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Abstract. The question of the existence of nontrivial ideals of Lie algebras

of compact operators is considered from different points of view. One of the
approaches is based on the concept of a tractable Lie algebra, which can be of

interest independently of the main theme of the paper. Among other results it

is shown that an infinite-dimensional closed Lie or Jordan algebra of compact
operators cannot be simple. Several partial answers to Wojtyński’s problem on

the topological simplicity of Lie algebras of compact quasinilpotent operators

are also given.

1. Introduction

This paper centers around the following problem by Wojtyński [18, Question 3]:
Does every closed Lie algebra of compact quasinilpotent operators on a Banach
space contain a non-trivial closed Lie ideal? At the moment we are not able to give
a complete answer. We do give, however, several partial answers and, approaching
the problem from different directions, we find certain tools and introduce some
concepts that might be of independent interest.

The paper begins by introducing the concept of a tractable Lie algebra. It is
defined through a certain property of the associative algebra generated by all inner
derivations of a Lie algebra in question. After considering this notion in Section 2
in a pure algebraic context and just from the point of view that is interesting in
its own right, we present its connection to Wojtyński’s problem in Section 3. This
section then contains some (partial) answers to this and to some related problems.
In particular, it is shown that the Jordan algebra version of Wojtyński’s problem
has a positive answer. In Section 4 we consider the situation where the algebra in
question contains a non-zero finite rank operator; in this case the triangularization
technique turns out to be useful. In Section 5 we consider the question on the
existence of a not necessarily closed ideal. In particular we solve an algebraic
version of Wojtyński’s problem: A Lie algebra of compact quasinilpotent operators
is not simple, even without the assumption of closedness. Moreover, we prove that
any infinite-dimensional closed Lie or Jordan algebra of compact operators is not
simple.
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2. Tractable Lie algebras2

Throughout, A will be an associative algebra over a field F . For every a ∈ A
we define La,Ra : A → A by Lax = ax and Rax = xa. Further, we write ad(a) =
La − Ra. Let E`(A) denote the algebra generated by all La and Rb, a, b ∈ A.
The elements in E`(A) are called elementary operators on A (in pure algebra E`(A)
is usually called the multiplication algebra of A, but having applications to the
normed context in mind we will use a different terminology and notation). Thus, the
elements in E`(A) are of the form E = La+Rb+

∑
i LaiRbi , a, b, ai, bi ∈ A. By E`◦(A)

we denote the ideal of E`(A) consisting of elements of the form E =
∑
i LaiRbi ,

ai, bi ∈ A. Of course, if A is unital, then E`◦(A) = E`(A). But we are more
interested in algebras without unity.

Let L be a Lie subalgebra of A. We shall say that E ∈ E`(A) is a Lie elementary
operator on L if the restriction of E to L is a sum of products of operators of the
form ad(a), a ∈ L. Clearly, L is invariant under E. We shall say that L is a tractable
Lie algebra if there exists a Lie elementary operator on L which is not zero on L
and coincides on L with some operator from E`◦(A). Of course, the tractability
of L depends not only on L but also on A. But it shall always be clear from the
context which algebra A we have in mind.

We need some more notation. If L is a Lie subalgebra of A, then by 〈L〉 we
denote the associative subalgebra of A generated by L. Further, we set

ann(L) = {x ∈ 〈L〉 : xL = Lx = 0}.
Note that ann(L) is an ideal of 〈L〉.

Let us first record two simple observations.

r2 Remark 2.1. If L is noncommutative and A is unital, then L is automatically
tractable. Indeed, taking any a ∈ L that does not lie in the center of L, we have
ad(a) = LaR1 − L1Ra ∈ E`◦(A) and ad(a)L 6= 0.

Using this one can show that each simple finite-dimensional complex Lie algebra
of operators is tractable. More generally, a semisimple Lie algebras of operators L
on a finite-dimensional complex space X is tractable with respect to A = 〈L〉 (hence
with respect to each algebra of operators that contains L).

Indeed it suffices to show that 〈L〉 is a unital algebra. Decomposing L into direct
sum of simple algebras Li we have that 〈L〉 = ⊕i〈Li〉 so it suffices to assume that
L is simple. Since X decomposes into the sum of subspaces invariant under L, we
may consider an irreducible subspace Y of X. The restriction map a → a|Y is
injective on L, so the Lie algebra L|Y of operators on Y is isomorphic to L and
〈L|Y 〉 is isomorphic to 〈L〉. Thus we may assume that L is irreducible. Hence 〈L〉
is irreducible; by Burnside’s Theorem, 〈L〉 is the algebra of all operators, so it is
unital.

r1 Remark 2.2. Let E be a Lie elementary operator on L. Thus we have

e1e1 (2.1) E =
∑

ad(ai1) ad(ai2) . . . ad(aini
), where aij ∈ L.

We can rewrite E as

e2e2 (2.2) E = Lu + Rv +
∑

Lui
Rvi ,

where

e3e3 (2.3) u =
∑

ai1ai2 . . . aini , v =
∑

(−1)niaini . . . ai2ai1,
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and ui, vi are elements in A that can also be expressed through the aij ’s. Hence we
see that the following is true: If there exists an elementary Lie operator E on L of
the form (2.1) such that EL 6= 0 and u and v from (2.3) lie in ann(L) (e.g., if both
u and v are 0), then L is tractable.

Let us show that the concept we introduced is not an empty one.

p2 Proposition 2.3. Let X = {x1, x2, . . .} be an infinite set, let A = F0〈X〉 be the
non-unital free algebra on X, and let L be a Lie subalgebra of A generated by X.
Then L is not tractable.

Proof. We may regard elements in A as polynomials in noncommuting indeter-
minates xi, so we can define their degrees in the standard way. The Lie al-
gebra L consists of polynomials that can be written as sums of what we will
call Lie monomials - by these we mean scalar multiples of elements such as xi,
[xi, xj ], [[xi, xj ], xk], [[[xi, xj ], xk], xl], [[xi, xj ], [xk, xl]], etc. If b1, b2 are Lie monomi-
als, so is [b1, b2]; conversely, if b is a Lie monomial of degree ≥ 2 (i. e. b 6= λxi),
then b can be written as [b1, b2] where b1 and b2 are Lie monomials whose degrees
are smaller than the degree of b.

Let E be a Lie elementary operator on L of the form (2.1). We can rewrite E
according to (2.2). Suppose there exist wj , zj ∈ A such that

E = Lu + Rv +
∑

Lui
Rvi =

∑
Lwj

Rzj .

The set X is an infinite one, so there exists r such that xr does not appear in the
polynomials v, vi, zj . Considering Exr we thus have

uxr =
∑

uixrvi +
∑

wjxrzj − xrv.

But this is possible only if uxr = 0, and so u =
∑
ai1ai2 . . . aini

= 0.
Therefore, the proposition will be proved by showing that the following is true

for all aij ∈ L:

e4e4 (2.4)
∑

ai1ai2 . . . aini
= 0 =⇒

∑
ad(ai1) ad(ai2) . . . ad(aini

) = 0.

Note that there is no loss of generality in assuming that all the aij ’s are Lie mono-
mials; this is simply because every element in L is a sum of Lie monomials. We
shall prove (2.4) by induction on the maximal degree d of the Lie monomials aij
appearing in (2.4).

If d = 1, that is, if each aij = λijxij for some λij ∈ C and xij ∈ X, then (2.4)
trivially holds. Namely, different elements of the form xi1xi2 . . . xin are linearly
independent, and so the left hand side of (2.4) is 0 only in the trivial situation
when the sum of the coefficients at each xi1xi2 . . . xin is equal to zero. This clearly
forces the right hand side to be 0 too.

Let d > 1. Each aij of degree d can be written as [bij , cij ] where bij and cij are
Lie monomials of degree < d. Let air1 , . . . , airki

, r1 < . . . < rki , be these elements.
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Then we have

0 =
∑

ai1 . . . air1 . . . airki
. . . aini

=
∑

ai1 . . . [bir1 , cir1 ] . . . [birki
, cirki

] . . . aini

=
∑(

ai1 . . . bir1cir1 . . . birki
cirki

. . . aini − ai1 . . . cir1bir1 . . . birki
cirki

. . . aini±

. . .+ (−1)kiai1 . . . cir1bir1 . . . cirki
birki

. . . aini

)
.

We are now in a position to apply the induction assumption. Accordingly,

0 =
∑(

ad(ai1) . . . ad(bir1)ad(cir1) . . . ad(birki
)ad(cirki

) . . . ad(aini)−

− ad(ai1) . . . ad(cir1)ad(bir1) . . . ad(birki
)ad(cirki

) . . . ad(aini)±

. . .+ (−1)kiad(ai1) . . . ad(cir1)ad(bir1) . . . ad(cirki
)ad(birki

) . . . ad(aini
)
)

=
∑

ad(ai1) . . . [ad(bir1), ad(cir1)] . . . [ad(birki
), ad(cirki

)] . . . ad(aini
).

However, [ad(bij), ad(cij)] = ad(aij) and so we have
∑

ad(ai1) ad(ai2) . . . ad(aini
) =

0. �

In the two propositions that follow we will present two types of examples of
tractable Lie algebras. The first one deals with Lie algebras that are in some sense
close to associative ones. We say that a Lie subalgebra L of an associative algebra
A is closed under triads if aba ∈ L for all a, b ∈ L. Besides the obvious example
where L itself is an associative algebra, this also covers an important case where
L is a Lie algebra of all skew-symmetric elements of an associative algebra A with
involution ∗: L = {a ∈ A | a∗ = −a}.

p0 Proposition 2.4. Let L be a Lie subalgebra of an associative algebra A. If L is
closed under triads, then L is tractable, unless acbab + babca = abacb + bcaba for
all a, b, c ∈ L.

Proof. Pick a, b ∈ L, and set

E = ad(aba) ad(b)− ad(a) ad(bab).

A straightforward computation shows that E can be represented as

E = LaRbab + LbabRa − LabaRb − LbRaba.

Accordingly, E is a Lie elementary operator on L which belongs to E`0(A). Thus
L is tractable, unless Ec = acbab+ babca− abacb− bcaba = 0 for every c ∈ L. �

The conditon acbab + babca = abacb + bcaba for all a, b, c ∈ L means that L
satisfies a very special polynomial identity. Using the theory of polynomial identities
it would be possible to analyse this situation for some classes of Lie algebras; for
example, if L = A is a prime algebra or if L is the set of skew-symmetric elements
of a prime algebra A with involution, then using standard methods one could show
that this polynomial identity can hold on L only in some exceptional cases. But
this analysis would lead us to far from the scope of this paper.

For the proof of the second proposition we need some auxiliary results. The
first one might be interesting in its own right. In particular it shows that every
simple Lie algebra which is also a Lie ideal of an associative algebra, is, up to an
isomorphism, equal to [B,B] where B is a simple associative algebra. This is kind
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of a converse to Herstein’s theorem stating that [B,B] is a simple Lie algebra if B
is a simple associative algebra and [B,B] has trivial intersection with the center
of R [3, Theorem 1.12]. In the proof we shall need another theorem by Herstein
saying that a Lie ideal of a simple algebra B either contains [B,B] or is contained
in the center of B [3, Theorem 1.3]. All these is true under the assumption that
char(F ) 6= 2.

L1 Lemma 2.5. Let L be a Lie ideal of an associative algebra A. If L is simple (as a
Lie algebra) and char(F ) 6= 2, then B = 〈L〉/ann(L) is a simple associative algebra
and L ∼= L/ann(L) = [B,B].

Proof. Pick a ∈ 〈L〉 \ ann(L). We will prove the simplicity of B by showing that
the ideal of 〈L〉 generated by a is equal to 〈L〉.

If a does not lie in the center Z of 〈L〉, that is, if [a, 〈L〉] 6= 0, then 0 6= [a, l] ∈ L
for some l ∈ L. Therefore the ideal of the Lie algebra L generated by [a, l] is equal
to L. Consequently, L is contained in the ideal of 〈L〉 generated by a. Since the
algebra 〈L〉 is generated by L, this ideal is equal to 〈L〉.

Assume therefore that a ∈ Z. We claim that there is x ∈ 〈L〉 such that ax /∈ Z.
Indeed, if ax was in Z for every x ∈ 〈L〉, then we would have 0 = [ax, l] for
every l ∈ L. Since a commutes with l, this implies that a[x, l] = 0. That is,
a[〈L〉, L] = 0. However, [〈L〉, L] is an ideal of L, and certainly [〈L〉, L] 6= 0 since
L is noncommutative. Therefore [〈L〉, L] = L. Thus, aL = 0, which clearly yields
a〈L〉 = 0, and so also 〈L〉a = 0. But this contradicts a /∈ ann(L). This proves
that ax /∈ Z for some x ∈ 〈L〉. But then, by what was proved in the preceding
paragraph, the ideal of 〈L〉 generated by ax is equal to 〈L〉. But then the ideal
generated by a is also equal to 〈L〉.

Note that L∩ann(L) = 0 in view of the simplicity of L. Therefore the restriction
of the quotient map x 7→ x+ ann(L) to L is an isomorphism between Lie algebras
L and M = L/ann(L). Of course, M is a Lie ideal of B. It is clear that M is
not contained in the center of B (since otherwise [L, 〈L〉] would be contained in
ann(L)). Therefore M ⊇ [B,B] by Herstein’s theorem [3, Theorem 1.3]. Since M
is simple and [B,B] is obviously an ideal of M , it follows that M = [B,B]. �

The next lemma must be known, but we give the proof since it is rather short.
We shall need it only for the case when B is a simple algebra, but in view of the
proof it is more convenient to state it for prime algebras.

L2 Lemma 2.6. Let B be a noncommutative prime algebra. If b, c ∈ B are such that
b[B,B]c = 0, then b = 0 or c = 0.

Proof. Since non-zero elements in the center of a prime ring are not zero divisors,
we may assume that at least one of b, c does not lie in the center. Without loss of
generality we may assume that b is not in the center.

We have b[x, y]c = 0 for all x, y ∈ B, that is, bxyc = byxc. In particular,
bx(by)c = b2yxc = b2xyc. Thus, (bxb−b2x)Bc = 0 for every x ∈ B. Sice B is prime,
this yields c = 0 or bxb = b2x. If the latter occurs, then we have bxyb = b2xy = bxby
for all x, y ∈ B, i. e., bB[b, B] = 0. Therefore [b, B] = 0, that is, b lies in the center
of B. Hence c = 0. �

r3 Lemma 2.7. Let L be a Lie subalgebra of an associative algebra A. Suppose there
exists a ∈ L such that an ∈ ann(L), an−1Lan−1 6= 0, and n does not divide char(F ).
Then L is tractable.
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Proof. Note that the Lie elementary operator E = (ad(a))n coincides with an
operator in E`◦(A) on L; namely, u and v from (2.3) lie in ann(L). Since Ran−2E =
−nLan−1Ran−1 , E is not 0 on L. �

We now have enough information to prove our final proposition in this section.

p1 Proposition 2.8. Let L be a Lie ideal of an associative algebra A over a field F
with char(F ) = 0. Suppose that L is a simple Lie algebra and that L contains a
non-zero nilpotent element. Then L is tractable.

Proof. Since L contains non-zero nilpotents and since L∩ ann(L) = 0 by simplicity
of L, there exists a ∈ L and n ≥ 2 such that an ∈ ann(L) and an−1 /∈ ann(L).
Using the notation of Lemma 2.5 we set b = an−1 + ann(L) ∈ B. Since B is simple,
we have b[B,B]b 6= 0 by Lemma 2.6. In view of Lemma 2.5 we then also have
an−1Lan−1 6= 0. Therefore L is tractable by Lemma 2.7. �

3. Weakly tractable subspaces of an algebra and topological
non-simplicity3

In what follows normed spaces and algebras are assumed to be complex. By an
operator on a normed space we mean a bounded linear operator.

Let L be a Lie algebra of compact quasinilpotent operators on a Banach space
X, dimL > 1. The Wojtyński’s problem (see the Introduction) is to show that L
has a non-trivial closed Lie ideal. The relation with the previous material is that if
L is tractable then the answer is positive, as we shall see. Let us consider a more
general situation.

Let A be an algebra. If V is a subspace of A, let us denote by E`V (A) the set of
all operators T ∈ E`(A) that preserve V : TV ⊂ V . Then E`V (A) is a subalgebra
of E`(A). For example, if V is a Lie (Jordan) subalgebra of A then all operators
ad(a) : x 7→ ax− xa (respectively pa : x 7→ ax+ xa), for a ∈ V , belong to E`V (A).
If V is a Lie (Jordan) ideal of A, then the same is true for all a ∈ A.

Let V be a subspace of A. A subspace W of V is called El-stable with respect
to V if all operators in E`V (A) preserve W . In other words, W is El-stable if
E`V (A) ⊆ E`W (A). We say that V is El-simple (with respect to A) if it does
not have non-trivial El-stable subspaces. If A is normed, V is called topologically
El-simple if it does not have non-trivial El-stable closed subspaces.

Returning to the above examples we see that if V is a Lie subalgebra, a Jordan
subalgebra or a Lie ideal of A, then all its El-stable subspaces with respect to A
are, respectively, Lie ideals of V , Jordan ideals of V or Lie ideals of A.

The converse is not true. The simplest example is the following. Let A be the
algebra of all operators on a finite-dimensional space X over C. Then, as it is well
known and easy to see, E`(A) is the set of all operators on A. So E`V (A) is the set of
all operators leaving V invariant, whence V has no non-trivial El-stable subspaces.
Now, if V is a non-simple Lie subalgebra of A, then V has non-trivial Lie ideals
that are not El-stable.

Therefore the statement that a Lie subalgebra, Jordan subalgebra, or Lie ideal V
of a (normed) algebra A is not (topologically) El-simple, is a priori stronger than
the statement that V is not a (topologically) simple Lie algebra, (topologically)
simple Jordan algebra, or a minimal (closed) Lie ideal of A.

Let E`◦V (A) = E`◦(A) ∩ E`V (A). A subspace V of an algebra A will be called
weakly tractable (with respect to A) if E`◦V (A)V 6= 0. It is clear that every tractable
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Lie algebra is weakly tractable (with respect to the same A). Let us show that
Proposition 2.3 can be extended to weak tractability.

p2w Proposition 3.1. Let L and A be as in Proposition 2.3. Then L is not weakly
tractable.

Proof. In view of Proposition 2.3 it suffices to show that every E ∈ E`L (A) is a
Lie elementary operator. Set E =

∑
k Lwk

Rzk where wk, zk ∈ A ∪ {1}. We are
assuming that Ef is a Lie polynomial (i.e., a sum of Lie monomials) whenever
f ∈ A is a Lie polynomial. Without loss of generality we may assume that none
of the polynomials wk, zk involves x1. Since x1 is a Lie polynomial, it follows that
Ex1 =

∑
wkx1zk is a Lie polynomial, which is linear in x1. Therefore there exists

a Lie elementary operator D =
∑

ad(xi1)ad(xi2) . . . ad(xini
), xij 6= x1, such that

Ex1 = Dx1; indeed, this follows easily from ad([u, v]) = [ad(u), ad(v)]. So we have∑
wkx1zk =

∑
[xi1, [xi2, [. . . , [xini , x1] . . .]]].

Now, this is the identity in the free algebra, and so we may replace x1 by any other
element. Therefore,∑

wkgzk =
∑
l

[xi1, [xi2, [. . . , [xini
, g] . . .]]]

holds for every g ∈ A. That is, Eg = Dg for every g ∈ A, i.e., E = D. �

Note that if A is an algebra of compact operators, then the ideal E`◦(A) of E`(A)
consists of compact operators [17].

El-simple Proposition 3.2. Let V be a closed subspace in a closed algebra A of compact
quasinilpotent operators, and let dim(V ) > 1. If V is weakly tractable with respect
to A, then V is not topologically El-simple with respect to A.

Proof. By [15, Lemma 5.10], all elementary operators on A are quasinilpotent. Let
M be the algebra of the restrictions of all operators in E`V (A) to V . Since E`(A)
consists of quasinilpotents, the same is true for M. Since all operators in E`◦(A)
are compact, it follows from our assumptions thatM contains a non-zero compact
operator. It can be easily seen from Lomonosov’s Lemma [9] that if an algebra of
quasinilpotent operators contains a non-zero compact operator then it has a non-
trivial invariant subspace. Clearly a subspace invariant under M is an El-stable
subspace of V . �

Lie-simple Corollary 3.3. Let L be a closed non-one-dimensional Lie algebra L of compact
quasinilpotent operators on a Banach space X. If L is weakly tractable with respect
to the closure of 〈L〉, then L is not topologically simple.

Proof. Let A be the closed subalgebra in B(X) generated by L. By [14, Corollary
11.6], it consists of compact quasinilpotent operators. Since L is weakly tractable,
the condition E`◦L(A)L 6= 0 holds. By Proposition 3.2, L is not a topologically
El-simple subspace of A. Since each El-stable subspace of L is an ideal of L, we
conclude that L is not topologically simple as a Lie algebra. �

Jordan-simple Corollary 3.4. A closed non-one-dimensional Jordan algebra J of compact quasi-
nilpotent operators on a Banach space X is not topologically simple.
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Proof. Let A be the closed algebra generated by J . It follows easily from [5, Corol-
lary 11.1], that A consists of compact quasinilpotent operators. For each a ∈ A, let
pa be the operator on A defined as above. Then pa ∈ E`J (A) for each a ∈ J . It
follows that wa = 1

2 (p2
a − pa2) belongs to E`J (A) for a ∈ J . Since wa(x) = axa, we

have that wa ∈ E`◦(A). If wa(J) 6= 0 for some a ∈ J , then, by Proposition 3.2, J
has a non-trivial El-stable closed subspace, which is clearly a Jordan ideal.

Suppose that wa(J) = 0 for all a ∈ J . Then

(LaRb + LbRa)J = (wa+b − wa − wb) (J) = 0

for every a, b ∈ J . Hence (ab + ba)c + c(ab + ba) = 0 for all a, b, c ∈ J . Let Ib
be the closed ideal of J generated by an element b in J . If ab + ba 6= 0, for some
a, b ∈ J , then Iab+ba is a required ideal. If, however, ab + ba = 0 for all a, b ∈ J ,
then Ib = Cb is a required ideal for any non-zero b. �

For each algebra A, set Z2(A) = {x ∈ A : a2xa = axa2 for all a ∈ A}.

Lie-ideals Corollary 3.5. Let A be a closed algebra of compact quasinilpotent operators.
Then each minimal closed Jordan ideal of A is one-dimensional, and each min-
imal closed Lie ideal of A is either one-dimensional or contained in Z2(A).

Proof. Suppose that J is a minimal closed Jordan ideal of A with dim (J) > 1.
Then E`J (A) = E`(A), and we obtain as above, in terms of the proof of Corollary
3.4, that wa(J) = 0 for all a ∈ A. If ab + ba 6= 0, for some a ∈ A, b ∈ J , then the
Jordan ideal Iab+ba of A is one-dimensional, a contradiction. If, however, ab+ba = 0
for all a ∈ A, b ∈ J , then Ib = Cb is a Jordan ideal of A, for any non-zero b ∈ J , a
contradiction.

Suppose that V is a minimal closed Lie ideal in A with dim(V ) > 1. Since V is
a Lie ideal, each operator Ta = (ad(a))3 − ad(a3) leaves it invariant: Ta ∈ E`V (A)
for a ∈ A. If TaV = 0 then a2xa = axa2 for all x ∈ V . Thus if V is not contained
in Z2(A) then there is a ∈ A with TaV 6= 0. Since Ta ∈ E`◦(A), it follows from
Proposition 3.2 that V is not topologically El-simple. Hence V is not a minimal
closed Lie ideal of A. �

Let us call a normed algebra bicompact if all operators LaRb, a, b ∈ A, are
compact. Proposition 3.2 and Corollary 3.5 can be easily extended to the case
that A is an arbitrary bicompact Jacobson-radical Banach algebra. The following
example shows that a bicompact radical Banach algebra can have a minimal closed
Lie ideal of infinite dimension.

Example 3.6. It was shown in [2] that for any quasinilpotent operator T ∈ B(X)
there is an algebraic norm ||| · ||| majorizing the operator norm on the algebra
A(T ) generated by T , such that the completion B of A(T ) with respect to ||| · |||
is a bicompact radical Banach algebra. Choosing for T a quasinilpotent operator
without invariant subspaces (its existence was proved in [11]) we obtain that there is
a bicompact radical Banach algebra B with a non-trivial topologically irreducible
representation π on a Banach space X. Let A = B ⊕ X with multiplication
(a ⊕ x)(b ⊕ y) = ab ⊕ π(a)y. Then A is a bicompact radical Banach algebra. The
subspace J = {0} ⊕X is a Lie ideal of A and it is easy to check that it does not
contain smaller closed Lie ideals.
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Let WOT denote the weak operator topology on B(X). Let us say that a set U
of operators is weakly finitely generated if there is a finite subset W of U such that
the WOT-closed algebra generated by W contains U .

For a closed Lie subalgebra L of a Banach algebra A, let K2(L) be the set of all
a ∈ L such that La2 + Ra2 is compact as an operator from L into 〈L〉. Then K2(L)
is invariant under the set exp (ad (L)) of inner automorphisms of L. Indeed, if Q
is the unit ball of L, ϕt = exp(t ad(b)) for b ∈ L and every t ∈ R, then ϕt is the
restriction to L of the automorphism Lexp(tb)Rexp(−tb) = exp (Ltb) exp (R−tb) of the
closed algebra generated by L, and(

Lϕt(a)2 + Rϕt(a)2

)
Q = Lexp(tb)Rexp(−tb) (La2 + Ra2)ϕ−t (Q) .

for each a ∈ K2(L). As ϕ−t (Q) is a bounded subset of L, the set (La2 + Ra2)ϕ−t (Q)
is precompact, whence Lϕt(a)2 + Rϕt(a)2 is compact as an operator from L into 〈L〉.

zel Theorem 3.7. Let L be a closed non-one-dimensional Lie algebra of compact quasi-
nilpotent operators, and let N be a set in K2(L) invariant under exp (ad (L)). If N
is non-zero and weakly finitely generated, then L is not topologically simple.

Proof. Let A be the closure of 〈L〉. By [14, Corolary 11.6], A consists of compact
quasinilpotent operators. By [15, Lemma 5.10], E`(A) consists of quasinilpotents.
For a ∈ N , clearly ad(a)2 = La2 + Ra2 − 2LaRa is a compact operator from L into
〈L〉, therefore it is a compact operator on L. If ad(a)2 is non-zero on L then E`L (A)
has in L a non-trivial closed invariant subspace by Lomonosov’s Lemma [9]. This
subspace is a closed ideal of L.

So it suffices to consider the case that ad(a)2 = 0 for all a ∈ N . Let K be a finite
subset of N weakly generating N . By Zelmanov’s theorem [20, Theorem 1], the
elements with the property ad(a)2 = 0 generate a locally nilpotent subalgebra of L.
Thus the Lie algebra generated by K is nilpotent, hence its center is non-zero. So
there is a non-zero element b ∈ L commuting with K. It follows that b commutes
with the WOT-closed algebra generated by K, hence with N .

The closed linear span I of N is an ideal of L. Indeed, for each b ∈ L, the
automorphisms ϕt = exp(t ad(b)) of L preserve N. So these automorphisms preserve
I, whence

ad(b)(x) = lim
t→0

1

t
(ϕt(x)− x) ∈ I

for each x ∈ I.
Hence if L is topologically simple then I = L. It follows that b commutes with

all elements of L, and so Cb is a closed ideal of L, a contradiction. �

An element a of a normed algebra A is called completely continuous if La and
Ra are compact operators on A.

zel1 Corollary 3.8. Let L be a closed non-one-dimensional Lie algebra of compact
quasinilpotent operators, N1 =

{
a ∈ L : a2 = 0

}
, N2 =

{
a ∈ L : a2 ∈ ann(L)

}
, let

N3 be the set of all a ∈ L such that a2 commutes with each element of L, N4 the set
of all a ∈ L such that a2 is completely continuous element of 〈L〉, and let N5 be the
set of all a ∈ L such that La2 and Ra2 are compact as operators from L into 〈L〉. If
Ni is non-zero and weakly finitely generated for some i, then L is not topologically
simple.
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Proof. All sets are invariant under exp (ad (L)). Clearly N1 ⊂ N2 ⊂ N4 ⊂ N5 ⊂
K2 (L), and N3 ⊂ N4 by [1, Theorem 1]. So the statement follows by Theorem
3.7. �

The last result of the section establishes the topological non-simplicity in a quite
special situation. In the next section it will be used to establish the algebraic
non-simplicity in a very general case (see Theorem 5.2).

Recall that for each subspace Y ⊂ X and for each operator a leaving Y invariant,
one can consider the restriction a|Y of a to Y and the quotient operator a|(X/Y )
on X/Y which sends x+ Y to ax+ Y . We denote a|Y by πY (a) and a|(X/Y ) by
πX/Y (a). The maps a 7→ πY (a) and a 7→ πX/Y (a) are representations of the algebra
of all operators leaving Y invariant; they are called the restriction representation
and quotient representation defined by Y .

i44 Theorem 3.9. Let L be an infinite-dimensional Banach Lie algebra. Assume that
there is a bounded non-zero representation h of L by finite rank operators on a
normed space X. Then L is not topologically simple. If moreover h is injective,
then L has a proper closed ideal of finite codimension.

Proof. Without loss of generality, one may assume that X is complete and h is
injective. Every x ∈ X defines an operator Ux : L −→ X by Ux(a) = h (a)x.
The space U of operators Ux is locally finite-dimensional. Indeed, Ua = h (a)X is
finite-dimensional for every a ∈ L.

By theorem of Livshits [8], there are a finite-dimensional space U1 of operators
from L to X and a finite-dimensional subspace W of X such that U ⊂ U1 + UW ,
where UW is the space of all (bounded) operators from L to X with ranges in W .
It follows that dim(U/U ∩ UW ) < ∞. Let X0 = {x ∈ X : Ux ∈ UW }. Then X0 is
closed in X and has finite codimension in X. It is clear that h (L)X0 ⊂W .

Let Y = {x ∈ X : dim(h (L)x) <∞}. It is a subspace of X. As h (L)h (a)x ⊂
h (L)x + h (a)h (L)x for every a ∈ L and x ∈ X, we see that h (L)h (a)x is of
finite dimension for every x ∈ Y , i.e., Y is invariant for h (L). As Y contains X0, it
is a closed subspace of finite codimension in X. The quotient representation πX/Y
of h (L) is of finite rank, so its kernel is of finite codimension. If πX/Y 6= 0, then{
a ∈ L : πX/Y (h (a)) = 0

}
is a proper closed ideal of finite codimension in L.

Assume that πX/Y = 0. Since πY (h (L)) is locally finite-dimensional, it follows
as above from the theorem of Livshits that there is a finite-dimensional subspace
Z of Y such that dim(πY (h (L)) /πY (h (LZ))) < ∞, where LZ is the space of all
a ∈ L such that h (a)Y ⊂ Z.

Clearly LZ is a closed subalgebra of finite codimension in L. By [7, Theorem
7.1], if LZ 6= L then L has a proper closed ideal of finite codimension. So we may
assume that LZ = L, that is πY/Z = 0. Then Z is an invariant subspace for h (L).
The restriction representation πZ of h (L) is of finite rank, so its kernel is of finite
codimension. If πZ 6= 0, then {a ∈ L : πZ (h (a)) = 0} is a proper closed ideal of
finite codimension in L.

Assume that πZ = 0. As πX/Y = πY/Z = πZ = 0, then h (a)h (b)h (c) = 0 for
every a, b, c ∈ L. Hence [[L,L] , L] = 0 and any closed subspace of L containing
[L,L] is an ideal of L. If [L,L] is dense in L, then L is commutative, and every
closed subspace of L is an ideal of L. In any case, L has a proper closed ideal of
finite codimension. �
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4. Around the triangularizability4

A set Γ of closed subspaces of a normed space X is called a closed subspace chain
if it is linearly ordered by inclusion. A closed subspace chain is called complete if
it contains the intersection and the closure of the sum of subspaces of an arbitrary
its subchain.

The gaps of a complete closed subspace chain Γ are defined as pairs (Z, Y ) ∈ Γ×Γ
with Z $ Y such that there are no subspaces in Γ intermediate between Z and Y .
The quotients Y/Z for such pairs are called the gap-quotients of Γ. If Γ consists
of invariant subspaces for a set M of operators on X, every gap (Z, Y ) induces a
representation πY/Z of M by operators on Y/Z given by

πY/Z (a) (y + Z) = ay + Z,

which is called a gap-representation of M with respect to Γ.
A closed subspace chain is called a maximal closed subspace chain if it is not

a subchain of a larger chain. This is equivalent to the condition that all its
gap-quotients (if they exist) are one-dimensional. Complete chains without gap-
quotients are called continuous.

A set M of operators on X is called triangularizable if there is a maximal closed
subspace chain consisting of invariant subspaces for M .

It was proved by Ringrose [12] (see also [10, Theorem 5.12]) that if a complete
closed subspace chain Γ in a Banach space X consists of subspaces invariant for a
compact operator a then Sp∗(a) = ∪Sp∗(πZ/Y (a)) where the union is over all gaps
Y ⊂ Z of Γ, and Sp∗ denotes the non-zero part of spectrum: Sp∗(a) = Sp(a) \ {0}.
In particular, if Γ is maximal then a is quasinilpotent if and only if πZ/Y (a) = 0
for all gaps. It follows that if a Lie or Jordan algebra J is triangularizable then the
set of all quasinilpotent compact operators in J is a closed ideal of J .

We will apply the following analogue of the Ringrose Theorem:

ring-anal Lemma 4.1. Let Γ be a maximal closed subspace chain in a normed space X. A
finite rank operator a that leaves invariant all subspaces in Γ is nilpotent if and only
if it belongs to the kernels of all gap-representations of Γ.

The non-trivial part of the proof is contained in the proof of Lemma 5.6 below,
and we omit it here.

iid03 Theorem 4.2. Let J be a non-one-dimensional, Lie or Jordan, algebra of opera-
tors on a normed space X. If J contains a non-zero finite rank operator and if J
is triangularizable, then J is not topologically simple.

Proof. Assuming the contrary, we need only to consider the case when the ideal I
of all finite rank operators in J is dense in J .

Let Γ be a maximal closed subspace chain consisting of invariant subspaces for
J , and let, as usual, πY be the restriction representation of J on Y , for every Y ∈ Γ.
Assume firstly that πY is not zero for every non-zero Y ∈ Γ.

Let Γa = {Y ∩ aX : Y ∈ Γ} for any a ∈ J . If a is a finite rank operator in J ,
then Γa consists of a finite number of finite-dimensional subspaces invariant for a.
Let (0, Z) be the gap of Γa, and let Y be a subspace in Γ such that Y ∩ aX = 0.
As aY = aY ∩aX ⊂ Y ∩aX = 0, we obtain that πY (a) = 0. If Y 6= 0 then πY 6= 0
and the kernel of πY is a non-trivial ideal of J , a contradiction. If there are no
non-zero Y ∈ Γ with Y ∩ aX = 0, then every non-zero subspace in Γ contains Z.
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This implies that there is a gap-quotient of Γ containing Z. As gap-quotients of Γ
are one-dimensional, Z ∈ Γ and Z is one-dimensional.

When J is a Lie algebra, πZ ([b, c]) = 0 for every b, c ∈ J . As the kernel of πZ is
zero, J is commutative and is a sum of one-dimensional ideals, a contradiction.

Consider the case when J is a Jordan algebra. If I contains a non-zero nilpo-
tent operator, one may assume, using Lemma 4.1, that J has a dense ideal I0 of
nilpotent finite rank operators. Then πZ vanishes on I0 and therefore on J, a con-
tradiction. Therefore I has no nilpotent operators. As the kernel of πZ is zero and
πZ ([[b, c] , d]) = 0, we obtain that

tozhtozh (4.1) [[b, c] , d] = 0, for every b, c, d ∈ J.

Now it remains to prove that if a Jordan algebra I of finite-rank operators on a
normed space X does not contain non-zero nilpotent operators and satisfies (4.1)
then it is not simple. As the algebra generated by a ∈ I is a commutative semisimple
finite-dimensional algebra, it is a finite direct sum of simple algebras each of which
is isomorphic to the field. So a is a finite linear combination

∑
λipi of orthogonal

projections that also belong to I. It is easy to see from [[pi, b] , pi] = 0 that each
pi commutes with every b ∈ J . Hence J is a semisimple commutative associative
algebra. If I contains at least two orthogonal non-zero projections p and q, then J
has non-trivial ideals pJ and qJ , otherwise I is one-dimensional and J = I. In any
case, we have a contradiction.

Now consider the general case when πY = 0 for some non-zero Y ∈ Γ. Then
there is a largest subspace W ∈ Γ such that πW = 0 and πY 6= 0 for every Y ∈ Γ
properly contaning W . As πX 6= 0, then W 6= X. Let πX/W be the quotient
representation of L on X/W . Assume first that π 6= 0. Note that πX/W (L) is a
strictly triangularizable set of operators on X/W , Λ = {Y/W : W ⊂ Y ∈ Γ} is a
maximal subspace chain consisting of invariant subspaces for πX/W (L).

Let πY/W be the quotient representation of π (J) on Y/W for every Y/W ∈ Λ.
If πY/W 6= 0 for every non-zero Y/W ∈ Λ, then the above argument for πY/W
instead of πY leads to a contradiction. So there is a non-zero Y/W ∈ Λ such that
πY/W = 0. Then aY ⊂ W and aW = 0 for every a ∈ J , whence πY (a)πY (b) = 0
for every a, b ∈ J . This implies that πY (ab± ba) = 0 for all a, b ∈ J . As πY 6= 0
and its kernel is trivial, every one-dimensional subspace of J is an ideal of J , a
contradiction.

At last, assume that π = 0. The above argument for πX/W instead of πY/W
shows that J is a sum of one-dimensional ideals of J , a contradiction.

This shows that L is not topologically simple. �

For an operator a acting on a non-complete normed space we use the term
quasinilpotent if the equality limn→∞ ‖an‖1/n = 0 holds.

corJ13 Corollary 4.3. Let J be a non-one-dimensional Jordan algebra of quasinilpotent
operators on a normed space X. If J contains a non-zero finite rank operator, then
J is not topologically simple.

Proof. Assume that J is topologically simple. Without loss of generality, one may
assume that X is complete and that J consists of quasinilpotent compact operators.
By [5, Corollary 11.1], J is triangularizable. Therefore J is not topologically simple
by Theorem 4.2, a contradiction. �
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The result cannot be considered as a consequence of Theorem 3.4 because we do
not assume that J is closed.

The following result was proved in [19, Theorem 6] under additional conditions
of separability and closedness for Lie algebras of quasinilpotent compact operators.
A normed Lie algebra L is called Engel if ad(a) is a quasinilpotent operator on L
for every a ∈ L.

iid3 Corollary 4.4. Let L be a non-one-dimensional Engel Lie algebra of operators
on a normed space. If L contains a non-zero finite rank operator then L is not
topologically simple.

Proof. Assuming the contrary, we have that the ideal of finite rank operators in L
is dense in L. Without loss of generality, one can assume that X is a Banach space.
Since L consists of compact operators, it is triangularizable by [14, Corollary 11.5].
By Theorem 4.2, L is not topologically simple, a contradiction. �

Let h : L −→M be a homomorphism of Lie algebras. Then

imim (4.2) h · adL (a) = adM (h (a)) · h
for every a ∈ L. Suppose that M is normed and h (M) is dense in M . Then
adM (h (a)) = 0 if and only if a ∈ ker (h · adL). If adL (a) is of finite rank, then,
under the same conditions to h, adM (h (a)) is of finite rank.

We say that a normed Lie algebra L is semi-Engel if there are an Engel normed
Lie algebra M and a bounded injective homomorphism h : L −→ M with dense
range. It is clear that every Engel normed Lie algebra is semi-Engel. Note also
that every Lie algebra of quasinilpotent operators on a normed space is an Engel
normed algebra.

33 Corollary 4.5. Let L be a non-one-dimensional semi-Engel normed Lie algebra.
If ad(a) is of finite rank for some non-zero a ∈ L, then L has a non-trivial closed
ideal.

Proof. Let M be an Engel normed Lie algebra and h : L −→ M be a bounded
injective homomorphism with dense range. Let N = ad (M). It is a normed Lie
algebra of quasinilpotent operators on the completion of M which contains a finite
rank operator adM (h (a)).

If adL = 0 then L is commutative and is a sum of one-dimensional ideals. If
adL 6= 0 and either dim (N) < 1 or adM (h (a)) = 0, then ker (adL) is a non-
trivial ideal of L. Assume now that ker (adL) = 0. Then dim (N) > 1 and
adM (h (a)) 6= 0, and N has a non-trivial closed ideal I by Corollary 4.4. Then
{b ∈ L : adM (h (b)) ∈ I} is a non-trivial closed ideal of L. �

Let M be a set of operators. We say that M is almost triangularizable if there
is a complete chain of closed subspaces invariant for M that admits only finite-
dimensional gap-quotients (if any exist of course).

iid13 Corollary 4.6. Let J be an infinite-dimensional, Lie or Jordan, algebra of opera-
tors on a normed space X. If J contains a non-zero finite rank operator and if J
is almost triangularizable, then J is not topologically simple.

Proof. Assume, to the contrary, that J is topologically simple and let Γ be a chain
of closed J-invariant subspaces with only finite-dimensional gaps. Since kernels of
non-zero finite rank representations of J are non-trivial ideals, one may assume
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that all gap-representations of J with respect to Γ are zero. So gap-quotients of Γ
are one-dimensional, and J is in fact triangularizable. By Theorem 4.2, J is not
topologically simple. �

A normed space X is called an operator range if there is a bounded operator T
from a Banach space Y onto X.

i44at Theorem 4.7. Let J be a normed, Lie or Jordan, algebra of finite rank operators
on an infinite-dimensional Banach space X. If J is an operator range then J has
a non-trivial invariant closed subspace of finite dimension or codimension.

Proof. Let J = TV for some bounded operator from a Banach space V . Assume
that J has no non-trivial invariant closed subspaces of finite dimension or codimen-
sion. Every x ∈ X defines a bounded operator Sx : V −→ X by Sx(v) = (Tv)x.
The space U of operators Sx is locally finite-dimensional. Indeed, Uv = (Tv)X is
finite-dimensional for every v ∈ V .

By theorem of Livshits [8], there are a finite-dimensional space U1 of operators
from V to X and a finite-dimensional subspace W of X such that U ⊂ U1 + UW ,
where UW is the space of all bounded operators from V to X with ranges in W .
It follows that dim(U/U ∩ UW ) < ∞. Let X0 = {x ∈ X : Sx ∈ UW }. Then
X0 is closed in X and has finite codimension in X. If a = Tv and x ∈ X0 then
ax = (Tv)x = Sx(v) ∈W , so that JX0 ⊂W .

Let Y = {x ∈ X : dim(Jx) <∞}. It is a subspace of X. As Jax ⊂ Jx+aJx for
every a ∈ J and x ∈ X, we see that Jax is of finite dimension for every x ∈ Y , i.e.,
Y is invariant for J . As Y contains X0, it is a closed subspace of finite codimension
in X. As J has no non-trivial invariant closed subspaces of finite codimension,
Y = X.

Then J is locally finite-dimensional. It follows as above from the theorem of
Livshits that there is a finite-dimensional subspace Z of X such that dim(J/JZ) <
∞, where JZ is the space of all a ∈ J such that aX ⊂ Z.

Clearly JZ is a closed subalgebra of finite codimension in J . Then there is a
finite-dimensional subspace J0 such that J = J0 + JZ . As J0 consists of finite rank
operators, J0X is finite-dimensional. As JX ⊂ J0X + JZX ⊂ J0X + Z, we obtain
that J0X + Z is a finite-dimensional subspace invariant for J . As J has no non-
trivial invariant closed subspaces of finite dimension, JX = 0, a contradiction. �

i44at1 Corollary 4.8. Let J be a normed, Lie or Jordan, algebra of finite rank operators
on an infinite-dimensional Banach space X. If J is an operator range then J is
almost triangularizable.

Proof. Let Γ be a maximal closed subspace chain consisting of invariant subspaces
for J . Assume, to the contrary, that there is an infinite-dimensional gap-quotient
Y/Z of Γ. Let π be the quotient representation of J corresponding to Y/Z. Then
π (J) = πT (V ) is an operator range. By Theorem 4.7, π (J) is reducible. This
implies that there is an invariant closed subspace for J between Z and Y , a con-
tradiction. So J is almost triangularizable. �

The following result is a Jordan algebra analogue of Theorem 3.9.

i44j Corollary 4.9. Let J be an infinite-dimensional Banach Jordan algebra. Assume
that there is a bounded non-zero representation h of J by finite rank operators on
a normed space X. Then J is not topologically simple.
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Proof. Without loss of generality, one may assume that X is complete. Assume,
to the contrary, that J is topologically simple. Then h is injective. As h (J) is an
infinite-dimensional Jordan algebra of finite operators and an operator range, then
it is almost triangularizable by Corollary 4.8. Then h (J) is not topologically simple
by Corollary 4.6. Therefore J is not topologically simple, a contradiction. �

For Lie algebras of operators, Theorem 4.7 allows us to obtain the following
statement having an independent interest.

i44l Corollary 4.10. Let L be a Lie algebra of operators on an infinite-dimensional
Banach space X, and let J be the set of all finite rank operators in L. If J is a
non-zero operator range, then L has a non-trivial invariant closed subspace.

Proof. If J is finite-dimensional, then the statement follows from [15, Theorem
4.33]. If J is infinite-dimensional, then, taking into account that J has a non-
trivial invariant subspace of finite dimension or codimension by Theorem 4.7, the
statement follows by [6, Theorems 6.4 and 7.1]. �

If L consists of compact operators then the condition J = 0 also implies by [13,
Theorem 2] that L has a non-trivial invariant closed subspace.

5. Non-simplicity of Lie and Jordan algebras5

In this section we present results on the existence of ideals (non-necessarily
closed) in Lie or Jordan algebras of operators which act on normed spaces or on vec-
tor spaces without topology. For the sake of simplicity, vector spaces and algebras
are considered over algebraically closed fields of characteristic 0.

A natural algebraic analog of Wojtyński’s problem would be the question: is ev-
ery Lie algebra of nilpotent operators non-simple? But this question has a negative
answer, as the following example shows.

smok Example 5.1. Let A be a simple nil-algebra. Such exists by the celebrated result
of Smoktunowicz [16]. By [3, Theorem 1.12], L = [A,A] is a simple Lie algebra.
If a ∈ L, then a is nilpotent, an = 0, which yields ad(a)2n−1 = 0. Thus, there
exist simple Lie algebras L such that ad(a) is nilpotent for all a ∈ L. The adjoint
representation a 7→ ad(a) of such an algebra is injective, so ad(L) is a simple Lie
algebra of nilpotent operators.

To obtain positive results we impose the conditions that some operators in alge-
bras in question are of finite rank or compact.

alg-gen Theorem 5.2. Let L be an infinite-dimensional Banach Lie algebra such that ad(a)
has at most countable spectrum for each a ∈ L. If h (L) contains a non-zero compact
operator, for some bounded representation h on a normed space, then L is not
simple.

Proof. Assuming the contrary, we need only to consider the case when h (L) consists
of compact operators on a Banach space and h is injective. Let M be the closure
of h (L).

Assume first that there is an element a ∈ L whose ad(a) has a non-zero spectrum.
Then there is an isolated non-zero point λ in the spectrum. As h · adL (b) =
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adM (h (b)) · h for every b ∈ L, we obtain, for Riesz projections pλ (adL (a)) and
pλ (adM (h (a))) corresponding to λ, that

h · pλ (adL (a)) = (2πi)
−1
h ·
∫

Ω

(µ− adL (a))
−1
dµipip (5.1)

= (2πi)
−1

(∫
Ω

(µ− adM (h (a)))
−1
dµ

)
· h

= pλ (adM (h (a))) · h,

where Ω is an admissible contour in C enclosing the point λ. As pλ (adL (a)) 6= 0,
pλ (adM (h (a))) is not zero on h (L). Since the range of pλ (adM (h (a))) consists
of finite rank operators by [15, Lemma 3.12], h (L) contains non-zero finite rank
operators. Then L is not simple by Theorem 3.9, a contradiction.

Therefore one may assume that L is Engel. If adM (h (a)) is not quasinilpotent,
it follows from (5.1) that pλ (adM (h (a))) = 0 on h (L) for each isolated point
λ 6= 0 in the spectrum of adM (h (a)). Since h (L) is dense in M , we obtain that
pλ (adM (h (a))) = 0, a contradiction. So h (L) is also Engel and is not simple by
Theorem 5.4. This implies that L is also not simple, a contradiction. �

alg-gen1 Corollary 5.3. Let J be an infinite-dimensional closed, Lie or Jordan, algebra of
operators on a Banach space. If J contains a non-zero compact operator, then J is
not simple.

Proof. The case of Lie algebras immediately follows from Theorem 5.2. Let J be
Jordan and, without loss of generality, consist of compact operators. If J has finite
rank operators then the assertion follows from Corollary 4.9. Otherwise J consists
of quasinilpotent compact operators, and the assertion follows by Corollary 3.4. �

i43 Theorem 5.4. Let L be a non-one-dimensional Engel Lie algebra of operators on
a normed space X. If L contains a non-zero compact operator, then L is not simple.

Proof. Assume, to the contrary, that L is simple. Without loss of generality, one
may of course assume that X is complete. As the set I = {a ∈ L : a is compact}
is an ideal of L, it coincides with L. So L is an Engel Lie algebra of compact
operators on a Banach space. Let A be the closed algebra generated by L. By
[14, Corollary 11.5], A is commutative modulo the Jacobson radical. Then J =
{a ∈ L : a is quasinilpotent} is an ideal of L which contains [L,L]. If J = 0 then
L is commutative and is a sum of one-dimensional ideals. So L = J is a Lie
algebra of quasinilpotent compact operators. By [15, Lemma 5.10], E`(A) consists
of quasinilpotent operators. Then the algebra B generated by ad(L) consists of
quasinilpotent operators. As Ba does not contain a for every non-zero a ∈ L,
either Ba or the one-dimensional subspace generated by a is a non-trivial ideal of
L, a contradiction. �

Note that this result cannot be considered as a special case of Corollary 5.3
because we do not assume the completeness of L.

We will need an algebraic version of triangularizability. For this we introduce the
notions of complete subspace chain, maximal subspace chain, continuous subspace
chain in vector spaces which differ from the corresponding notions for normed
spaces only by the absence of the word “closed” in the definitions. Gaps and gap-
representations are defined as above. A set M of operators on a vector space X
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is called strictly triangularizable if there is a maximal subspace chain consisting of
invariant subspaces for M .

The following theorem supplies us with examples of strictly triangularizable sets
of operators.

iat Theorem 5.5. Any Lie or Jordan algebra J of nilpotent finite rank operators gen-
erates the algebra of nilpotent operators, and every algebra of nilpotent operators is
strictly triangularizable.

Proof. Let A be the algebra generated by J . Every element a of A is a polynomial
in some finite set K of elements of L. As every finite set of finite rank operators is
locally finite in the sense that it generates a finite-dimensional algebra, the algebra
B generates by K is finite-dimensional. Note that the Lie or Jordan algebra I
generated by K is in B ∩ J and consists therefore of nilpotents. Taking a regular
representation πl : b 7→ bx of B on the vector space X = B, we have that πl (I)
consists of nilpotent operators on a finite-dimensional space. By [4, Theorem 2.2.1],
πl (B) consists of nilpotent operators on X. Then

an+1 = πl (a)
n
a = 0

for some n, i.e. a is a nilpotent operator. This means that A is an algebra of
nilpotent operators.

Let Γ be a maximal chain of invariant subspaces for an algebra A of nilpo-
tent operators. If Γ is not a maximal subspace chain, then there is a non-one-
dimensional gap-quotient W = Y/Z. It is clear that B = πY/Z (A) is an non-zero
algebra of nilpotent operators. As x /∈ Bx for every non-zero x ∈ W , either Bx or
{y ∈W : By = 0} is a non-trivial invariant subspace for B. This means that there
is an intermediate invariant subspace for A between Z and Y , a contradiction. �

This theorem shows that if A is a simple nil-algebra then E`(A) is not a nil-
algebra since it has no invariant subspaces. On the other hand, considering the
regular representations, it follows from the theorem that every simple nil-algebra
has a maximal subspace chain consisting of left ideals and a maximal subspace
chain consisting of right ideals.

The following lemma works in the pure algebraic setting as well as, with a minor
modification, for operators on a normed space (we have mentioned this in the
previous section).

imur Lemma 5.6. Let Γ be a complete subspace chain containing 0 and X, and a be a
finite rank operator on X leaving subspaces of Γ invariant. If all gap-representations
with respect to Γ vanish on a, then a is nilpotent.

Proof. Let X0 = aX and let Λ = {Y ∩X0 : Y ∈ Γ}. Since X0 is finite-dimensional,
Λ is a finite chain of subspaces 0 = Z0 $ Z1 $ · · · $ Zm = X0 that are invariant
for a.

Let W2j = ∩{Y ∈ Γ : Zj ⊂ Y } for j > 0. Then

Zj = ∩{Y ∩X0 : Zj ⊂ Y ∈ Γ} = W2j ∩X0.

For every Y ∈ Γ with Y $W2j , we have that Y ∩X0 $ Zj . If Zj−1 $ Y ∩X0 then
there is an intermediate subspace of Λ between Zj−1 and Zj , a contradiction. So
Y ∩X0 ⊂ Zj−1. Thus for every Y ∈ Γ with W2j−2 ⊂ Y $ W2j for j > 1, we have
that

zvonokzvonok (5.2) aY ⊂ Y ∩ aX = Y ∩X0 = Zj−1 = W2j−2 ∩X0 ⊂W2j−2.
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Let W2j−1 be
∑
{Y ∈ Γ : Y $ W2j} for j > 0, and let W0 = 0 and W2m+1 = X.

Then W2j−1 ∈ Γ and it follows from (5.2) that aW2j−1 ⊂ W2j−2. If W2j−1 = W2j

then aW2j ⊂ W2j−2, otherwise (W2j−1,W2j) is a gap of Γ, whence aW2j ⊂ W2j−1

by assumption. Taking into account that aW2m+1 ⊂ W2m, we obtain that aWj ⊂
Wj−1 for every j > 0. Hence

a2m+1X = a2m+1W2m+1 ⊂ a2mW2m ⊂ · · · ⊂ aW1 ⊂W0 = 0.

�

In particular, Lemma 5.6 says that if Γ is continuous, a is automatically a nilpo-
tent operator. On the other hand, it is clear that if Γ is maximal then every its
gap-representation (being of rank one) vanishes on nilpotent operators leaving sub-
spaces of Γ invariant. The following reflects this fact and is a sort of a converse
assertion to Theorem 5.5.

ii Theorem 5.7. Let J be a strictly triangularizable, Lie or Jordan, algebra of oper-
ators. Then the set of all nilpotent finite rank operators in J is an ideal of J .

Proof. Apply Lemma 5.6. �

The restriction on ranges in the theorem is essential. It is not difficult to con-
struct two nilpotent operators a, b in a (strictly) triangularizable algebra such that
a + b is not nilpotent. The simplest example is following. Let Γ be a maximal
continuous subspace chain in a vector space X. Then Γ(2) = {Y ⊕ Y : Y ∈ Γ} is a
continuous chain of subspaces for X ⊕ X. Let a, b be defined by a (x, y) = (0, x)
and b (x, y) = (y, 0), for all (x, y) ∈ X ⊕X. Then a and b are nilpotents, subspaces

of Γ(2) are invariant for a and b, but (a+ b)
2

is the identity operator.
In fact the Ringrose result can be transferred to the algebraic setting in full

generality: for every finite rank operator a leaving the subspaces of a maximal
(subspace or closed subspace) chain Γ invariant, the set {π (a)} for dimX < ∞
or {π (a)} ∪ {0} for dimX = ∞ is the spectrum of a, where π runs over gap-
representations with respect to Γ. This is probably well known but we could not
find a reference.

A Lie algebra L is called nil-Engel if ad (a) is a nilpotent operator, for every
a ∈ L.

i42 Corollary 5.8. Let L be a non-one-dimensional nil-Engel Lie algebra. If ad (a) is
of finite rank for some non-zero a ∈ L, then L is not simple.

Proof. Let M = ad (L). The set I = {b ∈ L : ad (b) is of finite rank} is a non-zero
ideal of L. So, one may assume that I = L. Then M is a Lie algebra of nilpotent
finite rank operators. By Theorem 5.5, it has a non-trivial invariant subspace which
is an ideal of L. �

Now we list several results which are algebraic analogs of the results in Section
4.

iid0 Theorem 5.9. Let J be a non-one-dimensional, Lie or Jordan, algebra of opera-
tors on a vector space X. If J contains a non-zero finite rank operator and if J is
strictly triangularizable, then J is not simple.

Proof. Similar to the proof of Theorem 4.2 with using Theorem 5.7 instead of
Ringrose’s result. �
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corJ1 Corollary 5.10. Let J be a non-one-dimensional Jordan algebra of nilpotent op-
erators. If J contains a non-zero finite rank operator, then J is not simple.

Proof. Similar to the proof of Corollary 4.3. �

Let M be a set of operators. We say that M is strictly almost triangularizable
if there is a maximal chain of subspaces invariant for M that admits only finite-
dimensional gap-quotients.

iid1 Corollary 5.11. Let J be a infinite-dimensional, Lie or Jordan, algebra of opera-
tors on a vector space X. If J contains a non-zero finite rank operator and if J is
strictly almost triangularizable, then J is not simple.

Proof. Similar to the proof of Corollary 4.6. �
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W1 [19] W. Wojtyński, Banach-Lie algebras of compact operators, Studia Math. 59 (1977), 263-273.
Zel [20] E. Zelmanov, Absolute divisors of zero in Jordan pairs and Lie algebras, Matem. Sbornik

112 (1980), 611-629 (in Russian).
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