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MAPS PRESERVING ZEROS OF A POLYNOMIAL

J. ALAMINOS, M. BREŠAR, Š. ŠPENKO, AND A.R. VILLENA

Abstract. Let A be an algebra and let f(x1, . . . , xd) be a multilin-
ear polynomial in noncommuting indeterminates xi. We consider the
problem of describing linear maps φ : A → A that preserve zeros of
f . Under certain technical restrictions we solve the problem for general
polynomials f in the case where A = Mn(F ). We also consider quite
general algebras A, but only for specific polynomials f .

1. Introduction

Let F be a field, let F 〈X〉 be the free algebra generated by the set X =
{x1, x2, . . .} of countably many noncommuting indeterminates, and let f =
f(x1, . . . , xd) ∈ F 〈X〉 be a nonzero polynomial. We say that a map φ from
an F -algebra A into itself preserves zeros of f if for all a1, . . . , ad ∈ A,

f(a1, . . . , ad) = 0 =⇒ f(φ(a1), . . . , φ(ad)) = 0.

The list of all maps on A that preserve zeros of f must certainly contain
scalar multiples of automorphisms, for some polynomials it must also contain
scalar multiples of antiautomorphisms (say, for f = x1x2 + x2x1), and for
some of them even all maps of the form

(1) φ(x) = αθ(x) + µ(x),

where α ∈ F , θ : A → A is either an automorphism or an antiautomorphism,
and µ is a linear map from A into its center (say, for f = x1x2−x2x1). Our
goal is to show that under certain restrictions - in particular, we will confine
ourselves to linear maps φ and multilinear polynomials f - the standard
example (1) is also the only possible example of a map preserving zeros of
f . We will not bother with the question for which polynomials (1) can be
simplified.

For certain simple polynomials, especially for f = x1x2 and f = x1x2 −
x2x1, our problem has a long and rich history; see, for example, [1] and [7]
for historic comments and references. So far not much is known for general
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polynomials. For them the problem was explicitly posed by Chebotar et al.
[9] for the matrix algebra A = Mn(F ), and some partial solutions were ob-
tained in two recent papers: [13] considers, in particular, the case where the
sum of coefficients of f is a nonzero scalar (without assuming the linearity of
φ), and [10] handles Lie polynomials of degree at most 4. Let us also men-
tion a related, yet considerably simpler, problem of describing linear maps
that preserve all values of f , i.e., φ(f(a1, . . . , ad)) = f(φ(a1), . . . , φ(ad)) for
all ai ∈ A. This problem can be solved at a high level of generality by us-
ing functional identities, although for finite dimensional algebras (including
Mn(F )) the obtained results are not optimal; see [4] and also [7, Section
6.5].

One of the most fascinating approaches to linear preserver problems on
matrix algebras was developed by Platonov and D̄oković in [16]. It is based
on linear algebraic groups. In Section 2 we will see that this approach is
applicable to our problem. In the matrix algebra A =Mn(F ) we will be able
to consider general multilinear polynomials f ; however, we will be forced to
impose several technical restrictions some of which might be superfluous.
The general problem from [9] is therefore not yet completely solved.

In Section 3 we will prove three results giving solutions to our problem
for some special polynomials, but in the context of rather general classes of
prime algebras and/or C∗-algebras. More precisely, we will show that for
these polynomials the problem can be reduced to some still nontrivial, but
already solved problems. For polynomials that are not covered in our con-
siderations, or at least cannot be handled by similar methods, the problem
seems to be very intriguing.

2. The matrix algebra case

The main goal of this section is to prove Theorem 2.2. First we will survey
the necessary tools needed in the proof.

2.1. Remarks on free algebras. Let F be a field and let X = {x1, x2, . . .}
be a set of countably many noncommuting indeterminates. The free algebra
F 〈X〉 consists of polynomials in x1, x2, . . .. We say that f = f(x1, . . . , xd) ∈
F 〈X〉 is a multilinear polynomial if it is of the form

f =
∑

σ∈Sd

λσxσ(1) . . . xσ(d),

where λσ ∈ F and Sd is the symmetric group of degree d. A nonzero
polynomial f = f(x1, . . . , xd) ∈ F 〈X〉 is said to be a polynomial identity of
an F -algebra A if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ A. For example,
A is a commutative algebra if and only if [x1, x2] = x1x2 − x2x1 is its
polynomial identity. By the famous Amitsur-Levitzki theorem, the matrix
algebra Mn(F ) has a polynomial identity of degree 2n. On the other hand,
Mn(F ) does not have polynomial identities of degree < 2n; the proof of that
will be used in our arguing.
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Let F 〈X〉0 denote the subalgebra of F 〈X〉 generated by 1 and all polyno-
mials of the form [xk1 , [xk2 , . . . , [xkr−1

, xkr ] . . . ]]. That is to say, F 〈X〉0 is the
subalgebra generated by 1 and all Lie polynomials of degree ≥ 2. Defining
the partial derivative ∂f

∂xi
of f ∈ F 〈X〉 in a self-explanatory manner it is easy

to see that ∂f
∂xi

is always 0 if f ∈ F 〈X〉0. Moreover, if char(F ) = 0, then this

property is characteristic for elements from F 〈X〉0 [12, Proposition 3]. Note
that if f = f(x1, . . . , xd) is a multilinear polynomial, its partial derivative
can be simply obtained by formally replacing xi by 1:

∂f

∂xi
= f(x1, . . . , xi−1, 1, xi+1, . . . , xd).

2.2. The Platonov-̄Doković theory. Let K be an algebraically closed
field of characteristic 0. We will write Mn for Mn(K). We have Mn =
M0

n ⊕ K · 1, where 1 is the identity matrix, and M0
n is the space of all

x ∈ Mn with tr(x) = 0. Let O(n2) be the subgroup of GL(n2) which
preserves the nondegenerate symmetric bilinear form tr(xy), x, y ∈ Mn.
The subgroup of O(n2) consisting of operators which fix the identity matrix
1 will be denoted by O(n2 − 1). The identity components of O(n2) and
O(n2−1), i.e., subgroups consisting of matrices whose determinant is 1, will
be denoted by SO(n2) and SO(n2 − 1), respectively.

By G we denote the subgroup of GL(n2) consisting of all similarity trans-
formations x 7→ axa−1 with a ∈ GL(n). Next, by P we denote the subgroup
of GL(n2) which acts trivially on M0

n and Mn/M
0
n, and by Q the subgroup

of GL(n2) which acts trivially on K1 and Mn/K1. Thus, Q consists of all
transformations x 7→ x+ f(x)1, where f is a linear functional on Mn such
that f(1) = 0. Let T denote the subgroup of GL(n2) which acts by scalar
transformations on M0

n and K1, and set T1 = T ∩ SL(n2).
By τ we denote the transposition map. However, we will write x′ for

the transpose of x. Note that the group GQT 〈τ〉 consists of all invertible
linear transformations σ : Mn → Mn that take one of the forms σ(x) =
αaxa−1 + f(x)1 or σ(x) = αax′a−1 + f(x)1, where α ∈ K∗, a ∈ GL(n), and
f is a linear functional on Mn such that f(1) 6= −α.

The algebra of all linear transformations on Mn can be identified with
the tensor product algebra Mn ⊗Mopp

n , where Mopp
n is the opposite algebra

of Mn, via the action (a⊗ b)(x) = axb, a, b, x ∈Mn.
With respect to the notations just introduced, the following theorem can

be extracted from [16, Theorems A and B].

Theorem 2.1. (Platonov-̄Doković) Let Γ be a proper connected algebraic

subgroup of SL(n2), n 6= 4, containing G. Then Γ is one of the groups:

(a) G, GQ, GT1, GQT1,
(b) SO(n2 − 1), SO(n2 − 1)T1, SO(n2 − 1)P , SO(n2 − 1)Q,

SO(n2 − 1)PT1, SO(n2 − 1)QT1, SL(n
2 − 1), SL(n2 − 1)T1,

SL(n2 − 1)P , SL(n2 − 1)Q, SL(n2 − 1)PT1, SL(n
2 − 1)QT1,

tSO(n2)t−1 for some t ∈ T1,
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(c) GP , GPT1,

(d) t
(
SL(n)⊗ SL(n)opp

)
t−1 for some t ∈ T1.

Moreover, if Γ is one of the groups listed in (a), then its normalizer in

GL(n2) is a subgroup of GQT 〈τ〉.

Let us point out that all groups listed in (b) contain SO(n2 − 1). For
tSO(n2)t−1, t ∈ T1, this can be easily checked, while for others this is
entirely obvious. Conversely, only the groups from (b) contain SO(n2 − 1).

2.3. Main theorem. Let f = f(x1, . . . , xd) ∈ F 〈X〉 be a nonzero mul-
tilinear polynomial of degree d. Our goal is to show that under suitable
assumptions a linear map φ : Mn(F ) → Mn(F ) that preserves zeros of f is
of the standard form (1). In the present setting this can be more specifically
described as

(2) φ(x) = αaxa−1 + f(x)1 or φ(x) = αax′a−1 + f(x)1,

where α ∈ F ∗, a ∈ GL(n, F ), and f is a linear functional on Mn(F ) such
that f(1) 6= −α.

If d was ≥ 2n, then, by the Amitsur-Levitzki theorem, f could be a
polynomial identity, making the assumption that φ preserves zeros of f
meaningless. We will therefore assume that d < 2n. Further, we will assume
that n 6= 2, 4. It is well-known that the n = 2 case must be excluded when
dealing with the polynomial x1x2 − x2x1. On the other hand, it seems
possible that that the exclusion of n = 4 is unnecessary. We need it in order
to apply Theorem 2.1. Another assumption that we have to require is that
char(F ) = 0. This one is also used because of applying Theorem 2.1 and is
possibly redundant. Further, we will assume that φ is bijective. This is a
usual and certainly necessary assumption in this context (cf. [8] that deals
with the polynomial x1x2 − x2x1 without assuming bijectivity). Finally, we
will assume that φ(1) ∈ F · 1; the (un)necessity of this assumption will be
discussed in the next subsection.

Let us make a few comments and introduce some notations before stating
and proving the theorem. We have to warn the reader that, just as in [16], we
are assuming a basic familiarity with the concepts related to linear algebraic
groups. A good general reference is Borel’s book [5].

We are going to consider a bijective linear map φ onMn(F ) that preserves
the set of zeros of f ,

SF = {(a1, . . . , ad) ∈Mn(F )
d |f(a1, . . . , ad) = 0}.

This is an algebraic set. Indeed, considering SF as a subset of (Fn2

)d, it is
equal to the vanishing set of polynomials {f((x1ij), . . . , (x

d
ij))st| 1 ≤ s, t ≤ n}.

Using [16, Lemma 3] (or [11, Lemma 1]) it can be therefore deduced that
φ−1 also preserves SF , i.e., it also satisfies the condition we are interested
in (and so, in fact, φ(SF ) = SF ). Accordingly, the set of all linear maps
satisfying this condition is an algebraic group. The goal of our theorem is
to describe those of its elements that also preserve scalar matrices.
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By K we denote an algebraic closure of F. Since φ ∈ GL(n2, F ) ⊆
GL(n2) (= GL(n2,K)) preserves SF , it also preserves its Zariski closure

S in Kn2d. This is an algebraic set, and therefore, by the same argument as
above,

G̃ = {ψ ∈ GL(n2,K)| ψ(S) ⊆ S}

is a group (and ψ(S) = S for every ψ ∈ G̃). ByM we denote the (algebraic)
subgroup of GL(n2) consisting of all maps that preserve scalar matrices.

Thus φ is contained in the algebraic group G̃ ∩M .
For every algebraic group L defined over F we denote by LF the group

of F -rational points of L. We have (GQT )F = GFQFTF and (GQT 〈τ〉)F
consists of elements in GL(n2, F ) that are of the form (2); cf. [16, p 176].
Thus, if one can establish that

(3) G̃ ∩M ⊆ GQT 〈τ〉,

then φ, which is defined over F , lies in GFQFTF 〈τ〉 and is therefore of the
standard form (2).

Note that SF is invariant under the GF -action given by

g · (a1, . . . , ad) := (g(a1), . . . , g(ad)).

Hence its closure S is also invariant under GF , so that GF ⊆ G̃. Since
char(F ) = 0 and G is connected, the rational points GF are Zariski-dense

in G [5, Corollary 18.3]. From this one infers that G = GF ⊆ G̃; moreover,

G ⊆ G̃ ∩M . In a similar fashion, by first noticing that SF is closed under

multiplication by nonzero scalars in F we see that G̃ ∩M is closed under

multiplication by nonzero scalars in K; that is, if a ∈ G̃ and λ ∈ K∗, then

λa ∈ G̃ ∩M .
Let us also mention that if H is an arbitrary algebraic group, then its

identity component (i.e., the connected component with respect to Zariski
topology that contains the identity) is also an algebraic group, and moreover,
it is a normal subgroup of H [5, Proposition 1.2].

We now have enough information to prove the following theorem.

Theorem 2.2. Let F be a field with char(F ) = 0, let f ∈ F 〈X〉 be a

multilinear polynomial of degree d ≥ 2, and let φ : Mn(F ) → Mn(F ) be

a bijective linear map that preserves zeros of f and satisfies φ(1) ∈ F · 1.
Assume that n 6= 2, 4 and d < 2n. Then φ is of the standard form (2).

Proof. As noticed above, it suffices to establish (3). We claim that it is
enough to prove

SO(n2 − 1) 6⊆ G̃.(4)

Indeed, assume (4) holds. Consider H = (G̃∩M)∩SL(n2) and let H1 be the
identity component of H. Then H1 is an algebraic group, it is connected,

and, since G ⊆ G̃ ∩M , it contains G. Therefore H1 is one of the groups

listed in Theorem 2.1. As H1 ⊆ G̃ ∩M and (4) holds, we may exclude the
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possibilities listed in (b). Furthermore, as the groups from (c) and (d) are not
contained inM , H1 must be one of the groups listed in (a). Theorem 2.1 now
tells us that the normalizer of H1 in GL(n

2) is a subgroup of GQT 〈τ〉. Since
H1 is a normal subgroup ofH it follows thatH is contained in GQT 〈τ〉. Now

pick α ∈ G̃∩M . As mentioned above, G̃∩M is closed under multiplication
by nonzero scalars. Therefore det(α)−1α ∈ H ⊆ GQT 〈τ〉. As GQT 〈τ〉
is also closed under multiplication by nonzero scalars it follows that α =
det(α)

(
det(α)−1α

)
∈ GQT 〈τ〉. This proves (3).

Thus, let us prove (4). Assume first that d is an even number. Set
k = d

2 + 1 and note that k ≤ n. Consider the sequence of d matrix units

(5) e11, e12, e22, e23, e33, e34, . . . , ek−1,k−1, ek−1,k.

The product of these matrices in an arbitrary order except in the given
one is equal to zero. Therefore, for an appropriate permutation (a1, . . . , ad)
of the matrices (5) (corresponding to a nonzero coefficient of f) we have
f(a1, . . . , ad) 6= 0. Now define a linear transformation θ onMn(K) according
to

θ(e12) = e21, θ(e21) = e12, θ(e11) = e33, θ(e33) = e11,

and θ fixes all other matrix units. A bit tedious but straightforward verifi-
cation shows that θ lies in SO(n2 − 1). Now, θ maps the matrices from (5)
into the matrices

e33, e21, e22, e23, e11, e34, . . . , ek−1,k−1, ek−1,k.

Their product in an arbitrary order is 0, so that f(θ(a1), . . . , θ(ad)) = 0.

This implies that θ 6∈ G̃. Namely, if θ was in G̃ then θ−1 would map SF into
S which is contained in the set of zeros of f . Thus (4) is proved in this case.

The case where d is odd requires only minor modifications. One has to
consider the matrix units

e11, e12, e22, e23, . . . , ek−1,k, ek,k,

where k = d+1
2 ≤ n, and then follow the above argument. �

2.4. Preserving scalar matrices. It seems plausible that the assumption
from Theorem 2.2 that φ(1) ∈ F · 1 can be removed. To this end one
should examine carefully the groups from (c) and (d). However, apparently
this would require a detailed and tedious analysis making the proof much
lengthier. We have therefore decided to omit this problem in its full gen-
erality here, and perhaps return to it in a more technical paper. We will
now restrict our attention to polynomials from F 〈X〉0, which are of special
interest in view of [10]. For these polynomials the argument based on the
Platonov-̄Doković theory is rather short. However, we will use an alterna-
tive approach, based on the following elementary lemma which is perhaps
of independent interest.
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Lemma 2.3. Let f ∈ F 〈X〉, where F is an arbitrary field, be a multilinear

polynomial of degree d. Let n ≥ 2 be such that d < 2n. If c ∈ Mn(F )
satisfies

(6) f(c, a2, . . . , ad) = f(a1, c, a3, . . . , ad) = . . . = f(a1, . . . , ad−1, c) = 0

for all a1, . . . , ad ∈Mn(F ), then c ∈ F · 1.

Proof. Pick an arbitrary rank one idempotent e ∈Mn(F ). Then the algebra
(1−e)Mn(F )(1−e) is isomorphic toMn−1(F ), so it contains matrix units hij ,

1 ≤ i, j ≤ n−1, i.e., elements satisfying hijhkl = δjkhil and
∑n−1

k=1 hkk = 1−e.
Without loss of generality we may assume that x1x2 . . . xd is a monomial

of f . We set (s, t) := (d2 − 1, d2 ) if d is even and (s, t) := (d−1
2 , d−1

2 ) if d is
odd. In any case we have t ≤ n− 1. Examining all possible monomials of f
one easily notices that

e · f(e, c, h11, h12, h22, h23, . . . , hst) · ht1 = ech11.

Since f(e, c, h11, h12, h22, h23, . . . , hst) = 0 by our assumption, we thus have
ech11 = 0. Similarly, by permuting the hij ’s, we see that echkk = 0
for every k. Accordingly, ec(1 − e) = 0. In a similar fashion, by using
f(a1, . . . , ad−2, c, ad) = 0, we get (1 − e)ce = 0. Hence it follows that c
commutes with every rank one idempotent e. But then c ∈ F · 1. �

Corollary 2.4. Let F be a field with char(F ) = 0, let f ∈ F 〈X〉0 be a

multilinear polynomial of degree d ≥ 2, and let φ : Mn(F ) → Mn(F ) be a

bijective linear map that preserves zeros of f . Assume that n 6= 2, 4 and

d < 2n. Then φ is of the standard form (2).

Proof. In view of Theorem 2.2 it suffices to prove that c := φ(1) lies in F ·1.
This is an immediate consequence of Lemma 2.3. Namely, since f ∈ F 〈X〉0
we have

f(1, b2, . . . , bd) = f(b1, 1, b3, . . . , bd) = . . . = f(b1, . . . , bd−1, 1) = 0

for all bi ∈Mn(F ), and hence (6) follows. �

3. Some special polynomials

In this section we will consider some special multilinear polynomials

(7) f(x1, x2, . . . , xd) =
∑

σ∈Sd

λσxσ(1)xσ(2) . . . xσ(d)

for which our problem can be handled in rather general classes of algebras.
Specifically, we will consider polynomials f satisfying one of the following
conditions:

(A)
∂d−1f

∂x2∂x3 . . . ∂xd
6= 0,

(B)
∂d−1f

∂x2∂x3 . . . ∂xd
= 0 and

∂d−2f

∂x3∂x4 . . . ∂xd
6= 0,
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(C)
∂d−1f

∂x2∂x3 . . . ∂xd
= 0 and f(x, x, . . . , x, y) 6= 0.

The conditions (B) and (C) are independent. For example,

x1x2x3 + x3x1x2 + x2x3x1 − x2x1x3 − x1x3x2 − x3x2x1

(i.e., the standard polynomial of degree 3) satisfies (B) and does not satisfy
(C), while

x1(x2x3 − x3x2)− (x2x3 − x3x2)x1
satisfies (C) and does not satisfy (B).

3.1. Polynomials satisfying (A). We begin with an elementary lemma.

Lemma 3.1. Let f be a multilinear polynomial satisfying (A). Suppose A
is a unital algebra and φ : A → A is a linear map preserving zeros of f
and satisfying φ(1) ∈ F ∗1. If a, b ∈ A are such that ab = ba = 0, then

φ(a)φ(b) + φ(b)φ(a) = 0.

Proof. Without loss of generality we may assume that φ(1) = 1. Namely,
if φ(1) = λ1 with 0 6= λ ∈ F , then we can replace φ by λ−1φ which also
preserves zeros of f and does map 1 into 1.

From ab = ba = 0 we infer

f(a, b, 1, . . . , 1) = f(b, a, 1, . . . , 1) = 0,

and hence

f(φ(a), φ(b), 1, . . . , 1) = f(φ(b), φ(a), 1, . . . , 1) = 0.

We write f as in (7). Note that (A) simply means that

λ :=
∑

σ∈Sd

λσ 6= 0.

Since

f(φ(a), φ(b), 1, . . . , 1) + f(φ(b), φ(a), 1, . . . , 1)

=
∑

σ−1(1)<σ−1(2)

λσφ(a)φ(b) +
∑

σ−1(2)<σ−1(1)

λσφ(b)φ(a)

+
∑

σ−1(1)<σ−1(2)

λσφ(b)φ(a) +
∑

σ−1(2)<σ−1(1)

λσφ(a)φ(b)

=λ
(
(φ(a)φ(b) + φ(b)φ(a)

)
,

it follows that φ(a)φ(b) + φ(b)φ(a) = 0. �

Recall that a Jordan epimorphism on an algebra A is a surjective linear
map θ satisfying θ(a2) = θ(a)2 for every a ∈ A.

Theorem 3.2. Let f be a multilinear polynomial of degree d ≥ 2 satisfying

(A), and let A be a unital C∗-algebra. If a continuous surjective linear map

φ : A → A preserves zeros of f and satisfies φ(1) ∈ C
∗ · 1, then φ is a scalar

multiple of a Jordan epimorphism.
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Proof. The conclusion of Lemma 3.1 makes it possible for us to directly
apply [2, Theorem 3.3]. The statement of this theorem together with a
well-known fact that Jordan epimorphisms preserve unities [15, Corollary 3,
p. 482] immediately gives the desired conclusion. �

Corollary 3.3. Assume the conditions of Theorem 3.2. If A is a prime

algebra, then φ is a scalar multiple of either an epimorphism or an antiepi-

morphism.

Proof. If A is prime, then epimorphisms or antiepimorphisms are the only
Jordan epimorphisms by Herstein’s theorem [14]. �

3.2. Polynomials satisfying (B). The treatment of (B) is similar to that
of (A).

Lemma 3.4. Let f be a multilinear polynomial satisfying (B). Suppose A
is a unital algebra and φ : A → A is a linear map preserving zeros of f
and satisfying φ(1) ∈ F ∗1. If a, b ∈ A are such that ab = ba = 0, then

φ(a)φ(b) = φ(b)φ(a).

Proof. We can reword (B) as
∑

σ∈Sd

λσ = 0 and µ :=
∑

σ−1(1)<σ−1(2)

λσ 6= 0.

Therefore ∑

σ−1(2)<σ−1(1)

λσ = −µ.

We may assume, for the same reason as in the proof of Lemma 3.1, that
φ(1) = 1. If a, b ∈ A are such that ab = ba = 0, then

f(a, b, 1, . . . , 1) = 0,

and hence
f(φ(a), φ(b), 1, . . . , 1) = 0.

Since

f(φ(a), φ(b), 1, . . . , 1) =
∑

σ−1(1)<σ−1(2)

λσφ(a)φ(b) +
∑

σ−1(2)<σ−1(1)

λσφ(b)φ(a),

it follows that µ
(
φ(a)φ(b)−φ(b)φ(a)

)
= 0, i.e., φ(a) and φ(b) commute. �

Theorem 3.5. Let f be a multilinear polynomial of degree d ≥ 2 satisfying

(B), and let A be a unital prime C∗-algebra that is not isomorphic to M2(C).
If a continuous bijective linear map φ : A → A preserves zeros of f and

satisfies φ(1) ∈ C
∗ · 1, then there exist α ∈ C, an automorphism or an

antiautomorphism θ of A, and a linear functional f on A such that φ(a) =
αθ(a) + f(a)1 for all a ∈ A.

Proof. Lemma 3.4 makes it possible for us to apply [2, Corollary 3.6], which
immediately gives the result. �
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3.3. Polynomials satisfying (C). The condition (C) means that there
exist λ1, . . . , λd ∈ F , not all zero, such that

d∑

i=1

λi = 0 and f(x, x, . . . , x, y) =
d∑

i=1

λix
d−iyxi−1.

The simplest case where f = x1x2 − x2x1 was considered in [6, Theorem
2]. This result was one of the earliest applications of functional identities.
Incidentally, [6, Theorem 2] was used in the proof of [2, Corollary 3.6], and
therefore indirectly also in the proof of Theorem 3.5. What we would now
like to show is that using the advanced theory of functional identities one
can handle, in a more or less similar fashion, a more general situation where
f satisfies (C).

Functional identities can be informally described as identical relations on
rings that involve arbitrary (“unknown”) functions. The goal is to describe
these functions, or, when this is not possible, to determine the structure of
the ring in question. For a full account on functional identities, as well as
to some other notions that will appear below, we refer to the book [7].

Theorem 3.6. Let f be a multilinear polynomial of degree d ≥ 2 satisfying

(C), let char(F ) 6= 2, 3, and let A be a centrally closed prime F -algebra with

dimF A > d2. If a bijective linear map φ : A → A preserves zeros of f , then
there exist α ∈ F , an automorphism or an antiautomorphism θ of A, and a

linear functional f on A such that φ(a) = αθ(a) + f(a)1 for all a ∈ A.

Proof. As f(x, x, . . . , x, x2) is obviously 0 if f satisfies (C), we have

f(φ(a), φ(a), . . . , φ(a), φ(a2)) = 0

for all a ∈ A, i.e.,
d∑

i=1

λiφ(a)
d−iφ(a2)φ(a)i−1 = 0.

A complete linearization of this identity leads to a situation where [7, The-
orem 4.13] is applicable under suitable assumptions on A and φ. In view
of [7, Theorems 5.11 and C.2], these assumptions are fulfilled in our case
since φ is surjective and dimF A > d2. The conclusion is that φ(ab + ba) is
a quasi-polynomial. As char(F ) 6= 2, this is equivalent to the existence of
λ ∈ F and maps µ, ν : A→ F (with µ linear) such that

φ(a2) = λφ(a)2 + µ(a)φ(a) + ν(a)

for every a ∈ A. Since φ is also injective and char(F ) 6= 3, the result now
follows from [6, Theorem 2]. �

It is worth pointing out that all prime C∗-algebras are centrally closed [3,
Proposition 2.2.10]. Let us also mention that infinite dimensional algebras
are not exluded in Theorem 3.6; only algebras of “small” dimension ≤ d2

are.
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[8] M. Brešar, P. Šemrl, On bilinear maps on matrices with applications to commutativity

preservers, J. Algebra 301 (2006), 803-837.
[9] M.A. Chebotar, Y. Fong, P.-H. Lee, On maps preserving zeros of the polynomial

xy − yx∗, Linear Algebra Appl. 408 (2005), 230-243.
[10] T. D. Dinh, M. Donzella, On maps preserving zeros of Lie polynomials of small de-

grees, Linear Algebra Appl. 432 (2010), 493-498.
[11] J. Dixon, Rigid embedding of simple groups in the general linear group, Can. J. Math.

29 (1977), 384-391.
[12] T. Gerritzen, Taylor expansion of noncommutative polynomials, Arch. Math. 71

(1998), 279-290.
[13] A. E. Guterman, B. Kuzma, Preserving zeros of a polynomial, Comm. Algebra 37

(2009), 4038-4064.
[14] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341.
[15] N. Jacobson, C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math.

Soc. 69 (1950), 479-502.
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