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Background

Elliptic curves have profound influence in mathematics. Since
ancient times they turn up in the most astonishing places,
joining together algebra and geometry. Recently they have
become popular in number theory (cryptography of elliptic
curves), optimization (semidefinite programming SDP) and
also in theoretical physics (mirror symmetry of elliptic curves).

The abundance of results is due to the following two classical
facts for smooth plane cubics:

It can be brought by a change of coordinates into the
Weierstrass canonical form, or equivalently the Hesse
canonical form.
It can be equipped by a group law (induced by the
Jacobian group variety).
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Notation

we work over the field C, sometimes we restrict to R,
F (x , y , z) homogeneous polynomial of degree 3,
C a smooth curve defined by {F (x , y , z) = 0} ⊂ P2.

projective plane P2 : affine plane C2 :
points: (x , y , z) =

(x/z, y/z,1) ⇐⇒ (X ,Y )
curves: y2z = (x + z)(x2 + εz2) Y 2 = (X + 1)(X 2 + ε)

y2z = (x + z)x2 Y 2 = (X + 1)X 2

y2z = (x + z)(x2 − εz2) Y 2 = (X + 1)(X 2 − ε)
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Definition: Determinantal representation

It is very useful to represent F as a determinant of some matrix:
Find a 3× 3 matrix with linear terms

M(x , y , z) = xA + yB + zC

such that

det M(x , y , z) = c F (x , y , z), for some c 6= 0.

Matrix M is called a determinantal representation of C.
Clearly, multiplying a determinantal representation by invertible
matrices preserves the underlying curve. Two determinantal
representations M and M ′ equivalent if there exist
X ,Y ∈ GL(3,C) such that

M ′ = XMY .

We consider determinantal representations up to equivalence.
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Existence of a symmetric determinantal representation

Every cubic curve has a determinantal representation. The
following theorem constructs a symmetric one:

Theorem (J. Harris, 1979, p. 696)

There exist precisely three points (a,b) ∈ C2 such that

aF = Hes(bF + Hes(F )),

where Hes is the Hessian i.e., the determinant of the second
partial derivatives matrix. The resulting three symmetric
determinantal representations of F are inequivalent.

Using elementary transformations [Vinnikov] we can obtain all
determinantal representations of F from a given one.
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Weierstrass canonical form

Theorem
By a projective change of coordinates, every irreducible curve
can be brought into the Weierstrass form

y2z = x3 + pxz2 + qz3, p,q ∈ C

or equivalently y2z = x(x + θ1z)(x + θ2z), θ1, θ2 ∈ C.

Moreover, every reduced curve is projectively equivalent to one
of the

x3, x2y , xy(x + y), xyz or
(αx + βy + γz)(x2 − yz) for some α, β, γ ∈ C.
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Why do we want the Weierstrass canonical form?

Corollary
Any coordinate independent statement that holds for a
Weierstrass cubic, holds for any irreducible cubic curve.

We will use this to show:
Determinantal representations of any cubic curve C are in
one to one correspondence with affine points on C.
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Inflection point

Every irreducible cubic has inflection points:
{F = 0} ∩ {Hes F = 0} ⊂ P2.

Proposition
If we find an inflection point on C, we can put it into the
Weierstrass form.

Change the coordinates so that the inflection point is (0,1,0)
and the inflection tangent is z = 0. Considering all possible
monomials occurring in F yields the Weierstrass form.

Corollary
When the defining polynomial F is real, a real change of
coordinates gives the Weierstrass form with p,q ∈ R.
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Algorithm

The enumerative problem of locating flexes of a plane
cubic is solvable, since the corresponding Galois group is
solvable [Harris, 1979].
When C contains a rational point [Silverman and Tate,
1992] provided an algorithm that puts it into a Weierstrass
form.
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Main theorem

Theorem

Determinantal representations of y2z = x(x + θ1z)(x + θ2z) are

Ml,t (x , y , z) = x

 0 0 1
0 1 0
1 0 0

 + y

 0 1 0
1 0 0
0 0 0

+

z

 3
4 t2 + 1

2 t(θ1 + θ2)− 1
4(θ1 − θ2)2 l 1

2(θ1 + θ2 + t)
−l −t 0

1
2(θ1 + θ2 + t) 0 −1


where l , t ∈ C and l2 = t(t + θ1)(t + θ2).
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Real cubic

It is natural to consider the subset of cubics defined by real
polynomials. Representation Ml,t (x , y , z) in the Main theorem is
self-adjoint iff t is real and l = is is purely imaginary.
The set of all nonequivalent self-adjoint determinantal
representations of C can thus be parametrised by affine points
on F (t , l) whose first coordinate is real and the second
coordinate is purely imaginary.
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Smooth cubics −s2 = t(t + θ1)(t + θ2)

θ1, θ1 ∈ R θ1 = θ̄1.
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Singular cubics
−s2 = t3, −s2 = t2(t − 1), −s2 = t(t − 1)2.
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Definite representation

Definition
A self-adjoint determinantal representation is definite if there
exists a point (a,b, c) ∈ R3 such that M(a,b, c) is positive
definite.

Note:
Definitness is preserved under a real change of coordinates.

Theorem
Let C be a real cubic

y2z = x(x + θ1z)(x + θ2z).

Determinantal representations Ml,t from the Main theorem are
definite for t > 0.
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Semidefinite programming SDP

Definition
The set of points where a given self-adjoint determinantal
representation representation is positive definite,
S = {(x , y , z) ∈ R3 : M(x , y , z) � 0} is called spectrahedron
and M(x , y , z) � 0 is an LMI (linear matrix inequality)
representation of S .

Theorem (Vinnikov, 2007)
Rigidly convex sets are exactly spectrahedra bounded by the
determinant of some LMI representation. Spectrahedra are
precisely the sets on which semidefinite programming can be
performed.
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