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ZERO PRODUCT DETERMINED MATRIX ALGEBRAS

MATEJ BREŠAR, MATEJA GRAŠIČ, JUANA SÁNCHEZ ORTEGA

Abstract. Let A be an algebra over a commutative unital ring C. We say that A is zero
product determined if for every C-module X and every bilinear map {. , . } : A×A→ X the
following holds: if {x, y} = 0 whenever xy = 0, then there exists a linear operator T such
that {x, y} = T (xy) for all x, y ∈ A. If we replace in this definition the ordinary product
by the Lie (resp. Jordan) product, then we say that A is zero Lie (resp. Jordan) product
determined. We show that the matrix algebra Mn(B), n ≥ 2, where B is any unital algebra,
is always zero product determined, and under some technical restrictions it is also zero Jordan
product determined. The bulk of the paper is devoted to the problem whether Mn(B) is zero
Lie product determined. We show that this does not hold true for all unital algebras B.
However, if B is zero Lie product determined, then so is Mn(B).

1. Introduction

Let C be a (fixed) commutative unital ring, and let A be an algebra over C. By A2 we
denote the C-linear span of all elements of the form xy where x, y ∈ A. Let X be a C-module
and let {. , . } : A×A→ X be a C-bilinear map. Consider the following conditions:

(a) for all x, y ∈ A such that xy = 0 we have {x, y} = 0;
(b) there exists a C-linear map T : A2 → X such that {x, y} = T (xy) for all x, y ∈ A.

Trivially, (b) implies (a). We shall say that A is a zero product determined algebra if for every
C-module X and every C-bilinear map {. , . } : A×A→ X, (a) implies (b).

So far A could be any nonassociative algebra. Assume now that A is associative. Recall
that A becomes a Lie algebra, usually denoted by A−, if we replace the original product by the
so-called Lie product given by [x, y] = xy−yx. Similarly, A becomes a Jordan algebra, denoted
by A+, by replacing the original product by the Jordan product given by x ◦ y = xy+ yx. We
shall say that A is a zero Lie product determined algebra if A− is a zero product determined
algebra. That is to say, for every C-bilinear map {. , . } : A × A → X, where X is any C-
module, we have that {. , . } must be of the form {x, y} = T ([x, y]) for some C-linear map
T : [A,A] → X provided that [x, y] = 0 implies {x, y} = 0. Analogously, we shall say that A
is a zero Jordan product determined algebra if A+ is a zero product determined algebra (that
is, {. , . } must be of the form {x, y} = T (x ◦ y) in case x ◦ y = 0 implies {x, y} = 0).

There are various reasons for introducing these concepts. We shall not discuss all of them in
this rather short paper; we refer the reader to [1] where one can find a variety of applications
of the fact that certain Banach algebras are zero product determined (note, however, that the
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terminology and the setting in [1] are somewhat different than in the present paper). Let us
mention only one motivation which can be most easily explained. This is the connection to the
thoroughly studied problems of describing zero (associative, Lie, Jordan) product preserving
linear maps. We say that a linear map S from an algebra A into an algebra B preserves zero
products if for all x, y ∈ A, xy = 0 implies S(x)S(y) = 0. The standard goal is to show
that, roughly speaking, S is “close” to a homomorphism. Defining {. , . } : A × A → B by
{x, y} = S(x)S(y) we see that {. , . } satisfies (a); now if A is zero product determined, then
it follows that S(x)S(y) = T (xy) for some linear map T , which brings us quite close to our
goal (for example, if we further assume that A and B are unital and S(1) = 1, then it follows
immediately that S = T is a homomorphism; without this assumption the problem remains
nontrivial). Similar remarks can be stated for zero Lie product preserving maps (also known
as commutativity preserving maps) and zero Jordan product preserving maps. The approach
that we have just outlined was used in recent papers [1] (for zero product preservers) and [3]
(for zero Lie product preservers).

The goal of this paper is to examine whether the algebra Mn(B) of n × n matrices over a
unital algebra B is zero (Lie, Jordan) product determined. In Section 2 we show that for the
ordinary product the answer is “yes” for every algebra B and every n ≥ 2, and in Section 3
we show the same for the Jordan product - however, for n ≥ 3 and additionally assuming that
B contains the element 1

2 (i.e., 2 is invertible in B). The Lie product case, treated in Section
4, is more entangled. We show that Mn(B) is zero Lie product determined provided that B
is such as well, and thereby extend [3, Theorem 2.1]. On the other hand, we give an example
justifying imposing some assumption on B.

We conclude the introduction by recording two general remarks about the problem of show-
ing that a bilinear map {. , . } : A×A→ X satisfies (b). Firstly, it is clear that the only possible
way of defining T : A2 → X is given by T (

∑
t xtyt) =

∑
t{xt, yt}. The problem, however, is

to show that T is well-defined. Accordingly, (b) is equivalent to the condition
(b’) if xt, yt ∈ A, t = 1, . . . ,m, are such that

∑m
t=1 xtyt = 0, then

∑m
t=1{xt, yt} = 0.

Secondly, if A is a unital algebra, then (b) is equivalent to

(b”) if xt, yt ∈ A, t = 1, 2, are such that
∑2

t=1 xtyt = 0, then
∑2

t=1{xt, yt} = 0.
Indeed, if (b”) is fulfilled, then we infer from x · y − xy · 1 = 0 that {x, y} − {xy, 1} = 0.
Thus {x, y} = T (xy) where T : A2 → X is defined by T (z) = {z, 1}. Incidentally, Lemma 4.5
below shows that the assumption that A is unital cannot be omitted. This lemma actually
considers the case when A is a Lie algebra. Let us point out that the two remarks above
hold for algebras that may be nonassociative. In what follows, however, by an algebra we will
always mean an associative algebra.

2. Zero (associative) product determined matrix algebras

Throughout the paper we will consider the matrix algebraMn(B) whereB is a unital algebra
(associative, but not necessarily commutative). As usual, a matrix unit will be denoted by
eij . By beij , where b ∈ B, we denote the matrix whose (i, j) entry is b and all other entries
are 0.

Theorem 2.1. If B is a unital algebra, then Mn(B) is a zero product determined algebra for
every n ≥ 2.



ZERO PRODUCT DETERMINED MATRIX ALGEBRAS 3

Proof. Set A = Mn(B). Let X be a C-module and let {. , . } : A× A→ X be a bilinear map
such that for all x, y ∈ A, xy = 0 implies {x, y} = 0. Throughout the proof, a and b will
denote arbitrary elements in B and i, j, k, l will denote arbitrary indices.

We begin by noticing that

(1) {aeij , bekl} = 0 if j 6= k,

since aeij bekl = 0. Further, we claim that

(2) {aeij , bejl} = {ab eik, ekl} if j 6= k.

Indeed, as k 6= j we have (aeij +ab eik)(bejl−ekl) = 0, which implies {aeij +ab eik, bejl−ekl} =
0. Apply (1) and (2) follows.

Replacing a by ab and b by 1 in (2) we get

(3) {abeij , ejl} = {ab eik, ekl}.

Together with (2) this yields

(4) {aeij , bejl} = {ab eij , ejl}.

Let xt, yt ∈ A be such that
∑m

t=1 xt yt = 0, and let us show that
∑m

t=1{xt, yt} = 0 (as
pointed out above, we could assume that m = 2, but this does not simplify our proof).
Writing

xt =
n∑

i=1

n∑
j=1

at
ij eij and yt =

n∑
k=1

n∑
l=1

btkl ekl

it follows, by examining the (i, l) entry of xtyt, that for all i and l we have

(5)
m∑

t=1

n∑
j=1

at
ij b

t
jl = 0.

Note that
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

{at
ij eij , b

t
kl ekl}.

By (1) this summation reduces to
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

n∑
l=1

{at
ij eij , b

t
jl ejl}.

Using first (4) and then (3) we see that

{at
ij eij , b

t
jl ejl} = {at

ijb
t
jl eij , ejl} = {at

ijb
t
jl ei1, e1l}.

Therefore
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

n∑
l=1

{at
ijb

t
jl ei1, e1l} =

n∑
i=1

n∑
l=1

(
m∑

t=1

n∑
j=1

at
ijb

t
jl

)
ei1, e1l

 = 0

by (5). �
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3. Zero Jordan product determined matrix algebras

In the recent paper [4] Chebotar et al. considered zero Jordan product preserving maps on
matrix algebras. Fortunately, some arguments from this paper are almost directly applicable
to the more general situation treated in the present paper. The proof of the next theorem is
to a large extent just a straightforward modification of the proof of [4, Theorem 2.2] (see also
[2, Lemma 7.19]). There is one problem, however, which we have to face: unlike in [4], where
the map {x, y} = S(x) ◦ S(y) is studied, we cannot assume in advance that our map {. , . }
treated below is symmetric (in the sense that {x, y} = {y, x} for all x and y). Because of this
our proof is somewhat more involved than the one of [4, Theorem 2.2].

Theorem 3.1. If B is a unital algebra containing the element 1
2 , then Mn(B) is a zero Jordan

product determined algebra for every n ≥ 3.

Proof. Let A = Mn(B), let X be a C-module, and let {. , . } : A × A → X be a bilinear map
such that for all x, y ∈ A, x ◦ y = 0 implies {x, y} = 0. Let a and b denote arbitrary elements
from B and let i, j, k, l denote arbitrary indices.

First, since aeij ◦ bekl = 0 if i 6= l and j 6= k, it is clear that

(6) {aeij , bekl} = 0 if i 6= l and j 6= k.

Let i 6= k. Then aeik ◦ (ekk − eii) = 0 and so

(7) {aeik, ekk} = {aeik, eii}.

Similarly,

(8) {ekk, aeik} = {eii, aeik}.

From (aeik − eii) ◦ (aeik + ekk) = 0, i 6= k, we derive {aeik − eii, aeik + ekk} = 0. Since
{aeik, aeik} = 0 and {eii, ekk} = 0 by (6), it follows that {aeik, ekk} = {eii, aeik}. This identity
together with (7) and (8) yields

(9) {aeik, eii} = {aeik, ekk} = {eii, aeik} = {ekk, aeik}.

Now let i 6= k and j 6= k. Then (aeij +abeik)◦(bejk−ekk) = 0, and hence {aeij +ab eik, bejk−
ekk} = 0. By (6) this reduces to {aeij , bejk} = {ab eik, ekk}. On the other hand, we also have
(bejk − ekk) ◦ (aeij + abeik) = 0, and so {bejk − ekk, aeij + abeik} = 0. By (6) this reduces to
{bejk, aeij} = {ekk, abeik}. Since {ab eik, ekk} = {ekk, abeik} by (9), it follows that

(10) {aeij , bejk} = {ab eik, ekk} = {bejk, aeij} if i 6= k and j 6= k.

If i 6= k, then (aeik − eii) ◦ (abeik + bekk) = 0 and (abeik + bekk) ◦ (aeik − eii) = 0. By a
similar argument as before this yields

(11) {aeik, bekk} = {ab eik, ekk} = {bekk, aeik} if i 6= k.

Setting i = j in (10) we get {aeii, beik} = {ab eik, ekk} = {beik, aeii} if i 6= k. Further,
{ab eik, ekk} = {ab eik, eii} by (9), and so we have {aeii, beik} = {ab eik, eii} = {beik, aeii}. For
our purposes it is more convenient to rewrite this identity so that the roles of i and k, and the
roles of a and b are replaced. Hence we have

(12) {bekk, aeki} = {ba eki, ekk} = {aeki, bekk} if i 6= k.



ZERO PRODUCT DETERMINED MATRIX ALGEBRAS 5

Further, we claim that

(13) {aeij , beji} =
1
2

({abeii, eii}+ {baejj , ejj}) .

If i 6= j, then
(

1
2abeii + aeij − 1

2baejj
)
◦ (beji − eii + ejj) = 0 and consequently{

1
2
ab eii + aeij −

1
2
ba ejj , beji − eii + ejj

}
= 0.

Using (6), (9), (10), (11) and (12) this yields {aeij , beji} = 1
2 ({abeii, eii}+ {baejj , ejj}) . We

still have to prove (13) for i = j.
Let i 6= k. Then (aeii − beik + beki − aekk) ◦ (beii − aeik + aeki − bekk) = 0 and this gives

{aeii − beik + beki − aekk, beii − aeik + aeki − bekk} = 0. By (6), (9), (10), (11) and (12) this
can be reduced to

(14) {aeii, beii}+ {aejj , bejj} =
1
2

({(a ◦ b)eii, eii}+ {(a ◦ b)ejj , ejj}) .

Since n ≥ 3, we can choose l such that l /∈ {i, k}. Applying (14) we get

({aeii, beii}+ {aekk, bekk}) + ({aeii, beii}+ {aell, bell})

=
1
2

({(a ◦ b)eii, eii}+ {(a ◦ b)ekk, ekk}) +
1
2

({(a ◦ b)eii, eii}+ {(a ◦ b)ell, ell})

= {(a ◦ b)eii, eii}+
1
2

({(a ◦ b)ekk, ekk}+ {(a ◦ b)ell, ell})

= {(a ◦ b)eii, eii}+ {aekk, bekk}+ {aell, bell}.

Consequently, {aeii, beii} = 1
2{(a ◦ b)eii, eii} which proves the i = j case of (13).

Let xt, yt ∈ A be such that
∑m

t=1 xt ◦ yt = 0. We have to prove that
∑m

t=1{xt, yt} = 0.
Writing

xt =
n∑

i=1

n∑
j=1

at
ij eij and yt =

n∑
k=1

n∑
l=1

btkl ekl

it follows that for all i and l we have

(15)
m∑

t=1

n∑
j=1

(at
ijb

t
jl + btija

t
jl) = 0.

First notice that
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

{at
ij eij , b

t
kl ekl}

and by (6) this summation reduces to

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{at
ij eij , b

t
jl ejl}+

m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1
k 6=j

{at
ij eij , b

t
ki eki}+

m∑
t=1

n∑
i=1

n∑
j=1

{at
ij eij , b

t
ji eji}.
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Using (10), (11) and (12) in the first two summations and (13) in the third summation, we
see that this is further equal to

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{at
ijb

t
jl eil, ell}+

m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1
k 6=j

{btkia
t
ij ekj , ejj}

+
m∑

t=1

n∑
i=1

n∑
j=1

(
1
2
(
{at

ijb
t
ji eii, eii}+ {btjiat

ij ejj , ejj}
))

.

Rewriting the second summation as
m∑

t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{btijat
jl eil, ell},

and the third summation as

1
2

m∑
t=1

n∑
i=1

n∑
j=1

({at
ijb

t
ji eii, eii}+ {btijat

ji eii, eii}),

it follows that
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{(at
ijb

t
jl + btija

t
jl) eil, ell}+

1
2

m∑
t=1

n∑
i=1

n∑
j=1

{(at
ijb

t
ji + btija

t
ji) eii, eii}

=
n∑

i=1

n∑
l=1
l 6=i


m∑

t=1

n∑
j=1

(at
ijb

t
jl + btija

t
jl) eil, ell

+
1
2

n∑
i=1


m∑

t=1

n∑
j=1

(at
ijb

t
ji + btija

t
ji) eii, eii

 ;

each of these two summations is 0 by (15). �

We were unable to find out whether or not Theorem 3.1 also holds for n = 2; therefore we
leave this as an open problem.

4. Zero Lie product determined matrix algebras

Theorem 4.1. If B is a zero Lie product determined unital algebra, then Mn(B) is a zero
Lie product determined algebra for every n ≥ 2.

Proof. Let A = Mn(B), let X a C-module, and let {. , . } : A×A→ X be a bilinear map such
that {x, y} = 0 whenever x, y ∈ A are such that [x, y] = 0. First notice that {x, x} = 0 for
all x ∈ A, and hence {x, y} = −{y, x} for all x, y ∈ A. Further, the equality {x2, x} = 0
holds for all x ∈ A, and linearizing it we get {x ◦ y, z} + {z ◦ x, y} + {y ◦ z, x} = 0 for all
x, y, z ∈ A. We shall use these identities without mention.

Our first goal is to derive various identities involving elements of the form aeij . In what
follows a and b will be arbitrary elements in B and i, j, k, l will be arbitrary indices.

First, it is clear that

(16) {aeij , bekl} = 0 if j 6= k and i 6= l
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since [aeij , bekl] = 0. Similarly,

(17) {aeii, eii} = 0.

Also, if i 6= j, then [a eij + a eji, eij + eji] = 0, and so {a eij + a eji, eij + eji} = 0. As
{a eij , eij} = 0 and {a eji, eji} = 0 by (16), it follows that

(18) {a eij , eji} = −{a eji, eij} if i 6= j.

Next, we claim that

(19) {aeij , bejk} = {ab eik, ekk} = −{ab eik, eii} if i 6= k.

Indeed, since [ab eik, eii + ekk] = 0 we have {ab eik, eii + ekk} = 0, and so {ab eik, ekk} =
−{ab eik, eii}. We now consider two cases, when j 6= k and when j = k. In the first case we
have, since also i 6= k, [aeij + ab eik, bejk − ekk] = 0, and hence {aeij + ab eik, bejk − ekk} = 0.
From (16) it follows that {aeij , ekk} = 0 and {ab eik, bejk} = 0, and so the identity above
reduces to {aeij , bejk} = {ab eik, ekk}. In the second case, when j = k, we have [aeik −
eii, ab eik +bekk] = 0, which implies {aeik−eii, ab eik +bekk} = 0. Since {aeik, ab eik} = 0 and
{eii, bekk} = 0 by (16), it follows that {aeik, bekk} = {eii, ab eik} = −{ab eik, eii}, and (19) is
thereby proved.

Let us prove that

(20) {aeij , beji} = {ab eij , eji}+ {a ejj , b ejj}.

In view of (17) we may assume that i 6= j. Then we have

{aeij , beji} = {eij ◦ aejj , beji} = −{beji ◦ eij , aejj} − {a ejj ◦ beji, eij}.

Since {beii, aejj} = 0 by (16) and {ab eij , eji} = −{ab eji, eij} by (18), (20) follows.
Finally, we claim that

(21) {aeij , beji} = {ab eik, eki} − {ba ejk, ekj}+ {a ekk, b ekk}.

Assume first that i 6= j. Taking into account (17) and (20) we see that (21) holds if k = i or
k = j. If k 6= i and k 6= j, then

{a eij , b eji} = {a eik ◦ ekj , beji} = −{ba ejk, ekj}+ {a eik, b eki},

and so applying (20) we get (21). Now suppose that i = j. Then

{a eii, b eii} = {a eik ◦ eki, b eii} = −{ba eik, eki}+ {a eik, b eki}.

From (20) it follows that

{a eii, b eii} = {ab eik, eki} − {ba eik, eki}+ {a ekk, b ekk},

and so (21) holds is this case as well.
Now pick xt, yt ∈ A such that

∑m
t=1[xt, yt] = 0. The theorem will be proved by showing

that
∑m

t=1{xt, yt} = 0.
Write

xt =
n∑

i=1

n∑
j=1

at
ijeij and yt =

n∑
k=1

n∑
l=1

btklekl
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where at
ij , b

t
kl ∈ B. Computing the (i, l) entry of [xt, yt] we see that

(22)
m∑

t=1

n∑
j=1

(at
ijb

t
jl − btijat

jl) = 0 for all i, l.

By (16) we have
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

{at
ijeij , b

t
klekl}

=
m∑

t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{at
ijeij , b

t
jlejl}+

m∑
t=1

n∑
i=1

n∑
j=1

n∑
k=1
k 6=j

{at
ijeij , b

t
kieki}+

m∑
t=1

n∑
i=1

n∑
j=1

{at
ijeij , b

t
jieji}.

Rewriting the second summation as
m∑

t=1

n∑
i=1

n∑
j=1

n∑
l=1
l6=i

{at
jlejl, b

t
ijeij} = −

m∑
t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{btijeij , at
jlejl},

and using (19) we see that the sum of the first and the second summation is equal to
m∑

t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

({at
ijb

t
jleil, ell} − {btijat

jleil, ell}) =
m∑

t=1

n∑
i=1

n∑
j=1

n∑
l=1
l 6=i

{(at
ijb

t
jl − btijat

jl)eil, ell}

=
n∑

i=1

n∑
l=1
l6=i


 m∑

t=1

n∑
j=1

(at
ijb

t
jl − btijat

jl)

 eil, ell

 = 0

by (22). Hence
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

{at
ijeij , b

t
jieji}.

We claim that this sum is equal to zero. Applying (21) we have that

{at
ijeij , b

t
jieji} = {at

ijb
t
jiei1, e1i} − {btjiat

ijej1, e1j}+ {at
ij e11, b

t
ji e11}.

Therefore
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

{at
ijb

t
jiei1, e1i}−

m∑
t=1

n∑
i=1

n∑
j=1

{btjiat
ijej1, e1j}+

m∑
t=1

n∑
i=1

n∑
j=1

{at
ij e11, b

t
ji e11}.

Rewriting the second summation as
m∑

t=1

n∑
i=1

n∑
j=1

{btijat
jiei1, e1i}

and applying (22), we obtain
m∑

t=1

{xt, yt} =
m∑

t=1

n∑
i=1

n∑
j=1

{(at
ijb

t
ji − btijat

ji)ei1, e1i}+
m∑

t=1

n∑
i=1

n∑
j=1

{at
ij e11, b

t
ji e11}
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=
n∑

i=1


 m∑

t=1

n∑
j=1

(at
ijb

t
ji − btijat

ji)

 ei1, e1i

+
m∑

t=1

n∑
i=1

n∑
j=1

{at
ij e11, b

t
ji e11}

=
m∑

t=1

n∑
i=1

n∑
j=1

{at
ij e11, b

t
ji e11}.

Thus, the proof will be complete by showing that

(23)
m∑

t=1

n∑
i=1

n∑
j=1

{at
ij e11, b

t
ji e11} = 0.

Consider the map 〈 . , .〉 : B ×B → X defined by 〈a, b〉 = {a e11, b e11} for all a, b ∈ B. It is
clear that 〈 . , .〉 is bilinear and has the property that [a, b] = 0 implies 〈a, b〉 = 0. Since B is
a zero Lie product determined algebra, 〈 . , .〉 also satisfies the condition that

∑m
t=1[at, bt] = 0

implies
∑m

t=1〈at, bt〉 = 0.
Taking l = i in (22) we have that

m∑
t=1

n∑
j=1

(at
ijb

t
ji − btijat

ji) = 0

for every i, and hence
m∑

t=1

n∑
i=1

n∑
j=1

[at
ij , b

t
ji] = 0.

This implies
m∑

t=1

n∑
i=1

n∑
j=1

〈at
ij , b

t
ji〉 = 0,

which is of course equivalent to (23). �

Commutative algebras are trivially zero Lie product determined. Thus we have

Corollary 4.2. If B is a commutative unital algebra, then Mn(B) is a zero Lie product
determined algebra for every n ≥ 2.

In the simplest case where B = C this corollary was proved in [3]. In fact, for this case
[3, Theorem 2.1] tells us more than Corollary 4.2. In particular it states that for a C-bilinear
map {. , . } : A × A → X, where A = Mn(C) and X is a C-module, the following conditions
are equivalent:

(a) if x, y ∈ A are such that [x, y] = 0, then {x, y} = 0;
(b) there is a C-linear map T : [A,A]→ X such that {x, y} = T ([x, y]) for all x, y ∈ A;
(c) {x, x} = {x2, x} = 0 for all x ∈ A;
(d) {x, x} = {xy, z}+ {zx, y}+ {yz, x} = 0 for all x, y, z ∈ A.

The condition (c) has proved to be important because of the applications to the commutativity
preserving map problem. So it is tempting to try to show that these conditions are equivalent
in some more general algebras A. We remark that trivially (b) implies (c) and (d), (a) implies
(c), and also (d) implies (c) as long as A is 3-torsionfree (just set x = y = z in (d)). In the
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next example we show that in the algebra M2(C[x, y]) neither (c) nor (d) implies (a), and so
[3, Theorem 2.1] cannot be generalized to matrix algebras over commutative algebras.

Example 4.3. Let A = M2(C[x, y]). We define a C-bilinear map {. , . } : A × A → C as
follows:

{xe11, ye11} = {xe22, ye22} = 1, {ye11, xe11} = {ye22, xe22} = −1,
{xe12, ye21} = {xe21, ye12} = 1, {ye21, xe12} = {ye12, xe21} = −1,

and
{ueij , vekl} = 0

in all other cases, that is, for all remaining choices of monomials u and v and i, j, k, l ∈ {1, 2}.
Since [xe11, ye11] = 0 and {xe11, ye11} = 1, {. , . } does not satisfy (a) (or (b)). However,
one can check that {. , . } satisfies (c) and (d). The proof is a straightforward but tedious
verification, and we omit details.

Our final goal is to show that there exists a unital algebra B such that Mn(B) is not a
zero Lie product determined algebra, and thereby to show that indeed one has to impose
some condition on B in Theorem 4.1. For this we need two preliminary results which are of
independent interest. The first one, however, is not really surprising, and possibly it is already
known. Anyway, the following proof which was suggested to us by Misha Chebotar, is very
short.

Until the end of this section we assume that C is a field.

Lemma 4.4. Let A = C〈x1, x2, . . . , x2n〉 be a free algebra in 2n noncommuting indeterminates.
Then [x1, x2]+[x3, x4]+. . .+[x2n−1, x2n] cannot be written as a sum of less than n commutators
of elements in A.

Proof. Let ai, bi ∈ A, i = 1, . . . ,m, be such that

(24) [a1, b1] + [a2, b2] + . . .+ [am, bm] = [x1, x2] + [x3, x4] + . . .+ [x2n−1, x2n].

We have to show that m ≥ n. We proceed by induction on n. The case when n = 1 is
trivial, so we may assume that n > 1. Considering the degrees of monomials appearing in
(24) we see that we may assume that all ai’s and bi’s are linear combinations of the xi’s.
In particular, bm =

∑2n
j=1 µjxj with µj ∈ C. Without loss of generality we may assume

that µ2n 6= 0. Of course, we may replace any indeterminate xi by any element in A in the
identity (24). So, let us substitute 0 for x2n−1 and −

∑2n−2
j=1 µ−1

2nµjxj for x2n. Then we get
[c1, d1] + . . . + [cm−1, dm−1] = [x1, x2] + . . . + [x2n−3, x2n−2] where all ci’s and di’s are linear
combinations of x1, . . . , x2n−2. By induction assumption we thus have m− 1 ≥ n− 1, and so
m ≥ n. �

For any n ≥ 2, let Bn denote the unital C-algebra generated by 1, u1, . . . , u2n with the
relation [u1, u2] + [u3, u4] + . . . + [u2n−1, u2n] = 0. That is, Bn = C〈x1, x2, . . . , x2n〉/I where
I is the ideal of C〈x1, x2, . . . , x2n〉 generated by [x1, x2] + [x3, x4] + . . . + [x2n−1, x2n], and
ui = xi + I.

Lemma 4.5. There exists a bilinear map 〈. , . 〉 : Bn × Bn → C such that for all vt, wt ∈ Bn,∑n−1
t=1 [vt, wt] = 0 implies

∑n−1
t=1 〈vt, wt〉 = 0, but 〈u1, u2〉+ 〈u3, u4〉+ . . .+ 〈u2n−1, u2n〉 6= 0 (and

so there is no linear map T : [Bn, Bn]→ C such that 〈x, y〉 = T ([x, y])).
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Proof. The set S consisting of 1 and all possible products ui1 . . . uik of the ui’s spans the linear
space Bn, and the elements u1, u2 are linearly independent. Therefore we can define a bilinear
map 〈. , . 〉 : Bn × Bn → C such that 〈u1, u2〉 = −〈u2, u1〉 = 1 and 〈s, t〉 = 0 for all other
possible choices of s, t ∈ S. In particular, 〈u1, u2〉+ 〈u3, u4〉+ . . .+ 〈u2n−1, u2n〉 = 1.

Assume now that vt, wt ∈ Bn are such that
∑n−1

t=1 [vt, wt] = 0. We can write vt = λtu1 +
µtu2 + pt and wt = αtu1 + βtu2 + qt, where λt, µt, αt, βt ∈ C and pt, qt lie in the linear span of
S \ {u1, u2}. Note that

∑n−1
t=1 〈vt, wt〉 =

∑n−1
t=1 (λtβt − µtαt). Thus, the lemma will be proved

by showing that
∑n−1

t=1 (λtβt − µtαt) = 0.
Let us write vt = λtx1+µtx2+lt+ft+I, wt = αtx1+βtx2+mt+gt+I, where λt, µt, αt, βt ∈ C,

lt,mt are linear combinations of x3, . . . , x2n and ft, gt are linear combinations of mononials of
degrees 0 or at least 2. Since

∑n−1
t=1 [vt, wt] = 0, it follows that

n−1∑
t=1

[λtx1 + µtx2 + lt + ft, αtx1 + βtx2 +mt + gt] ∈ I.

Therefore,
n−1∑
t=1

[λtx1 +µtx2 + lt + ft, αtx1 +βtx2 +mt + gt] = ω
(

[x1, x2] + [x3, x4] + . . .+ [x2n−1, x2n]
)

+h,

where ω ∈ C and h ∈ I is a linear combination of monomials of degree at least 3. Considering
the degrees of monomials involved in this identity it clearly follows that

n−1∑
t=1

[λtx1 + µtx2 + lt, αtx1 + βtx2 +mt] = ω
(

[x1, x2] + [x3, x4] + . . .+ [x2n−1, x2n]
)
.

We may now apply Lemma 4.4 and conclude that ω = 0. Thus,

0 =
n−1∑
t=1

[λtx1 + µtx2 + lt, αtx1 + βtx2 +mt] =
(n−1∑

t=1

(λtβt − µtαt)
)

[x1, x2] + f,

where f is a linear combination of monomials different from x1x2 and x2x1. Consequently,∑n−1
t=1 (λtβt − µtαt) = 0. �

Lemma 4.5 in particular shows that Bn is not a zero Lie product determined algebra for
every n ≥ 2. We remark in this context that it is very easy to find examples of algebras that
are not zero product determined or zero Jordan product determined, simply because there
are algebras without nonzero zero divisors (domains), as well as such that the Jordan product
of any of their two nonzero elements is always nonzero. Finding algebras that are not zero
Lie product determined is more difficult since in every algebra we have plenty of elements
commuting with each other.

We are now in a position to show that matrix algebras are not always zero Lie product
determined.

Theorem 4.6. For every n ≥ 1, the algebra Mn(Bn2+1) is not zero Lie product determined.

Proof. By Lemma 4.5 there exists a bilinear map 〈. , . 〉 : Bn2+1 × Bn2+1 → C such that∑n2

t=1[vt, wt] = 0 implies
∑n2

t=1〈vt, wt〉 = 0, but there are ut ∈ Bn2+1, t = 1, . . . , 2n2 + 2, such
that

∑n2+1
t=1 [u2t−1, u2t] = 0 while

∑n2+1
t=1 〈u2t−1, u2t〉 6= 0.
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Set A = Mn(Bn2+1), and define {. , . } : A×A→ C according to

{v, w} =
n∑

i=1

n∑
j=1

〈vij , wji〉,

where vij and wij are entries of the matrices v and w, respectively. We claim that {. , . } satis-
fies the condition “[v, w] = 0 =⇒ {v, w} = 0”, but does not satisfy the condition “

∑
t[vt, wt] =

0 =⇒
∑

t{vt, wt} = 0”. The latter is obvious, since we may take vt = u2t−1e11 and wt = u2te11,
t = 1, . . . , n2 + 1. Now pick v and w in A such that [v, w] = 0, i. e. vw = wv. Considering just
the diagonal entries of matrices on both sides of this identity we see that

∑n
j=1 vijwji =∑n

j=1wijvji for every i = 1, . . . , n. Accordingly,
∑n

i=1

∑n
j=1 vijwji =

∑n
i=1

∑n
j=1wijvji.

Rewriting
∑n

i=1

∑n
j=1wijvji as

∑n
i=1

∑n
j=1wjivij we thus see that

∑n
i=1

∑n
j=1[vij , wji] = 0.

However, this implies
∑n

i=1

∑n
j=1〈vij , wji〉 = 0, that is, {v, w} = 0. �
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