
NEAR-DERIVATIONS IN LIE ALGEBRAS

MATEJ BREŠAR

Abstract. Let L be a Lie algebra. We call a linear map f : L → L
a near-derivation if there exists a linear map g : L → L such that
(adx)f − g(adx) is a derivation for every x ∈ L. The paper is devoted
to describing the structure of near-derivations in certain Lie algebras
arising from associative ones.

1. Introduction

Let R be a nonassociative algebra. Recall that a linear map δ : R → R
is said to be a derivation if δ(x · y) = δ(x) · y + x · δ(y) for all x, y ∈ R.
As it is well-known, [δ′, δ] = δ′δ − δδ′ is a derivation whenever δ and δ′ are
derivations. Is it possible to determine all linear maps f : R → R with
the property that [f, δ] is a derivation whenever δ is a derivation? Besides
derivations, the other obvious examples are scalar multiples of the identity.
Can f be expressed through these basic examples, or are there some different
ones?

We find this question a natural one, and therefore interesting in its own
right. The work on this paper actually begun by addressing ourselves to
this question. Searching the literature we have observed that the question is
connected to the theory of generalized derivations on Lie algebras developed
by Leger and Luks [5]. We have therefore appropriately reformulated and
extended the question (see below), and restricted ourselves, in this paper,
to the case where R = L is a Lie algebra. One might of course consider the
above question in other types of algebras R.

According to [5], a linear map f : L → L is a generalized derivation if
there exist linear maps g, h : L→ L such that

[f(x), y] = g([x, y])− [x, h(y)] for all x, y ∈ L.

Basic examples of generalized derivations are derivations (i.e., f = g = h)
and maps from the centroid of L (i.e., f = g, h = 0). Leger and Luks have
determined the form of generalized derivations on various finite-dimensional
Lie algebras. In particular, under favorable conditions they have showed
that generalized derivations can be expressed as sums of derivations and
maps from the centroid of L. Moreover, the centroid sometimes consists
only of scalar multiples of the identity. Let us point out that maps with the
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range in the center of L are also generalized derivations (take g = h = 0).
However, [5] mostly deals with Lie algebras with trivial center.

By adx we denote the inner derivation induced by x ∈ L, i.e. (adx)(y) =
[x, y]. We shall say that a linear map f : L→ L is a near-derivation of L if
there exists a linear map g : L→ L such that (adx)f−g(adx) is a derivation
for every x ∈ L. Note that this is slightly more general than the concept
of a generalized derivation. In fact, if f is a generalized derivation, then
(adx)f − g(adx) is an inner derivation for every x ∈ L. On the other hand,
the problem of describing near-derivations is clearly more general than the
problem mentioned in the first paragraph.

The main purpose of this paper is to describe near-derivations in cer-
tain Lie algebras that arise from associative ones. Unlike in [5], we are
mostly interested in infinite dimensional algebras. Therefore this paper has
only a small overlap with [5]. On the other hand, our conclusions on near-
derivations are similar to those obtained by Leger and Luks for generalized
derivations. Our typical result states that a near-derivation f of L is of the
form f = δ+γI+ τ , where δ is a derivation, γ is an element in the center C
of a certain associative algebra containing L (by γI we mean the map given
by x 7→ γx), and τ is a linear map from L into C. Results of this kind will
be proved in Section 3. The proofs rest heavily on the theory of functional
identities [2]. In Section 2 we shall therefore give a brief fragmentary review
of this theory.

Throughout the paper, F will denote a field with char(F) 6= 2. By an
algebra, either Lie or associative, we shall always mean an algebra over F.

2. Functional identities preliminaries

The main concepts of the theory of functional identities are rather tech-
nical and so it does not seem appropriate to introduce them precisely in this
short paper. We shall mention only a few facts which should make it possi-
ble for a non-specialist to follow the paper superficially. For a full account
of the theory we refer the reader to the recent book [2].

Let Q be a unital associative ring with center C, and let S be a subset of
Q. Let x1, . . . , xm ∈ S. Given 1 ≤ i ≤ m we write

xim = (x1, . . . , xi−1, xi+1, . . . , xm) ∈ Sm−1 = S × . . .× S,

and given 1 ≤ 1 ≤ i < j ≤ m we write

xijm = xjim = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xm) ∈ Sm−2.

Roughly speaking, a functional identity on S is an identical relation hold-
ing for all elements in S which involves some (unknown) functions. Just for
an illustration we mention one of the basic examples of such identities:

(1)
n∑
i=1

Ei(x
i
m)xi +

n∑
j=1

xjFj(x
j
m) = 0 for all xi ∈ S.
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Here, Ei and Fj are functions from Sm−1 into Q. The goal is to describe
the form of these functions, or, when this is not possible, to determine the
structure of the ring admitting this identity. We say that S is a d-free subset
of Q, where d is a positive integer, if certain functional identities (including
such as (1)) in a certain number of variables (connected to d) have only
“obvious” solutions, meaning that the involved functions are of the form
which yields the identity in question for entirely formal reasons. In case
of (1) this means that there exist functions pij : Sn−2 → Q, i 6= j, and
λi : Sn−1 → C such that

Ei(x
i
m) =

n∑
j=1
j 6=i

xjpij(x
ij
m) + λi(x

i
m), Fj(x

j
m) = −

n∑
i=1
i 6=j

pij(x
ij
m)xi − λj(xjm).

For the exact definition of d-freeness we refer the reader to [2]. For our
purposes it is mainly important that there exist relevant examples of Lie
algebras which are d-free subsets of associative algebras. They are described
in Remark 2.1 below. But first we have to introduce some notation and recall
a few facts.

Let A be a prime associative algebra. By Qml(A) we denote the maximal
left ring of quotients of A (see e.g. [2, Appendix A]). The center C of Qml(A)
is a field called the extended centroid of A. By deg(x) we denote the degree
of the algebraicity of x ∈ A over C. If x is not algebraic, then we write
deg(x) = ∞. Further, we set deg(A) = sup{deg(x) |x ∈ A}. The condition
that deg(A) = ∞ is equivalent to the condition that A is not a PI-algebra,
while the condition that deg(A) = n <∞ is equivalent to the condition that
A is a PI-algebra satisfying the standard polynomial identity of degree 2n,
but not satisfying a polynomial identity of degree < 2n. If A is a central
simple algebra (this means that A is simple and its center is equal to F1),
then deg(A) = ∞ is the same as saying that A is infinite dimensional over
F, while deg(A) = n < ∞ is equivalent to dimFA = n2. See [2, Appendix
C] for more details.

Remark 2.1. Let A be a prime algebra.

• If A deg(A) ≥ d + 1, every noncommutative Lie ideal L of A is a
d-free subset of Qml(A) [2, Corollary 5.16];
• If A deg(A) ≥ 2d+ 3, A has an involution and K is the set of skew

elements in A, then every noncentral Lie ideal L of K is a d-free
subset of Qml(A) [2, Corollary 5.19].

(Recall that an element in an algebra x with involution is said to be skew if
x∗ = −x).

Let us emphasize that the case when deg(A) = ∞ is not excluded in
Remark 2.1. The same holds for results in the next section.

When considering near-derivations we will arrive at a special functional
identity, which is examined in the next lemma.
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Lemma 2.2. Let B : S × S → Q be a skew-symmetric map. Suppose that

[B(x, y), z] + [B(z, x), y] + [B(y, z), x] ∈ C for all x, y, z ∈ S.

If S is a 4-free subset of Q, then there exist λ ∈ C and a skew-symmetric
map ν : S × S → C such that B(x, y) = λ[x, y] + ν(x, y) for all x, y ∈ S.

Proof. First of all, from the definition of 4-freeness we infer that

(2) [B(x, y), z] + [B(z, x), y] + [B(y, z), x] = 0 for all x, y, z ∈ S.

Using [2, Theorem 4.13] it follows that B is a quasi-polynomial. This means
that there exist λ1, λ2 ∈ C and maps µ1, µ2 : S → C, ν : S2 → C such that

B(x, y) = λ1xy + λ2yx+ µ1(x)y + µ2(y)x+ ν(x, y).

Since B(x, y) = −B(y, x) it follows that

(λ1 + λ2)(xy + yx) + (µ1 − µ2)(x)y−(µ1 − µ2)(y)x

+ν(x, y)− ν(y, x) = 0.

But then λ1 = −λ2, µ1 = µ2 and ν is skew-symmetric [2, Lemma 4.4].
Setting λ = λ1 and ν = ν1 we thus have

B(x, y) = λ[x, y] + µ(x)y + µ(y)x+ ν(x, y).

Using this expression back in (2) it follows that

2µ(x)[y, z] + 2µ(y)[z, x] + 2µ(z)[x, y] = 0.

Again applying [2, Lemma 4.4] it follows that 2µ(x) = 0, and hence µ(x) = 0
since char(F) 6= 2 by assumption. �

3. Near-derivations

We begin with a crucial lemma, from which all other results will be de-
rived.

Lemma 3.1. Let L be a Lie algebra and let f be a near-derivation of L.
Suppose there exists a unital associative algebra Q, containing L as its Lie
subalgebra, such that L is a 4-free subset of Q. Then there exist γ ∈ C, the
center of Q, and a skew-symmetric bilinear map β : L× L→ C such that

(f + γI)([x, y]) = [f(x), y] + [x, f(y)] + β(x, y) for all x, y ∈ L.

Proof. Our assumption is that there exists a linear map g : L → L such
that for every x ∈ L, the map y 7→ [x, f(y)]− g([x, y]) is a derivation. This
means that

[x, f([y, z])]− g([x, [y, z]])

=[[x, f(y)]− g([x, y]), z] + [y, [x, f(z)]− g([x, z])]
(3)

for all x, y, z ∈ L. In view of the Jacobi identity we have

g([x, [y, z]]) + g([z, [x, y]]) + g([y, [z, x]]) = 0;
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according to (3) this can be rewritten as

[x, f([y, z])]− [[x, f(y)], z] + [g([x, y]), z]− [y, [x, f(z)]] + [y, g([x, z])]

+[z, f([x, y])]− [[z, f(x)], y] + [g([z, x]), y]− [x, [z, f(y)]] + [x, g([z, y])]

+[y, f([z, x])]− [[y, f(z)], x] + [g([y, z]), x]− [z, [y, f(x)]] + [z, g([y, x])]

=0.

Rearranging the terms we get[
(2g − f)([x, y])− [f(x), y]− [x, f(y)], z

]
+
[
(2g − f)([z, x])− [f(z), x]− [z, f(x)], y

]
+
[
(2g − f)([y, z])− [f(y), z]− [y, f(z)], x

]
= 0

for all x, y, z ∈ L. We are now in a position to apply Lemma 2.2. Thus there
exist λ ∈ C and a skew-symmetric map ν : S × S → C such that

(2g − f)([x, y])− [f(x), y]− [x, f(y)] = λ[x, y] + ν(x, y)

for all x, y ∈ L. Thus, the map h = 2g − f − λI : L→ CL ⊆ Q satisfies

h([x, y]) = [f(x), y] + [x, f(y)] + ν(x, y).

Since

h([x, [y, z]]) + h([z, [x, y]]) + h([y, [z, x]]) = 0

by the Jacobi identity, it follows that

[f(x), [y, z]] + [x, f([y, z])] + ν(x, [y, z])

+[f(z), [x, y]] + [z, f([x, y])] + ν(z, [x, y])

+[f(y), [z, x]] + [y, f([z, x])] + ν(y, [z, x])

=0.

Note that we can rewrite this as[
f([y, z])− [f(y), z]− [y, f(z)], x

]
+
[
f([x, y])− [f(x), y]− [x, f(y)], z

]
+
[
f([z, x])− [f(z), x]− [z, f(x)], y

]
=ν(x, [y, z]) + ν(z, [x, y]) + ν(y, [z, x]) ∈ C.

Again we are in a position to apply Lemma 2.2. Hence it follows that

f([x, y])− [f(x), y]− [x, f(y)] = α[x, y] + β(x, y)

for some α ∈ C and skew-symmetric β : L × L → C. It is clear that the
linearity of f implies the bilinearity of β. Setting γ = −α we get the desired
conclusion. �
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Recall that the second cohomology group H2(L,F) of a Lie algebra L is
0 in case the following holds true: If φ : L × L → F is a skew-symmetric
bilinear map such that

(4) φ(x, [y, z]) + φ(z, [x, y]) + φ(y, [z, x]) = 0 for all x, y ∈ L,

then there exists a linear functional τ : L→ F such that

(5) φ(x, y) = τ([x, y]) for all x, y ∈ L.

Instead of considering maps with the range in F one could take maps map-
ping into any linear space V over F. That is, if H2(L,F) = 0, then
a skew-symmetric bilinear map φ : L × L → V satisfying (4) must be
of the form (5) for some linear map τ : L → V . Indeed, by compos-
ing φ by an arbitrary linear functional ξ on V one can use the condition
H2(L,F) = 0 to conclude that ξ(φ(x, y)) = τξ([x, y]) for some linear func-
tional τξ on L. Thus, if xi, yi ∈ L are such that

∑
i[xi, yi] = 0, then

ξ(
∑

i φ(xi, yi)) =
∑

i ξ(φ(xi, yi)) = 0. Since ξ is arbitrary, it follows that∑
i φ(xi, yi) = 0. This shows that a linear map τ : [L,L] → V determined

by τ([x, y]) = φ(x, y) is well-defined. Now one extends τ to a linear map on
L.

Theorem 3.2. Assume the conditions of Lemma 3.1, and assume further
that H2(L,F) = 0. Then there exist γ ∈ C, a derivation δ : L → Q and a
linear map τ : L→ C such that f = δ + γI + τ .

Proof. By Lemma 3.1 the map d = f − γI : L→ CL ⊆ Q satisfies

d([x, y])− [d(x), y]− [x, d(y)] = β(x, y) ∈ C
for all x, y ∈ L. Consequently,

β(x, [y, z]) = d([x, [y, z]])− [d(x), [y, z]]− [x, [d(y), z]]− [x, [y, d(z)]],

since [x, β(y, z)] = 0. Using the Jacobi identity it readily follows that

β(x, [y, z]) + β(z, [x, y]) + β(y, [z, x]) = 0.

Since H2(L,F) = 0 there exists a linear map τ : L→ C such that β(x, y) =
τ([x, y]) for all x, y ∈ L. That is,

d([x, y])− [d(x), y]− [x, d(y)] = τ([x, y]).

It now follows immediately that δ = d− τ is a derivation from L into Q. �

Examples of 4-free Lie algebras can be extracted from Remark 2.1; how-
ever, for Lie algebras of these types we will get a detailed description in the
sequel without using Theorem 3.2. We have to admit that it is not clear to
us how to apply Theorem 3.2 to concrete Lie algebras in order to get some
information that cannot be obtained by other means. But this is because the
d-freeness of Lie algebras (viewed as subsets of some associative algebras)
has been so far systematically investigated only in some specific situations.
We believe that further investigation in this direction would be interesting,
and would also give light to the meaning of Theorem 3.2.
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Let us point out that the maps from the decomposition f = δ+γI+ τ do
not necessarily map L into itself. For example, it is possible that none of γI
and τ leaves L invariant, but their sum γI + τ does; see [2, Example 2.9].
Thus, in general one cannot avoid involving Q and C in the description of a
near-derivation on a Lie algebra L. Let us consider one situation when this
is possible.

Theorem 3.3. Assume the conditions of Lemma 3.1, and assume further
that L has trivial center and [L,L] = L. Then there exist a derivation
δ : L→ L and ζ from the centroid of L such that f = δ + ζ.

Proof. Lemma 3.1 implies that

γ[[x, y], z] = [[f(x), y], z] + [[x, f(y)], z]− [f([x, y]), z] ∈ L

for all x, y, z ∈ L. Since [L,L] = L, and hence also [[L,L], L] = L, it follows
that γL ⊆ L. That is, the map ζ : x 7→ γx maps L into L and so it lies in
the centroid of L. Further,

β(x, y) = f([x, y]) + γ[x, y]− [f(x), y]− [x, f(y)]

then lies in L∩C which is zero since L has trivial center. But then δ = f−ζ
is a derivation. �

The next two corollaries concern simple Lie algebras arising from a central
simple associative algebra A. In both of them we will have to assume that
the dimension of A is big enough, i.e. infinite or greater than a certain in-
teger. When applying the theory of functional identities to concrete classes
of algebras, it often happens that one must exclude algebras of low dimen-
sions. It is not always the case that this exclusion is necessary, sometimes
this is just a price that one has to pay for using powerful methods which,
however, are not efficient in the low dimensional setting. Anyhow, we shall
not consider separately these special cases in this paper.

Corollary 3.4. Let A be a central simple algebra such that dimFA ≥ 25.
Set L = [A,A] and suppose that 1 /∈ L. Then every near-derivation f of L
is of the form f = δ + γI where δ is a derivation of L and γ ∈ F.

Proof. A well-known result by Herstein [3, Theorem 1.12] implies that L is
a simple Lie algebra. Therefore the conditions that L has trivial center and
[L,L] = L are fulfilled. Further, by Remark 2.1 it follows from dimFA ≥ 25
that L is a 4-free subset of Qml(A). The center C of Q is the extended
centroid of A; it is well-known that in simple unital algebras it coincides
with the center, so that in our case C = F1. Thus the element γ from the
proof of Theorem 3.3 is actually a scalar. �

Recall that an involution ∗ on a central simple algebra A is said to be of
the first kind if (λx)∗ = λx∗ for all λ ∈ F and x ∈ A. In this case the set
of skew elements K of A is a Lie algebra which does not contain nonzero
elements from F1.
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Corollary 3.5. Let A be a central simple algebra with involution of the first
kind. Suppose that dimFA ≥ 121. Let K be the set of skew elements in
A, and set L = [K,K]. Then every near-derivation f of L is of the form
f = δ + γI where δ is a derivation of L and γ ∈ F.

Proof. By another Herstein’s theorem [3, Theorem 2.15] L is a simple Lie
algebra. Since dimFA ≥ 121, L is a 4-free subset of Qml(A) (Remark 2.1).
Now just repeat the arguing from the preceding proof. �

As we will now show, both corollaries can be extended to a considerably
more general setting, and moreover, a more precise information on their
form can be given. The only disadvantage is that we cannot avoid involving
the presence of the extended centroid in this setting, and so the results do
not have such simple forms as corollaries do. The proofs depend on the
structure of Lie derivations in associative rings. A survey on this topic can
be found in [2, Chapter 6]. However, we shall make use of some results from
[1] which give a somewhat more precise information than those in [2].

Let S be a subset of an (associative) algebra A. By 〈S〉 we denote the
subalgebra of A generated by S.

Theorem 3.6. Let A be a prime algebra, let C be the extended centroid of
A, and let L be a noncommutative Lie ideal of A. Suppose that deg(A) ≥ 5.
If f is a near-derivation of L, then there exist an (associative) derivation
δ : 〈L〉 → 〈L〉C + C, γ ∈ C, and a linear map τ : L → C such that
f = δ + γI + τ .

Proof. Remark 2.1 tells us that L is a 4-free subset of Q = Qml(A). There-
fore it follows from Lemma 3.1 that there is γ ∈ C such that the map
d = f − γI : L→ CL ⊆ Q satisfies

(6) d([x, y])− [d(x), y]− [x, d(y)] = β(x, y) ∈ C.
We set Q = Q/C, and for x ∈ Q we write x = x + C ∈ Q. From (6) we

see that the map d : L → Q defined by d(x) = d(x) satisfies d([x, y]) =
[d(x), y] + [x, d(y)]. We are now in a position to apply [1, Theorem 1.3]:
thus there exist a derivation δ : L→ 〈L〉C +C and a linear map τ : L→ C
such that d(x) = δ(x) + τ(x) for every x ∈ L. Hence f(x) = d(x) + γx =
δ(x) + γx+ τ(x) for every x ∈ L. �

Following the same pattern, just that using [1, Theorem 1.8] instead of
[1, Theorem 1.3], one establishes the following theorem.

Theorem 3.7. Let A be a prime algebra with involution, let C be the ex-
tended centroid of A, let K be the skew elements of A, and let L be a non-
central Lie ideal of K. Suppose that deg(A) ≥ 11. If f is a near-derivation
of L, then there exist an (associative) derivation δ : 〈L〉 → 〈L〉C+C, γ ∈ C,
and a linear map τ : L→ C such that f = δ + γI + τ .

We conclude with a few comments concerning the notions discussed in
the introduction.
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Remark 3.8. At the very beginning of the paper the following question was
posed: What is the form of a linear map f : L → L such that [f, δ] is a
derivation for every derivation δ? Since f is in particular a near-derivation,
let us assume that our typical conclusion f = δ + γI + τ holds. Clearly, f
satisfies (3) with g = f , from which one readily infers that τ([L, [L,L]]) = 0.
Assuming that [L,L] = L it thus follows that the central map τ = 0.

Remark 3.9. All results in this section of course hold for generalized deriva-
tions, since the concept of a near-derivation is more general. Let us show
that this generalization is not an empty one, that is, let us show that there
exist near-derivations that are not generalized derivations.

Let L be a non-abelian Lie algebra such that [L,L] is a proper subset
of the center Z(L) of L (concrete examples can be easily found). Pick
a ∈ L \ Z(L) and b ∈ Z(L) \ [L,L]. Let ϕ be a linear functional on L such
that ϕ(b) = 1 and ϕ([L,L]) = 0. Now define f : L→ L by f(y) = ϕ(y)a. It
is easy to check that (adx)f is a derivation for every x ∈ L, so that f is a
near-derivation. However, f is not a generalized derivation. Indeed, if there
were g, h : L → L such that [f(x), y] = g([x, y]) − [x, h(y)], then it would
follow by setting x = b that [a, y] = 0 for every y ∈ L, contradicting the
assumption that a /∈ Z(L).

Remark 3.10. The concept of a near-derivation in this paper is different from
the notion of a near-derivation introduced in [4]. The author is thankful to
the referee for pointing out this.
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