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Abstract. Let A be a finite dimensional central simple algebra. By the Skolem-Noether theo-
rem, every automorphism of A is inner. We will give a short proof of a somewhat more general
result. The concept behind this proof is the fact that every linear map on A belongs to the
multiplication algebra of A. As an application we will describe linear maps α, β : A → A such
that α(x)β(y) = 0 whenever xy = 0.

1. Introduction

Describing zero product preserving linear maps, i.e., maps α from an algebra A into itself
satisfying “xy = 0 =⇒ α(x)α(y) = 0”, is one of the most studied linear preserver problems.
It has been treated in both analytic and algebraic context. For history we refer the reader to
[1, 7, 8]. Let us just mention that the first algebraic result is apparently due to Wong [13] who, in
particular, described bijective zero product preserving linear maps on finite dimensional simple
algebras that are not division algebras. By Wedderburn’s theorem, such an algebra is isomorphic
to Mn(D), n ≥ 2, the algebra of all n× n matrices over a finite dimensional division algebra D.

The study of a linear preserver problem typically begins on matrix algebras. Later, when the
theory unfolds, extensions to various infinite dimensional algebras take place. In this article we
will revisit the finite dimensional situation of the zero product preserving problem. We will avoid
assuming the bijectivity of our maps. Moreover, we will actually treat a more general condition
where a pair of linear maps α, β satisfies “xy = 0 =⇒ α(x)β(y) = 0”. To the best of our knowledge
this condition has not been studied yet in the literature. Anyhow, the emphasis will be on the
method of proof rather than on the complexity and originality of results. It should be clear to
experts that appropriate versions of some of our results hold in more general rings and algebras.
Our goal, however, is to make the paper accessible to a wider audience, and therefore we shall
stick with the simplest setting.

Our starting point is the fact that every linear map on a finite dimensional central simple
algebra A belongs to the multiplication algebra of A. Although this result is well-known, it is our
impression that it is not always exploited to its full potential. We shall demonstrate its usefulness
in the proof of a theorem describing linear maps ϕ, α, β : A→ A satisfying the functional identity
ϕ(xy) = α(x)β(y) for all x, y ∈ A. As a byproduct we will obtain a simple and short proof
of the classical result, an important special case of the Skolem-Noether theorem, stating that
every automorphism of a finite dimensional central simple algebra is inner. The problem on maps
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satisfying “xy = 0 =⇒ α(x)β(y) = 0” will be reduced to the one concerning ϕ(xy) = α(x)β(y).
In the proof of this reduction we will use the approach based on idempotents, which was initiated
by Chebotar, Ke, Lee and Wong in [8], and further developed in [3, 7, 11].

2. Multiplication algebra

In this section we prove two results, which are both well-known. Anyway, the proofs are short
and will be given for the sake of completness.

Let A be an algebra over a (fixed) field F . For a, b ∈ A we define multiplication maps La, Rb :
A→ A by La(x) = ax, Rb(x) = xb. It is clear that for all a, b ∈ A, λ, µ ∈ F we have

Lab = LaLb, Rab = RbRa,

LaRb = RbLa,

Lλa+µb = λLa + µLb, Rλa+µb = λRa + µRb.

Clearly, La, Rb ∈ EndF (A), the algebra of all linear maps from A into A. The subalgebra M(A) of
EndF (A) generated by all La and Rb, a, b ∈ A, is called the multiplication algebra of A. Elements
in M(A) are also called elementary operators. If A is unital, then every ϕ ∈M(A) can be written
as ϕ =

∑n
i=1 LaiRbi . The elements ai, bi are not unique. However, at least we can always achieve

that the ai’s are linearly independent, and the bi’s are linearly independent. For instance, this
clearly holds if we require that n is minimal possible.

Recall that an algebra A is said to be central if its center consists of scalar multiples of unity.

Theorem 2.1. Let A be a central simple algebra. If ai, bi ∈ A are such that
∑n

i=1 LaiRbi = 0
and the bi’s are linearly independent, then each ai = 0.

Proof. Suppose an 6= 0. We are going to prove by induction on n that this is impossible. As A is
simple, there exist wj , zj ∈ A such that

∑m
j=1wjanzj = 1. Consequently,

0 =
m∑
j=1

Lwj

( n∑
i=1

LaiRbi

)
Lzj =

n∑
i=1

( m∑
j=1

Lwjaizj

)
Rbi =

n∑
i=1

LciRbi

where ci =
∑m

j=1wjaizj . In particular, cn = 1. This shows that n 6= 1, so let n > 1. For every
x ∈ A we have

0 =
( n∑
i=1

LciRbi

)
Lx − Lx

( n∑
i=1

LciRbi

)
=

n−1∑
i=1

Lcix−xciRbi .

The induction assumption implies that cix − xci = 0, and therefore ci ∈ F . Accordingly,∑n
i=1 LciRbi = 0 can be written as Rc1b1+...+cnbn = 0, which contradicts the linear independence

of the bi’s. �

We remark that Theorem 2.1 holds for considerably more general centrally closed prime alge-
bras (cf. [2]). The proof in this more general setting is similar, but somewhat more involved.

In our main results we will consider finite dimensional central simple algebras, i.e., algebras
isomorphic to Mn(D) where D is a finite dimensional central division algebra.

Corollary 2.2. If A is a finite dimensional central simple algebra, then M(A) = EndF (A).

Proof. Let {b1, . . . , bn} be a basis of A. Theorem 2.1 implies that the maps LbiRbj , 1 ≤ i, j ≤ n,

are linearly independent. Therefore the dimension of M(A) is ≥ n2, which is the dimension of
EndF (A). �
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3. A Skolem-Noether type theorem

The condition treated in the next theorem can be viewed as a special functional identity, for
which, however, the general theory [4] does not directly yield any information.

Theorem 3.1. Let A be a finite dimensional central simple algebra. If ϕ, α, β : A→ A are linear
maps such that ϕ 6= 0 and ϕ(xy) = α(x)β(y) for all x, y ∈ A, then there exist u, v, p ∈ A, with p
invertible, such that ϕ(x) = uxv, α(x) = uxp, and β(x) = p−1xv for all x ∈ A.

Proof. By Corollary 2.2 there exist ai, bi ∈ A such that β =
∑n

i=1 LaiRbi . We may require that
the bi’s are linearly independent. Setting ci = α(1)ai we have ϕ = Lα(1)β =

∑n
i=1 LciRbi . Since

ϕ 6= 0, we may assume that c1 6= 0. Now, noticing that our assumption can be written as
ϕLx = Lα(x)β for every x ∈ A, we obtain

∑n
i=1 Lcix−α(x)aiRbi = 0. Theorem 2.1 tells us that, in

particular, c1x − α(x)a1 = 0 for every x ∈ A. Consequently,
(∑

i yiα(xi)
)
a1 =

∑
i yic1xi for all

xi, yi ∈ A. As A is simple we have
∑

i yic1xi = 1 for some xi, yi ∈ A, implying that a1 has a left
inverse. Since A is finite dimensional, this already proves that a1 is invertible. Setting u = c1

and p = a−1
1 we thus have α(x) = uxp, x ∈ A. Since ϕ(x) = α(x)β(1) it follows that ϕ(x) = uxv

where v = pβ(1). Finally, from ϕ(xy) = α(x)β(y) it now readily follows that yv = pβ(y), and
hence β(y) = p−1yv, y ∈ A. �

Corollary 3.2. (Skolem-Noether) Every automorphism of a finite dimensional central simple
algebra A is inner.

This corollary indeed follows easily from the conclusion of Theorem 3.1. On the other hand,
assuming, in this theorem, that ϕ = α = β, the proof can be slightly simplified. Specifically, c1

is then equal to a1, and so the last step of the above proof is redundant.

Remark 3.3. The same method easily yields an analogous theorem stating that every derivation
δ of a finite dimensional central simple algebra A is inner. Indeed, we may write δ =

∑n
i=1 LaiRbi

with bi’s linearly independent and b1 = 1. Using this expression in Lδ(x) = δLx − Lxδ it follows
immediately from Theorem 2.1 that δ(x) = [a1, x].

4. Zero product determined algebras

We say that an algebra A is zero product determined if for every bilinear map B : A×A→ X,
where X is an arbitrary vector space, the following condition is fulfilled: If for all x, y ∈ A, xy = 0
implies B(x, y) = 0, then there is a linear map ϕ : A → X such that B(x, y) = ϕ(xy) for all
x, y ∈ A. Motivated by results from [1] and [6] this concept was introduced in [5], and studied
further in [9, 10, 12].

The next two results can be extracted from the arguments in [8] and [3]. Nevertheless, we will
give complete proofs.

Theorem 4.1. If a unital algebra A is generated by its idempotents, then A is zero product
determined.

Proof. Let B : A × A → X be such that xy = 0 implies B(x, y) = 0. If e = e2 ∈ A, then
xe · (1 − e)y = x(1 − e) · ey = 0. Therefore B(xe, y − ey) = B(x − xe, ey) = 0. That is,
B(xe, y) = B(xe, ey) and B(x, ey) = B(xe, ey). Comparing we get B(xe, y) = B(x, ey). This
means that the set R = {z ∈ A |B(xz, y) = B(x, zy) for all x, y ∈ A} contains all idempotents.
As R is readily a subalgebra of A, it follows that R = A. Therefore B(x, z) = B(xz, 1) = ϕ(xz),
where ϕ(w) = B(w, 1). �
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Corollary 4.2. Let A be a finite dimensional simple algebra. If A is not a division algebra, then
A is zero product determined.

Proof. In view of Wedderburn’s theorem we may assume that A = Mn(D), where D is a division
algebra. Note that n ≥ 2 according to our assumption.

Let eij denote standard matrix units in A. By aeij we denote the matrix whose (i, j) entry is
a ∈ D and other entries are 0. Every matrix in A is a sum of such matrices. If i 6= j, then aeij
can be written as a difference of two idempotents, aeij = (eii + aeij)− eii. From aeii = aeij · eji
with i 6= j we thus see that aeii also lies in the subalgebra generated by idempotents. Therefore
A is generated by idempotents. �

Incidentally, the exclusion of division algebras is certainly necessary. Namely, the condition
“xy = 0 =⇒ B(x, y) = 0” is automatically fulfilled for every bilinear map on a division algebra.

5. A pair of maps determined by zero products

The results from the previous two sections now immediately yield the following theorem.

Theorem 5.1. Let A be a finite dimensional central simple algebra which is not a division algebra.
If linear maps α, β : A→ A are such that xy = 0 implies α(x)β(y) = 0, then either α(A)β(A) = 0
or there exist u, v, p ∈ A, with p invertible, such that α(x) = uxp and β(x) = p−1xv, x ∈ A.

Proof. Define B : A × A → A by B(x, y) = α(x)β(y). According to our assumption, xy = 0
implies B(x, y) = 0. Corollary 4.2 tells us that there is a linear map ϕ : A → A such that
B(x, y) = ϕ(xy), x, y ∈ A. Now apply Theorem 3.1. �

In the classical situation where α = β we easily get the following corollary.

Corollary 5.2. Let A be a finite dimensional central simple algebra which is not a division
algebra. If a linear map α : A → A is such that xy = 0 implies α(x)α(y) = 0, then either
α(A)2 = 0 or there exist an invertible p ∈ A and λ ∈ F such that α(x) = λp−1xp, x ∈ A.

Corollary 5.2 thus states that a zero product preserving linear map is either of a standard form,
i.e., a scalar multiple of an automorphism, or its range has trivial multiplication. This is analogous
to [6, Theorem 4.1] saying that a zero Lie product preserving (=commutativity preserving) linear
map on a finite dimensional central simple algebra (of dimension 6= 4) has either a standard form
of such a preserver, or its range is commutative. This suggests that there might be a more general
phenomena hidden behind these results.
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