where

∆δ +Rc =




δ1 c3 −c2
−c3 δ2 c1
c2 −c1 δ3


 .

Clearly, A∆δ+Rc,u is a hyperboloid locally complex algebra. We have to show that
each hyperboloid algebra AT,v is isomorphic to some A∆δ+Rc,u and that A∆δ+Rc,u

and A∆
δ′
+R

c′
,u′ are isomorphic if and only if (δ, u, c) ≡ (δ′, u′, c′). The second

statement is trivial. To verify the first one we write T = P + R with P symmetric
with two positive eigenvalues and R skew-symmetric. Then there exists Q ∈ SO(3)
such that QPQT = ∆δ for some δ ∈ τ . We have QRQT = Rc for some c ∈ R3. Set
u = Qv to complete the proof.

In a similar fashion we can consider isomorphism classes of ellipsoid locally com-
plex algebras of dimension 4. Note that a locally complex algebra AT,u is a division
algebra if and only if it is an ellipsoid algebra. As above we can consider config-
urations which consist of an ellipsoid in principal axis form and a pair of points.
To each such configuration there corresponds a 4-dimensional real division algebra
and this correspondence induces a bijection between the equivalence classes of con-
figurations (the equivalence being defined via the symmetry group of the ellipsoid)
and the isomorphism classes of 4-dimensional real quadratic division algebras. We
omit the details that can be found in [7]. It is clear that locally complex algebras
of rank 2 are either elliptic cylinder algebras or hyperbolic cylinder algebras. We
leave the details to the reader. In the same way one can classify also isomorphism
classes of locally complex algebras of rank 1. Let us conclude with the detailed
disscussion on 4-dimensional locally complex algebras of rank 0. By e3 we denote
e3 = (0, 0, 1) ∈ R3. We define an equivalence relation on the set [0,∞) × R3 as
follows: (d, u), (d′, u′) ∈ [0,∞) × R3 are said to be equivalent, (d, u) ≡ (d′, u′), if
either

• d = d′ = 0 and ‖u‖ = ‖u′‖; or
• d = d′ > 0, ‖u‖ = ‖u′‖, and 〈u, e3〉 = 〈u′, e3〉.

Note that the equivalence class of (d, u) ∈ [0,∞)×R3 with d > 0 contains infinitely
many elements if u and e3 are linearly independent, and is a singleton when u is a
scalar multiple of e3. There is a natural bijection between the isomorphism classes
of 4-dimensional locally complex algebras of rank 0 and the set ([0,∞) × R3)/ ≡.
The bijection is induced by the map from [0,∞) × R3 which maps the pair (d, u),
d ≥ 0, u ∈ R

3, into ATd,u with

Td =




0 d 0
−d 0 0
0 0 0



 .

Obviously, ATd,u is a locally complex algebra of rank 0 and one can easily verify that
each 4-dimensional locally complex algebra of rank 0 is isomorphic to some ATd,u. It
remains to show that ATd,u and AT

d′
,u′ are isomorphic if and only if (d, u) ≡ (d′, u′).

So, assume that ATd,u and AT
d′
,u′ are isomorphic for some (d, u), (d′, u′) ∈ [0,∞)×

R3. Then there exists an orthogonal matrix Q such that Td′ = (detQ)QTdQ
T

and u′ = (detQ)Qu. In particular, d′ = ‖Td′‖ = ‖Td‖ = d and ‖u′‖ = ‖u‖. If
d = 0, then d′ = 0, and hence, (d, u) ≡ (d′, u′) in this special case. Therefore
we may assume that d = d′ > 0. From Td′ = (detQ)QTdQ

T we conclude that
Qe3 = (detQ)e3. Consequently,

〈u′, e3〉 = 〈(detQ)Qu, (detQ)Qe3〉 = 〈u, e3〉.

To prove the converse we assume that (d, u) ≡ (d′, u′). We have one of the two
possibilities and we will consider just the second one. So, assume that d = d′ > 0,
‖u‖ = ‖u′‖, and 〈u, e3〉 = 〈u′, e3〉. Then there exists an orthogonal matrix Q such
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that Qe3 = e3 and Qu = u′. The orthogonal complement of e3 and u is one-
dimensional (if e3 and u are linearly independent) or two-dimensional (if e3 and
u are linearly dependent). We have a freedom to choose the action of Q on the
orthogonal complement of e3 and u (of course, up to the requirement that Q is an
orthogonal matrix). In particular, we can choose Q in such a way that detQ = 1.
It follows that Td′ = QTdQ

T and u′ = Qu, as desired.

5. Super-alternative locally complex algebras

Let us call an algebra A a super-alternative algebra if it is Z2-graded, A = A0 ⊕
A1, and the alternativity conditions (1) hold for all its homogeneous elements.
Equivalently,

(5) u2x = u(ux), xu2 = (xu)u for all u ∈ Ai, i ∈ Z2, x ∈ A,

or, in the linearized form,

(uv + vu)x = u(vx) + v(ux),

x(uv + vu) = (xu)v + (xv)u for all u, v ∈ Ai, i ∈ Z2 , x ∈ A.(6)

The notion of a super-alternative algebra should not be confused with the notion
of an alternative superalgebra. The latter is defined through the alternativity of
the Grassmann envelope of A. It turns out that nontrivial examples of alterna-
tive superalgebras exist only very exceptionally: prime alternative superalgebras of
characteristic different from 2 and 3 are either associative or their odd part is zero
[19]. As we shall see, super-alternative algebras are more easy to find.

Throughout this section A will be a super-alternative locally complex algebra.
Our goal is to to classify all such algebras A. Obvious examples are R, C, H, and O,
as we can always take the trivial Z2-grading (the odd part is 0). Further, one can
check by a straigtforward calculation that if An−1 is an alternative algebra, then
every u ∈ (An−1 × 0) ∪ (0 × An−1) satisfies (5) for every x ∈ An. Therefore, C,
H, O, and S are super-alternative algebras with respect to the natural Z2-grading
mentioned in Section 2. Of course, the important information for us in this context
is that S is also a super-alternative locally complex algebra. As we shall see, besides
R, C, H, O and S only two more algebras must be added to the complete list of
such algebras.

We continue by recording several simple but useful observations. First, the fol-
lowing special case of (6) will be often used:

(a) If u, v ∈ Ai, i ∈ Z2, are such that uv + vu = 0, then u(vx) = −v(ux) and
(xu)v = −(xv)u for all x ∈ A.

If v ∈ A1, then v2 ∈ A0; on the other hand, v2 = λv+µ for some λ, µ ∈ R. Since
v /∈ A0, we must have λ = 0 and hence v2 = µ ∈ R. Since A is locally complex, it
follows that µ < 0 if v 6= 0. Thus, we have

(b) If 0 6= v ∈ A1, then there is α ∈ R such that (αv)2 = −1.

Let u ∈ A0 and v ∈ A1 be such that u2 = v2 = −1. Using Lemma 3.1 we
have uv + vu ∈ R ∩ A1 = 0. Therefore v(uv) = −v(vu) = −v2u = u. Next,
(uv)v = uv2 = −u. Similarly we see that (uv)u = −u(uv) = v. Finally, using (a)
we get (uv)(uv) = −(uv)(vu) = v((uv)u) = v2 = −1. We have proved:

(c) If u ∈ A0 and v ∈ A1 are such that u2 = v2 = −1, then uv = −vu,
v(uv) = −(uv)v = u, (uv)u = −u(uv) = v, and (uv)2 = −1.

Let u be a homogeneous element and suppose that ux = 0 for some x ∈ A. If
u 6= 0, then by multiplying this identity from the left by u− t(u) it follows from (5)
that n(u)x = 0, and hence x = 0. Similarly, xu = 0 implies x = 0 if u 6= 0. Thus:

(d) Homogeneous elements are not zero divisors.
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It is clear that our conditions on A imply that A0 is a locally complex alternative
algebra. Theorem 4.7 therefore tells us that A0 is isomorphic to R, C, H, or O. If
A1 = 0, then we get the desired conclusion that A = A0 is one of the algebras from
the expected list. Without loss of generality we may therefore assume that A1 6= 0.
Given 0 6= u ∈ A1, it follows from (d) that x 7→ ux is an injective linear map from
A0 into A1; the same rule defines an injective linear map from A1 into A0. We may
therefore conclude that

(e) dimA0 = dimA1.

In particular we now know that a super-alternative locally complex algebra must
be finite dimensional. Moreover, its dimension can be only 1, 2, 4, 8, or 16.

We shall now consider separately each of the four possibilities concerning A0.

Lemma 5.1. If A0
∼= R, then A ∼= C.

Proof. By (b) there is i ∈ A1 with i2 = −1, and hence A ∼= C by (e). �

Lemma 5.2. If A0
∼= C, then A ∼= H.

Proof. We have A0 = R⊕ Ri with i2 = −1. By (b) we may pick j ∈ A1 such that
j2 = −1. Setting k = ij ∈ A1 it follows from (c) that A contains a copy of H.
However, in view of (e) we actually have A ∼= H. �

Let us now introduce another (an unexpected one for us) example of a super-

alternative locally complex algebra. Let Õ be the 8-dimensional algebra with basis
{1, f1, . . . , f7} and multiplication table

f1 f2 f3 f4 f5 f6 f7

f1 −1 f3 −f2 f5 −f4 f7 −f6

f2 −f3 −1 f1 f6 −f7 −f4 f5

f3 f2 −f1 −1 f7 f6 −f5 −f4

f4 −f5 −f6 −f7 −1 f1 f2 f3

f5 f4 f7 −f6 −f1 −1 f3 −f2

f6 −f7 f4 f5 −f2 −f3 −1 f1

f7 f6 −f5 f4 −f3 f2 −f1 −1

Lemma 5.3. Õ is a super-alternative locally complex algebra with zero divisors and

without alter-scalar elements (and hence Õ 6∼= O).

Proof. The fact that Õ is locally complex follows from Lemma 4.1 (v). Let Õ0 be

the linear span of 1, f1, f2, f3, and let Õ1 be the linear span of f4, f5, f6, f7. Then

Õ becomes a superalgebra with the even part Õ0
∼= H. From the way we shall

arrive at Õ in the next proof it is not really surprising that Õ is super-alternative.
But we used Mathematica for the actual checking that this is indeed true. Note

that (f1 − f4)(f3 − f6) = 0, so that Õ has zero divisors. Let a ∈ Õ be such that

x2a = x(xa) for all x ∈ Õ. From (fi + fj)
2a = (fi + fj)((fi + fj)a), together

with fi(fia) = fj(fja) = −a, it follows that fi(fja) + fj(fia) = 0 whenever i 6= j.

Writing a = λ0 +
∑7

k=1 λkfk we thus have

(7)

7∑

k=1

λk

(
fi(fjfk) + fj(fifk)

)
= 0 whenever i 6= j.

Chosing i = 1 and j = 4 it follows that λ2 = λ3 = λ6 = λ7 = 0. Chosing, for
example, i = 2 and j = 7 we further get λ1 = λ4 = 0, and chosing i = 3 and j = 4
finally leads to λ5 = 0. Therefore a = λ0 is a scalar. �

Lemma 5.4. If A0
∼= H, then A ∼= O or A ∼= Õ.
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Proof. Let {1, i, j, k} be a basis of A0 where these elements have the usual meaning.
Pick f ∈ A1 with f2 = −1. Then f anticommutes with i, j, k by (c). It is clear that
{f, if, jf, kf} is a basis of A1. We claim that all elements in this basis pairwise
anticommute. It is easy to see that f anticommutes with each of if, jf, kf . Using
(a) repeatedly we obtain (if)(jf) = −(i(jf))f = (j(if))f = −(jf)(if). Other
identities can be checked analogously.

Since i(jf) ∈ A1, we have

(8) i(jf) = λ1f + λ2if + λ3jf + λ4kf

for some λi ∈ R. From (a) we infer that (i(jf))f = −(if)(jf). Similarly, using (a)
and (c) we get

f(i(jf)) = −f((jf)i) = (jf)(fi) = −(jf)(if) = (if)(jf).

The last two identities show that i(jf) anticommutes with f . Consequently, anti-
commuting (8) with f it follows that λ1 = 0. A similar arguing shows that i(jf)
anticommutes with both if and jf , which leads to λ2 = λ3 = 0. Note that (c)
implies that the squares of both kf and i(jf) are equal −1. But then λ2

4 = 1, i.e.,
λ4 = 1 or λ4 = −1. If λ4 = 1, i.e., i(jf) = kf , then we set f1 = i, f2 = j, f3 = k,
f4 = f , f5 = if , f6 = jf , and f7 = kf . Using the information we have, it is now

just a matter of a routine calculation to verify that A ∼= Õ. Since we know that
O is a super-alternative locally complex algebra, the other possibility λ4 = −1 can
lead only to A ∼= O. �

The 16-dimensional analogue of Õ is the algebra which we denote by S̃ and define
as follows: if {1, f1, . . . , f15} is its basis, then the multiplication table is

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
f1 −1 f3 −f2 f5 −f4 −f7 f6 f9 −f8 −f11 f10 −f13 f12 −f15 f14
f2 −f3 −1 f1 f6 f7 −f4 −f5 f10 f11 −f8 −f9 −f14 f15 f12 −f13
f3 f2 −f1 −1 f7 −f6 f5 −f4 f11 −f10 f9 −f8 f15 f14 −f13 −f12
f4 −f5 −f6 −f7 −1 f1 f2 f3 f12 f13 f14 −f15 −f8 −f9 −f10 f11
f5 f4 −f7 f6 −f1 −1 −f3 f2 f13 −f12 −f15 −f14 f9 −f8 f11 f10
f6 f7 f4 −f5 −f2 f3 −1 −f1 f14 f15 −f12 f13 f10 −f11 −f8 −f9
f7 −f6 f5 f4 −f3 −f2 f1 −1 f15 −f14 f13 f12 −f11 −f10 f9 −f8
f8 −f9 −f10 −f11 −f12 −f13 −f14 −f15 −1 f1 f2 f3 f4 f5 f6 f7
f9 f8 −f11 f10 −f13 f12 −f15 f14 −f1 −1 −f3 f2 −f5 f4 −f7 f6

f10 f11 f8 −f9 −f14 f15 f12 −f13 −f2 f3 −1 −f1 −f6 f7 f4 −f5
f11 −f10 f9 f8 f15 f14 −f13 −f12 −f3 −f2 f1 −1 f7 f6 −f5 −f4
f12 f13 f14 −f15 f8 −f9 −f10 f11 −f4 f5 f6 −f7 −1 −f1 −f2 f3
f13 −f12 −f15 −f14 f9 f8 f11 f10 −f5 −f4 −f7 −f6 f1 −1 f3 f2
f14 f15 −f12 f13 f10 −f11 f8 −f9 −f6 f7 −f4 f5 f2 −f3 −1 −f1
f15 −f14 f13 f12 −f11 −f10 f9 f8 −f7 −f6 f5 f4 −f3 −f2 f1 −1

The proof of the next lemma is similar to that of Lemma 5.3. Therefore we omit
details.

Lemma 5.5. S̃ is a super-alternative locally complex algebra without alter-scalar

elements (and hence S̃ 6∼= S).

The final lemma is similar to Lemma 5.4, but the proof is somewhat more com-
plicated. One of the problems that we have to face in this proof is that we do not
have a complete freedom in the selection of an element playing the role of f from
the proof of Lemma 5.4. While f was an arbitrary element in A1 with square −1,
now we shall have to find a special one.

Lemma 5.6. If A0
∼= O, then A ∼= S or A ∼= S̃.

Proof. Let {1, e1, . . . , e7} be a basis of A0 whose multiplication table is given in
Section 2. We begin with three claims needed for future reference.

Claim 1: Let i, j ∈ {1, 2, . . . , 7}, i 6= j. If p ∈ A1, then q = p + (eiej)(ei(ejp))
satisfies (eiej)q = −ei(ejq).
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Indeed, by (5) we have (eiej)q = (eiej)p− ei(ejp), while using (a) and (5) we get

ei(ejq) = ei(ejp) + ei(ej((eiej)(ei(ejp)))) = ei(ejp)− ei((eiej)(ej(ei(ejp))))

= ei(ejp) + (eiej)(ei(ej(ei(ejp))) = ei(ejp)− (eiej)(ej(ei(ei(ejp)))

= ei(ejp) + (eiej)(ej(ejp)) = ei(ejp)− (eiej)p,

so that (eiej)q = −ei(ejq).

Claim 2: Let i, j, k ∈ {1, 2, . . . , 7} be such that ei, ej , eiej, ek are linearly in-
dependent, and let s ∈ A1 be such that (eiej)s = −ei(ejs). Then t = s +
(eiek)(ei(eks)) also satisfies (eiej)t = −ei(ejt).

(Let us add that (a) implies t = s+ (ekei)(ek(eis)), and that (eiej)z = −ei(ejz)
is equivalent to (ejei)z = −ej(eiz); the order of indices is thus irrelevant.)

Indeed, by now already familiar arguing we have

(eiej)t = (eiej)s+ (eiej)((eiek)(ei(eks))) = (eiej)s− (eiek)((eiej)(ei(eks)))

= (eiej)s+ (eiek)(ei((eiej)(eks))) = (eiej)s− (eiek)(ei(ek((eiej)s)))

= −
(
ei(ejs)− (eiek)(ei(ek(ei(ejs))))

)
= −

(
ei(ejs) + (eiek)(ek(ei(ei(ejs))))

)

= −
(
ei(ejs)− (eiek)(ek(ejs))

)
= −

(
ei(ejs) + ei(ei((eiek)(ek(ejs))))

)

= −
(
ei(ejs)− ei((eiek)(ei(ek(ejs))))

)
= −

(
ei(ejs) + ei((eiek)(ei(ej(eks))))

)

= −
(
ei(ejs)− ei((eiek)(ej(ei(eks))))

)
= −

(
ei(ejs) + ei(ej((eiek)(ei(eks))))

)

= −ei(ejt).

Claim 3: Let i, j, k ∈ {1, 2, . . . , 7}, i 6= j, and let ǫ ∈ R and w ∈ A1 be such
that (eiej)w = ǫei(ejw). Set u = ekw. If k ∈ {i, j}, then (eiej)u = ǫei(eju), and if
k /∈ {i, j}, then (eiej)u = −ǫei(eju).

If k ∈ {i, j}, then we may assume k = j without loss of generality. We have

(eiej)(u) = (eiej)(ejw) = −ej((eiej)w) = −ǫej(ei(ejw)) = ǫei(eju).

If k /∈ {i, j}, then we have

(eiej)(u) = (eiej)(ekw) = −ek((eiej)w)

=− ǫek(ei(ejw)) = ǫei(ek(ejw)) = −ǫei(eju).

After establishing these auxiliary claims, we now begin the actual proof by picking
a nonzero u ∈ A1. As mentioned above, an arbitrary chosen u may not be the right
choice, so we have to "remedy" it. Let v′ = u + (e1e2)(e1(e2u)) ∈ A1. By Claim
1, v′ satisfies (e1e2)v

′ = −e1(e2v
′). If v′ = 0, then we have (e1e2)u = e1(e2u). But

then v′′ = e3u satisfies (e1e2)v
′′ = −e1(e2v

′′) by Claim 3. Thus, in any case there
is a nonzero v ∈ A1 such that

(e1e2)v = −e1(e2v).

Now consider w′ = v + (e1e4)(e1(e4v)). By Claim 1 we have (e1e4)w
′ = −e1(e4w

′),
and by Claim 2 we have (e1e2)w

′ = −e1(e2w
′). If w′ = 0, then (e1e4)v = e1(e4v).

But then w′′ = e2v satisfies (e1e2)w
′′ = −e1(e2w

′′) and (e1e4)w
′′ = −e1(e4w

′′).
Thus, there exists a nonzero w ∈ A1 satisfying

(e1e2)w = −e1(e2w), (e1e4)w = −e1(e4w).

We now repeat the same procedure with respect to e2 and e4. That is, we in-
troduce x′ = w + (e2e4)(e2(e4w)), and apply Claims 1 and 2 to conclude that
(e1e2)x

′ = −e1(e2x
′), (e1e4)x

′ = −e1(e4x
′), and (e2e4)x

′ = −e2(e4x
′). If x′ = 0,

then (e2e4)w = e2(e4w), and therefore Claim 3 tells us that (e1e2)x
′′ = −e1(e2x

′′),
(e1e4)x

′′ = −e1(e4x
′′), and (e2e4)x

′′ = −e2(e4x
′′), where x′′ = e1w. In any case we

have found a a nonzero x ∈ A1 satisfying

(e1e2)x = −e1(e2x), (e1e4)x = −e1(e4x), (e2e4)x = −e2(e4x).
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Considering y′ = x+(e3e4)(e3(e4x)) we see from Claim 2 that (e1e4)y
′ = −e1(e4y

′)
and (e2e4)y

′ = −e2(e4y
′), while apparently we cannot conclude that also (e1e2)y

′ =
−e1(e2y

′). However, multiplying (e1e2)x = −e1(e2x) from the left by e1 we get
e1((e1e2)x) = e2x, which can be written as e1(e3x) = −(e1e3)x. Therefore Claim
2 yields e1(e3y

′) = −(e1e3)y
′. Multiplying this from the left by e1 we arrive at the

desired identity (e1e2)y
′ = −e1(e2y

′). Also, (e3e4)y
′ = −e3(e4y

′) holds by Claim 1.
We still have to deal with the case where y′ = 0, i.e., (e3e4)x = e3(e4x). The usual
reasoning now does not work, since we do not have "enough room" to apply Claim
3. Thus, the final conclusion is that there exists a nonzero y ∈ A1 such that

(e1e2)y = −e1(e2y), (e1e4)y = −e1(e4y), (e2e4)y = −e2(e4y), (e3e4)y = ±e3(e4y).

In view of (b) we may assume without loss of generality that y2 = −1. Let us first
consider the case where (e3e4)y = e3(e4y). We set f8 = y and fi = ei, fi+8 = fif8,

i = 1, . . . , 7. By standard calculations one can now verify that A ∼= S̃; checking
all details is lengthy and tedious, but straigtforward. The other possibility where
(e3e4)y = −e3(e4y) of course leads to A ∼= S. �

All lemmas together yield our main result.

Theorem 5.7. A super-alternative locally complex algebra is isomorphic to R, C,

H, O, Õ, S, or S̃.

Remark 5.8. In the course of the proof we did not use the assumption that (5) holds
for all u, x ∈ A1. Therefore we can replace the super-alternativity assumption by a
slightly milder one.

This list reduces to Cayley-Dickson algebras under the additional assumption
that there exist alter-scalar elements.

Corollary 5.9. A super-alternative locally complex algebra containing alter-scalar
elements is isomorphic to R, C, H, O, or S.

Corollary 5.10. A super-alternative locally complex algebra which contains alter-
scalar elements, but is not alternative, is isomorphic to S.

Let A be an algebra, and let x ∈ A. The annihilator of x is the space Ann(x) =
{y ∈ A |xy = 0}. If A = An is a Cayley-Dickson algebra, then the dimension of
Ann(x) is a multiple of 4 [2, 16]. Moreover, if A = A4 = S, then the dimension of

Ann(x) is exactly 4 for every zero divisor x in A [2, Section 12]. The algebras Õ

and S̃ do not have this property. It is easy to check that x = f1 − f4 ∈ Õ has the
2-dimensional annihilator spanned by f2+f7 and f3−f6. Further, the dimension of

the annihilator of x = f3 + f12 ∈ S̃ is 6; it is spanned by f1 + f14, f2− f13, f4+ f11,
f5 + f10, f6 − f9, and f7 − f8. Thus, we have

Corollary 5.11. Let A be a super-alternative locally complex algebra which is not
a division algebra. If the dimension of Ann(x) is 4 for every zero divisor in A, then
A ∼= S.

One can check that

1 7→ 1, e1 7→ f1, e2 7→ f2, e3 7→ f3, e4 7→ f12, e5 7→ −f13, e6 7→ −f14, e7 7→ −f15

defines an embedding of Õ into S. Thus, both O and Õ can be viewed as subalge-
bras of S. Chan and Ðoković proved that S has 6-dimensional subalgebras, which,
however, are not contained in 8-dimensional subalgebras of S [6, Corollary 3.6, The-

orem 8.1]. Accordingly, O and Õ do not have 6-dimensional subalgebras. Further,
S does not contain 5-dimensional subalgebras [6, Proposition 4.4]. This does not

hold for S̃. For example, the linear span of 1, f1+ f14, f3− f12, f6− f9, and f7− f8
is a 5-dimensional subalgebra of S̃. Combining all these we get our final corollary.
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Corollary 5.12. Let A be a super-alternative locally complex algebra. If A has 6-
dimensional subalgebras, but does not have 5-dimensional subalgebras, then A ∼= S.
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