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1. Introduction

We say that an algebra A over a field F is zero product determined if for every bilinear map
f : A × A → X, where X is an arbitrary vector space over F , with the property that for all
x, y ∈ A,

(1.1) xy = 0 =⇒ f(x, y) = 0,

there exists a linear map Φ : A→ X such that

(1.2) f(x, y) = Φ(xy) for all x, y ∈ A.

This concept was introduced in [12]. At about the same time, its variation in the functional-
analytic context was introduced in [1], under the (somewhat unfortunately entirely different)
name “a Banach algebra with property B” (see Section 2 for definition). The original moti-
vation for both concepts were problems related to zero product preserving linear maps, but
later several other applications have been found, especially in the Banach algebra theory.

It seems natural to conjecture that an algebra should have plenty of zero divisors in order to
be zero product determined. As nontrivial idempotents are zero divisors, it is perhaps not too
surprising that every algebra which is generated by its idempotents is zero product determined
[10]. Proving this is actually very easy, see below. There are, of course, algebras without any
nontrivial idempotent but with many zero divisors. When asking ourselves about an example
of a zero product determined unital algebra that is not generated by idempotents we realized,
much to our surprise, that none of the papers following [1] and [12] contains such an example,
and, moreover, that we are unable to construct one (although Banach algebras with property
B that have no nontrivial idempotents exist in abundance). We have accordingly changed
the perspective, which led us to prove that every finite dimensional zero product determined
unital algebra is generated by idempotents. This is the main result of the paper. Finding a
counterexample to this statement in infinite dimensions – if there is one, of course – is left as
an open problem.

The main result will be proved in Section 3. Section 2 gives a general elementary intro-
duction to zero product determined algebras and is partially expository; although most of
its results have not been explicitly stated elsewhere, some of them are known to specialists.
Since zero product determined algebras have been studied in quite a few papers since their
introduction in 2009, we believe that it may be useful to gather together all of their basic
properties at one place.

We end the introduction with a terminological convention: by an algebra we will mean an
associative unital algebra over a fixed field F . It should be mentioned that nonassociative zero
product determined algebras have also been studied by several authors, and that some impor-
tant Banach algebras with property B are not unital. In this paper, however, it seems more
relevant to restrict ourselves to associative algebras with unity. Incidentally, the non-unital
situation is really different. For example, an algebra with trivial multiplication (the product
of any elements is 0) is clearly zero product determined, but has no nonzero idempotents.

2. The class of zero product determined algebras

We will start this section by recasting the definition of a zero product determined algebra,
after that study the preservation of the zero product determined property under some standard
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constructions, continue with examples of algebras that are or are not zero product determined,
and finally mention some of the basic applications.

2.1. Alternative definitions. We begin by remarking that (1.2) is equivalent to

(2.1) f(xy, z) = f(x, yz) for all x, y, z ∈ A,

as well as to

(2.2) f(x, y) = f(xy, 1) for all x, y ∈ A.

Indeed, (1.2) clearly implies (2.1), setting z = 1 in (2.1) we see that (2.1) implies (2.2), and
(2.2) obviously implies (1.2). In the sequel we will use (2.1) or (2.2) instead of (1.2) without
comment. Let us also point an important special case of (2.2):

(2.3) f(1, y) = f(y, 1) for all y ∈ A.

The role of the space X in the definition of a zero product determined algebra is entirely
formal, in fact it can be replaced by F . Namely, if (1.1) implies (2.1) for bilinear maps
into F and f : A × A → X satisfies (1.1) with X an arbitrary space, then by composing f
by an arbitrary linear functional α on X we conclude that α(f(xy, z)) = α(f(x, yz)) for all
x, y, z ∈ A, which of course yields (2.1).

The definition of property B for Banach algebras is based on identity (2.1): A Banach
algebra A is said to have property B if for every continuous bilinear map f : A × A → X,
where X is an arbitrary Banach space, (1.1) implies (2.1). The class of Banach algebras with
property B turns out to be quite large, in particular it includes C∗-algebras and group algebras
of arbitrary locally compact groups. The continuity of f thus plays an important role for many
of these algebras are not zero product determined [6].

The following simple proposition was used as an essential tool in the seminal paper [12].
We remark that it obviously holds also for nonassociative algebras.

Proposition 2.1. An algebra A is zero product determined if and only if for every bilinear
map f : A×A→ X, where X is an arbitrary vector space, (1.1) implies that

∑
i f(xi, yi) = 0

whenever
∑

i xiyi = 0.

Proof. The “only if” part is clear. To prove the “if” part, note that if f : A × A → X is a
bilinear map such that

∑
i f(xi, yi) = 0 whenever

∑
i xiyi = 0, then

Φ
(∑

i

xiyi

)
:=
∑
i

f(xi, yi)

gives a well-defined linear map from A into X which obviously satisfies (1.2). �

Let us introduce some notation. By Ao we denote the opposite algebra of the algebra A,
i.e., Ao is the vector space A endowed with multiplication x ·y = yx where yx is the product of
y and x in A. We will deal with A⊗Ao, the tensor product of algebras A and Ao, which is of
course a standard setting for studying the algebra A. For a subset S of an algebra we denote by
spanS the linear span of S. The next characterization of zero product determined algebras is
also very simple, but, to the best of our knowledge, new (apparently similar characterizations
in [15] and [21] also based on tensor products are somewhat different).



4 MATEJ BREŠAR

Proposition 2.2. An algebra A is zero product determined if and only if

y ⊗ 1− 1⊗ y ∈ span{u⊗ v ∈ A⊗Ao |uv = 0}

for every y ∈ A.

Proof. Note that Z := span{u⊗ v ∈ A⊗Ao |uv = 0} is a left ideal of A⊗Ao. Thus, assuming
that y ⊗ 1− 1⊗ y ∈ Z for all y ∈ A we also have

xy ⊗ 1− x⊗ y = (x⊗ 1)(y ⊗ 1− 1⊗ y) ∈ Z

for all x, y ∈ A. Take a bilinear map f : A×A→ X satisfying (1.1). The linear map β : A⊗
Ao → X given by β(x⊗y) = f(x, y) then vanishes on Z, hence it satisfies β(xy⊗1−x⊗y) = 0
for all x, y ∈ A, meaning that (2.2) holds. Thus A is zero product determined.

To prove the converse, assume that there exists a ∈ A such that a⊗ 1− 1⊗ a /∈ Z. Take a
linear functional α on A⊗Ao such that α(a⊗ 1− 1⊗ a) 6= 0 and α(Z) = {0}. A bilinear map
f : A×A→ F given by f(x, y) = α(x⊗y) thus satisfies (1.1) but not (2.3) for f(a, 1) 6= f(1, a).
Hence A is not zero product determined. �

For simple rings viewed as algebras over their centers, and, more generally, for centrally
closed prime algebras, Proposition 2.2 can be reformulated in terms of inner derivations. Recall
that an inner derivation on the algebra A is a map of the form d = Ly − Ry for some y ∈ A,
where Ly, Ry : A → A are defined by Ly(x) = yx and Ry(x) = xy. For an introduction to
centrally closed prime algebras see, for example, [11, Section 7.5].

Corollary 2.3. A necessary condition for an algebra A to be zero product determined is that
every inner derivation d of A can be written as d =

∑
i LuiRvi where uivi = 0. If A is a

centrally closed prime algebra, then this condition is also sufficient.

Proof. The map x⊗ y 7→ LxRy is an algebra homomorphism from A⊗ Ao onto the multipli-
cation algebra of A (i.e., the algebra of linear operators of A generated by all Lx and Ry),
which is an isomorphism if A is prime and centrally closed [11, Theorem 7.44]. The desired
conclusion thus readily follows from Proposition 2.2. �

The notion of a zero product determined algebra has turned out to be applicable to some
problems concerning derivations [1, 4, 8, 20]. We now see that it is naturally connected to
derivations.

2.2. Stability under some algebra constructions. The next four propositions are alge-
braic versions of results concerning Banach algebras with property B from [1].

Proposition 2.4. A homomorphic image of a zero product determined algebra is a zero prod-
uct determined algebra.

Proof. Let ϕ : A → B be a surjective algebra homomorphism. If A satisfies the condition of
Proposition 2.2, then we see by making use of the homomorphism ϕ⊗ ϕ that so does B. �

The following simple result was already observed in some other papers.

Proposition 2.5. Algebras A1, . . . , An are zero product determined if and only if their direct
product A1 × · · · ×An is zero product determined.
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Proof. The “if” part follows from Proposition 2.4. For proving the “only if” part it is enough
to consider the case where n = 2. Thus, let A1 and A2 be zero product determined, set
A := A1 × A2, and take a bilinear map f : A × A → X satisfying (1.1). Then in particular
f((x1, 0), (y1, 0)) = 0 whenever x1y1 = 0, implying that

f
(
(x1, 0), (y1, 0)

)
= f

(
(x1y1, 0), (1, 0)

)
for all x1, y1 ∈ A1.

Similarly,

f
(
(0, x2), (0, y2)

)
= f

(
(0, x2y2), (0, 1)

)
for all x2, y2 ∈ A2.

Since (1.1) obviously implies

f
(
(x1, 0), (0, y2)

)
= f

(
(0, x2), (y1, 0)

)
= f

(
(x1y1, 0), (0, 1)

)
= f

(
(0, x2y2), (1, 0)

)
= 0,

we see that f satisfies (2.2). �

Proposition 2.12 below shows that Proposition 2.5 cannot be extended to the direct product
of an infinite family of algebras.

Proposition 2.6. The tensor product of two zero product determined algebras is a zero product
determined algebra.

Proof. Let A1, A2 be zero product determined, and set A := A1 ⊗A2. Let f : A×A→ X be
a bilinear map satisfying (1.1). Take any pair x2, y2 ∈ A2 and consider the map (x1, y1) 7→
f(x1 ⊗ x2, y1 ⊗ y2). Since A1 is zero product determined it follows that

f(x1 ⊗ x2, y1 ⊗ y2) = f(x1y1 ⊗ x2, 1⊗ y2).

Similarly we see that

f(x1 ⊗ x2, y1 ⊗ y2) = f(x1 ⊗ x2y2, y1 ⊗ 1).

Since these two identities hold for arbitrary x1, y1 ∈ A1, x2, y2 ∈ A2, it follows that

f(x1⊗x2, y1⊗y2) = f(x1y1⊗x2, 1⊗y2) = f(x1y1⊗x2y2, 1⊗1) = f((x1⊗x2)(y1⊗y2), 1⊗1),

which implies (2.2). �

On the other hand, the assumption that A1⊗A2 is zero product determined does not imply
that A1 and A2 are zero product determined. For example, the algebra A⊗M2(F ) ∼= M2(A)
is zero product determined even if A is not – see Proposition 2.18 below. This also shows that
a subalgebra of a zero product determined algebra may not be zero product determined. In
fact, even a corner algebra eAe is not always zero product determined if A is. However, there
is something we can say about ideals of zero product determined algebras.

Proposition 2.7. Let I be an ideal of a zero product determined algebra A. If f is a bilinear
map from I × I into a vector space X such that f(s, t) = 0 whenever st = 0, then f(sy, t) =
f(s, yt) for all s, t ∈ I and y ∈ A.

Proof. Pick s, t ∈ I and consider the map (x, y) 7→ f(sx, yt) from A×A into X. As A is zero
product determined it follows that f(sx, yt) = f(sxy, t) for all x, y ∈ A. Setting x = 1 we get
the desired conclusion. �
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2.3. Some examples and non-examples. Let us first recall an elementary fact on tensor
products which will be used repeatedly in this subsection: If

∑
i ai ⊗ bi =

∑
j cj ⊗ dj and the

ai’s are linearly independent, then each bi lies in the linear span of the dj ’s (see, e.g., [11,
Lemma 4.9]).

Algebras that are of interest to us in this paper should of course have zero divisors. Never-
theless, the following straightforward observation deserves to be recorded.

Proposition 2.8. If a zero product determined algebra A is a domain, then A = F .

Proof. Proposition 2.2 shows that y ⊗ 1 = 1 ⊗ y for every y ∈ A, implying that y is a scalar
multiple of 1. �

We also record the following slightly more general result.

Proposition 2.9. If A is a zero product determined algebra different from F , then every
element in A is a sum of right (resp. left) zero divisors.

Proof. It is enough to show that 1 is a sum of right zero divisors. By Corollary 2.8 we can
pick a right zero divisor y ∈ A. Proposition 2.2 tells us that there exist ui, vi ∈ A such that
y ⊗ 1 = 1 ⊗ y +

∑n
i=1 ui ⊗ vi and uivi = 0. Hence 1 is a linear combination of y, v1, . . . , vn,

which readily yields the desired conclusion. �

We continue with a simple application of this proposition, which will be used in the proof
of the main theorem.

Proposition 2.10. If the Jacobson radical of the algebra A has codimension 1 in A and is
nonzero, then A is not zero product determined.

Proof. Every element in A can be written as λ + r where λ ∈ F and r is from the Jacobson
radical R. If λ 6= 0 then this element is invertible, so only elements from R can be left or right
zero divisors. Hence A is not zero product determined by Proposition 2.9. �

The next proposition is similar, but the proof is different.

Proposition 2.11. If an algebra A has an ideal I of codimension 1 such that I2 6= I, then A
is not zero product determined.

Proof. We have A = F ⊕ I. Define f : A × A → A/I2 by f(λ + s, µ + t) = λt + I2 where
λ, µ ∈ F , s, t ∈ I. One immediately checks that f satisfies (1.1). Since f(1, t) = t+ I2 6= 0 for
t ∈ I \ I2, while f(t, 1) = 0, f does not satisfy (2.3). �

Each of the last two propositions shows that the algebra obtained by adjoining a unity to
an algebra with trivial multiplication is not zero product determined. This indicates that the
abundance of zero divisors is not sufficient for an algebra to be zero product determined.

The mere existence of an ideal of codimension 1 in A is not enough to conclude that A is
not zero product determined. For example, the direct product F × · · · × F of finitely many
copies of F is zero product determined by Proposition 2.5, but has ideals of codimension 1.
The situation is different if we take infinitely many copies of F , as the next proposition shows.
The idea of the proof is taken from [6].

Proposition 2.12. If F is an infinite field, then the direct product F × F × . . . of countably
infinitely many copies of F is not zero product determined.
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Proof. Set A := F × F × . . . . Since F is infinite, there exists y = (η1, η2, . . . ) ∈ A such that
ηi 6= ηj for all i 6= j. Suppose A is zero product determined. By Proposition 2.2 we then have

y ⊗ 1− 1⊗ y =
n∑

k=1

uk ⊗ vk

for some uk, vk ∈ A such that ukvk = 0. Let us write Uk (resp. Vk) for the set of all indices
i ∈ N such that the i-th term of uk (resp. vk) is 0. Note that uuvk = 0 implies Uk ∪ Vk = N.
Hence

N = (U1 ∪ V1) ∩ (U2 ∪ V2) ∩ · · · ∩ (Un ∪ Vn),

which can be rewritten as

N =
(
U1 ∩ · · · ∩ Un

)
∪
(
U1 ∩ · · · ∩ Un−1 ∩ Vn

)
∪ · · · ∪

(
V1 ∩ · · · ∩ Vn

)
.

Therefore at least one of the sets U1 ∩ · · · ∩ Un, U1 ∩ · · · ∩ Un−1 ∩ Vn, etc., is infinite. Let
W1 ∩ · · · ∩Wn, Wk ∈ {Uk, Vk}, be such a set. Denote by I the ideal of A consisting of all
(ξ1, ξ2, . . . ) such that ξi = 0 whenever i ∈ W1 ∩ · · · ∩Wn. Note that for each k either uk ∈ I
or vk ∈ I. Therefore y ⊗ 1 − 1 ⊗ y ∈ I ⊗ A + A ⊗ I, so there exist si, tj ∈ I and zi, wj ∈ A
such that

(2.4) y ⊗ 1− 1⊗ y +
m∑
i=1

si ⊗ zi =
n∑

j=1

wj ⊗ tj .

We may assume that s1, . . . , sm are linearly independent. If y, 1, s1, . . . , sm were linearly
dependent then I would contain a nonzero element in span{y, 1}. But this is impossible for
all the terms of such an element are different from each other. Hence y, 1, s1, . . . , sm are
linearly independent and so we infer from (2.4) that 1 ∈ span{t1, . . . , tn} ⊆ I, which is a
contradiction. �

As already mentioned, Proposition 2.12 shows that Proposition 2.5 does not hold for infinite
families of algebras. On the other hand, this proposition together with its proof gives some
evidence that constructing zero product determined algebras different from those described in
the sequel may not be an easy task.

Let us turn to positive examples. We begin with two elementary lemmas. The first one is
basically known, see [10, Theorem 4.1]; we remark that the idea of the proof can be traced
back to [18].

Lemma 2.13. Let A be an algebra and X be a vector space. If a bilinear map f : A×A→ X
satisfies (1.1), then the set

{s ∈ A | f(xs, y) = f(x, sy) for all x, y ∈ A}

is a subalgebra of A which contains all idempotents in A.

Proof. One immediately checks that this set is a subalgebra. Given an idempotent e ∈ A we
infer from xe · (1− e)y = 0 and x(1− e) · ey = 0 that f(xe, y− ey) = 0 and f(x− xe, ey) = 0,
and hence f(xe, y) = f(xe, ey) = f(x, ey). �

With Proposition 2.2 in mind we now prove a similar lemma in the setting of tensor products.
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Lemma 2.14. Let A be an algebra and let Z := span{u⊗ v ∈ A⊗Ao |uv = 0}. The set

{s ∈ A | s⊗ 1− 1⊗ s ∈ Z}
is a subalgebra of A which contains all idempotents in A.

Proof. From the identity

(s⊗ 1)(t⊗ 1− 1⊗ t) + (1⊗ t)(s⊗ 1− 1⊗ s) = st⊗ 1− 1⊗ st
and the fact that Z is a left ideal of A it follows that this set is a subalgebra. If e ∈ A is an
idempotent, then e⊗ 1− 1⊗ e = e⊗ (1− e)− (1− e)⊗ e ∈ Z. �

Remark 2.15. Consider the following condition for an element a in an algebra A:

(?) There exist linearly independent u1, u2 ∈ A and linearly independent v1, v2 ∈ A such
that a⊗ 1− 1⊗ a = u1 ⊗ v1 + u2 ⊗ v2 and u1v1 = u2v2 = 0.

From the end of the proof of Lemma 2.14 it is evident that every nontrivial idempotent e
(i.e., an idempotent different from 0 and 1) satisfies (?). Note that the same is true for every
element of the form

(??) a = λ1 + µe where λ, µ ∈ F , µ 6= 0, and e is a nontrivial idempotent.

Thus, (??) implies (?). Let us show that the converse is also true. Assume that (?) holds.
Note that in this case each uk, vk lies in span{1, a}.Thus there exist λ, µ, ω, τ ∈ F such that
u1 = λ1 + µa and v1 = ω1 + τa. Since u1v1 = 0 and u1 6= 0, v1 6= 0, it follows that µ 6= 0
and τ 6= 0. A simple computation shows that this implies (??), unless u1 and v1 are linearly
dependent so that u2

1 = 0. Similarly examining u2 and v2 we see that it remains to consider
the situation where u2

1 = u2
2 = 0 and u1, u2 ∈ span{1, a}. But this easily implies that u1 and

u2 are linearly dependent, contrary to the assumption. Thus (??) holds.
An algebra thus contains a nontrivial idempotent if and only if it contains an element a

satisfying (?). This observation is perhaps of some interest in its own right; on the other hand,
it could be of some use in further investigations of zero product determined algebras.

Note that each of Lemmas 2.13 and 2.14 immediately yields the following fundamental
result.

Proposition 2.16. An algebra generated by idempotents is zero product determined.

Remark 2.17. If the field F is finite, then every element in F ×F × . . . is a linear combination
of idempotents. The assumption in Proposition 2.12 that F must be infinite is thus really
necessary.

The next proposition points out the case of special interest for us in light of our goal in the
next section. As usual, by Mn(B) we denote the algebra of all n × n matrices with entries
from the algebra B.

Proposition 2.18. The matrix algebra Mn(B) is generated by idempotents, and is therefore
zero product determined, for every algebra B and every n ≥ 2.

Proof. Let eij denote matrix units in A := Mn(B). By beij we denote the matrix whose (i, j)
entry is b ∈ B and all other entries are 0. If i 6= j, then beij is a difference of two idempotents:
beij = (eii + beij) − eii. From beii = beij · eji with i 6= j it thus follows that beii lies in the
subalgebra generated by idempotents. Since A is linearly spanned by matrices of the form
beij this proves that A is generated by idempotents. �
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The fact that Mn(B) is zero product determined was first proved in [12], but with a different,
somewhat longer proof.

We conclude with a simple but indicative example.

Example 2.19. The algebra Tn(F ) of all upper triangular matrices with entries in F is easily
seen to be linearly spanned by idempotents (cf. the preceding proof), and is therefore zero
product determined. However, its subalgebra consisting of matrices in which all diagonal
entries are equal is not zero product determined by Proposition 2.10 (or Proposition 2.11).

2.4. A word on applications. The purpose of this section is to give some evidence about
the applicability of the notion of a zero product determined algebra. We start with linear
maps preserving zero product, i.e., maps ϕ between algebras with the property that xy = 0
implies ϕ(x)ϕ(y) = 0. The study of such maps has a long and rich history, see [1, 18] for
details.

Proposition 2.20. Let ϕ be a linear zero product preserving map from an algebra A into an
algebra B. If A zero product determined and ϕ(1) = 1, then ϕ is a homomorphism.

Proof. The map f(x, y) = ϕ(x)ϕ(y) satisfies (1.1), and hence (2.2), i.e., ϕ(x)ϕ(y) = ϕ(xy). �

This proposition gives only a basic idea on what results can be obtained. The problem
becomes interesting if we do not assume ϕ(1) = 1, see [1, 17, 18, 31]. Let us also mention
that one can similarly characterize derivations and related maps, see [8] and references given
therein.

To the best of our knowledge, the problem whether (1.1) implies (1.2) for bilinear maps was
first studied in [13], but with respect to the Lie product, not the ordinary product. The result
obtained has turned out to be crucial for obtaining a definitive description of commutativity
preserving (= zero Lie product preserving) linear maps on finite dimensional central simple
algebras. Zero product determined algebras have been accordingly extensively studied in Lie
and also Jordan algebras [12, 22, 23, 24, 32]. We do not want to enter the area of general
nonassociative algebras in this paper. Our next result, however, concerns the Jordan product
in (associative) zero product determined algebras. Its proof is an adaptation of the proof of
[2, Theorem 1.2].

Proposition 2.21. Let A be a zero product determined algebra and X be a vector space. If a
symmetric bilinear map f : A×A→ X is such that for all x, y ∈ A,

xy = yx = 0 =⇒ f(x, y) = 0,

then 2f(x, y) = f(xy + yx, 1) for all x, y ∈ A.

Proof. Take z, w ∈ A such that zw = 0. Define fz,w : A × A → X by fz,w(x, y) = f(wx, yz).
Note that xy = 0 implies fz,w(x, y) = 0. Therefore fz,w satisfies fz,w(x, y) = fz,w(xy, 1) for
all x, y ∈ A. That is, f(wx, yz) = f(wxy, z) holds whenever zw = 0. We may now use the
assumption that A is zero product determined for the map (z, w) 7→ f(wx, yz) − f(wxy, z),
which results in

f(wx, yz)− f(wxy, z) = f(x, yzw)− f(xy, zw)

for all x, y, z, w ∈ A. Setting x = z = 1 we get the desired conclusion. �
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Without assuming that f is symmetric the problem is much more complicated and solutions
are known only in some special cases [3, 27]; see also an application of [3] to a problem with
a different origin [26].

Recall that a linear map ϕ from an algebra A into an algebra B is called a Jordan homo-
morphism if ϕ(xy + yx) = ϕ(x)ϕ(y) + ϕ(y)ϕ(x) for all x, y ∈ A.

Corollary 2.22. Let A and B be algebras over a field F with characteristic different from 2,
and let ϕ : A → B be a linear map such that ϕ(x)ϕ(y) = 0 whenever x, y ∈ A satisfy xy =
yx = 0. If A is zero product determined and ϕ(1) = 1, then ϕ is a Jordan homomorphism.

Proof. Apply Proposition 2.21 for the map (x, y) 7→ ϕ(x)ϕ(y) + ϕ(y)ϕ(x). �

The next result is of a different nature.

Proposition 2.23. Every commutator in a zero product determined algebra is a sum of square-
zero elements.

Proof. Let N := span{a ∈ A | a2 = 0}. Note that xy = 0 implies (yx)2 = 0. Accordingly,
the map f : A × A → A/N , f(x, y) = yx + N satisfies (1.1). Hence f(x, y) = f(xy, 1) for all
x, y ∈ A, meaning that [x, y] ∈ N . �

The paper [6] contains a more thorough analysis of the problem of expressing commutators
as sums of square-zero elements, based on property B and zero product determined algebras.
For some comments on the history of this problem we refer to the paper [19] in which the
authors proved Proposition 2.23 for simple rings containing a nontrivial idempotent (such
rings are necessarily generated by idempotents, see Remark 3.2 below), and gave an answer to
an old problem of Herstein by showing that there exists a simple ring which is not a domain
and in which not every commutator is a sum of square-zero elements. Thus, this also shows
that there exist simple rings with zero divisors that are not zero product determined.

This was just to give some justification that the concept of a zero product determined
algebra can be useful. More (and not so straightforward) applications can be found in the
papers cited. We also remark that the related property B has some somewhat surprising
applications to problems of different kinds [1, 2, 4, 5, 7, 14, 16, 29, 30].

3. Finite dimensional zero product determined algebras

In the first subsection we will state auxiliary results needed in the proof of the main result,
and the second subsection is devoted to this proof.

3.1. Tools. The following lemma was implicitly proved by Herstein [25], and is explicitly
stated (for rings) in [9] as Lemma 2.1. We will give a proof since it is very short.

Lemma 3.1. The subalgebra generated by all idempotents in an algebra A contains the ideal
generated by all commutators of idempotents in A with arbitrary elements in A.

Proof. If e is an idempotent, then so are e+ ex(1− e) and e+ (1− e)xe for every x ∈ A. Their
difference is the commutator [e, x]. Noticing that

(3.1) z[e, x]w = [e, z[e, [e, x]]w]− [e, z][e, [e, x]w]− [e, z[e, x]][e, w] + 2[e, z][e, x][e, w]

for all z, w ∈ A it thus follows that the ideal generated by [e, x] is contained in the subalgebra
generated by idempotents. �
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Although elementary, this proof is perhaps intuitively unclear. One actually naturally
derives (3.1) by considering Lie ideals [25].

Remark 3.2. Note that a nontrivial idempotent in a simple algebra A cannot be central.
Lemma 3.1 thus shows that the existence of a nontrivial idempotent in A already implies that
A is generated by idempotents.

The second tool is lifting idempotents modulo ideals in finite dimensional algebras.

Lemma 3.3. Let I be an ideal of a finite dimensional algebra A. Every idempotent in the
factor algebra A/I is of the form e+ I where e is an idempotent in A.

The classical version of this lemma concerns nil ideals in arbitary algebras (or rings). How-
ever, in the class of exchange rings [28], which includes finite dimensional algebras as special
examples, idempotents can be lifted modulo every ideal. The author is thankful to Janez Šter
for pointing out this fact to him.

The only remaining tool that we need is the classical Wedderburn’s structure theory.

3.2. Main result. Let A now denote a finite dimensional zero product determined algebra.
By R we denote its (Jacobson) radical, i.e., its unique maximal nilpotent ideal.

Lemma 3.4. If A is semisimple, then

A ∼= Mn1(D1)× · · · ×Mnr(Dr)× F × · · · × F

where Di are division algebras and each ni ≥ 2. Accordingly, A is generated by idempotents.

Proof. The classical Wedderburn’s theorem tells us that A is isomorphic to the direct product
of algebras of the form Mn(D) with D a division algebra and n ≥ 1. Each of these algebras
is also zero product determined by Proposition 2.5. If n = 1 then D = F by Proposition 2.8.
From Proposition 2.18 we see that A is generated by idempotents. �

Lemma 3.5. If A has no nontrivial idempotents, then A = F .

Proof. Lemma 3.3 implies that A/R also does not have nontrivial idempotents. Since A/R is
semisimple and, by Proposition 2.4, zero product determined, we infer from Lemma 3.4 that
A/R = F . Each of Propositions 2.10 and 2.11 now implies that R = 0, and hence A = F . �

Lemma 3.6. If every idempotent in A is central, then A ∼= F × · · · × F .

Proof. We claim that A ∼= A1×· · ·×Ar where each Ai has no nontrivial idempotents. The proof
is a straightforward induction on n := [A : F ]. The n = 1 case is trivial. Let n > 1. We may
assume that A has a nontrivial idempotent e. Since e is central, eA and (1− e)A are algebras
of smaller dimension than A and they both satisfy the condition that their idempotents are
central. We may now use the induction assumption for eA and (1− e)A, which clearly implies
the desired conclusion for A = eA⊕ (1− e)A. As A is zero product determined, so is each Ai

by Lemma 2.5. Lemma 3.5 now tells us that Ai = F . �

Theorem 3.7. A finite dimensional algebra is zero product determined if and only if it is
generated by idempotents.
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Proof. Of course, we only have to prove the “only if” part. Assume thus that A is zero product
determined. Let us denote by I the ideal generated by all commutators of idempotents with
arbitrary elements in A. Lemma 3.3 tells us that an idempotent in A/I can be written as
e + I with e an idempotent in A. Since [e,A] ⊆ I it follows that every idempotent in A/I is
central. As A/I is zero product determined by Proposition 2.4 we infer from Lemma 3.6 that
A/I ∼= F ×· · ·×F . In particular, A/I is a semisimple algebra. Since (I+R)/I is its nilpotent
ideal we must have I + R = I, i.e., R ⊆ I. Lemma 3.1 thus implies that R is contained in
the subalgebra generated by all idempotents, which we denote by E. We have to show that
actually A = E. Given a ∈ A we have that a+R ∈ A/R is a linear combination of products of
idempotents in A/R by Proposition 2.4 and Lemma 3.4. From Lemma 3.3 we thus infer that
there exists u ∈ E such that a−u ∈ R. Since R ⊆ E the desired conclusion a ∈ E follows. �

Remark 3.8. We may replace “finite dimensional” by “artinian” in the statement of Theorem
3.7. The proof is basically the same, only the simple argument in the proof of Lemma 3.6 must
be replaced by the well-known fact that an artinian ring can be written as a direct product of
a finite number of indecomposable rings. We have decided to work in a narrower class of finite
dimensional algebra in order to make the paper more easily accessible to a wide audience.

Concluding remarks. The work on this paper begun by an attempt to find new examples of
zero product determined algebras, but eventually resulted in an unexpected characterization of
finite dimensional algebras that are generated by idempotents. The initial problem of finding
new examples remains entirely open – this paper only shows where not to look for them. A
new problem that now arises is finding other classes of algebras for which the characterization
from Theorem 3.7 holds.
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