Matrices defining elliptic curves

Anita Buckley

Department of Mathematics
Faculty of Mathematics and Physics
University of Ljubljana
Slovenia

Workshop of Algebraic Geometry in the occasion of the visit of Rosa Maria Miró-Roig
 24 February 2015
 (ibil unverstì
 DEGLI STUDI DI TRIESTE

Outline I

(9) Introduction

- Abstract
- Background
- Notation
(2) Determinantal representations
- Definition
- Determinantal representations vs vector bundles
- Symmetric determinantal representations
(3) Indecomposable pfaffian representations
- Existence
- Representations of Weierstrass cubics
(4) Ayyer's combinatorial proof: det $=\mathrm{Pf}^{2}$
(5) Generalisations to rank $r=3$

Outline II

- Existence of indecomposable rank r bundles
- Generalise the definitions of det and Pf
- Generalise the construction of the rank 3 adjoint
- Group actions on tensor products of vector spaces

6 Weierstrass form

- Canonical form
- Inflection point
- Algorithm

Abstract

For a given plane curve we review the explicit constructions of:

- the 1-1 correspondence between linear determinantal representations and rank one (non-exceptional) bundles,
- the 1-1 correspondence between pfaffian representations and rank two (non-exceptional with fixed determinant) bundles.
We try to generalize these results to construct determinantal representations which would encode rank 3 bundles as its cokernel.

Abstract

Elliptic curves are of tame representation type according to Atiyah. In particular, on a given cubic curve the number of indecomposable ACM bundles of rank r equals to the number of r-torsion points.
We explicitly construct all determinantal representations of size 3×3 and 6×6.

Background

Elliptic curves have profound influence in mathematics. Since ancient times they turn up in the most astonishing places, joining together algebra and geometry. Recently they have become popular in number theory (cryptography of elliptic curves), optimization (semidefinite programming SDP) and also in theoretical physics (mirror symmetry of elliptic curves).

The abundance of results is due to the following two classical facts for smooth plane cubics:

- It can be brought by a change of coordinates into the Weierstrass canonical form, or equivalently the Hesse canonical form.
- It can be equipped by a group law (induced by the

Background

Elliptic curves have profound influence in mathematics. Since ancient times they turn up in the most astonishing places, joining together algebra and geometry. Recently they have become popular in number theory (cryptography of elliptic curves), optimization (semidefinite programming SDP) and also in theoretical physics (mirror symmetry of elliptic curves).

The abundance of results is due to the following two classical facts for smooth plane cubics:

- It can be brought by a change of coordinates into the Weierstrass canonical form, or equivalently the Hesse canonical form.
- It can be equipped by a group law (induced by the Jacobian group variety).

Notation

- we work over the field \mathbb{C}, sometimes we restrict to \mathbb{R},
- $F(x, y, z)$ homogeneous polynomial of degree 3,
- \mathcal{C} a smooth curve defined by $\{F(x, y, z)=0\} \subset \mathbb{P}^{2}$.

Weierstrass form: $y^{2} z=x^{3}+p x z^{2}+q z^{3}, \quad p, q \in \mathbb{C}$, or

$$
y^{2} z=x\left(x+\theta_{1} z\right)\left(x+\theta_{2} z\right), \quad \theta_{1}, \theta_{2} \in \mathbb{C}
$$

Hesse form:

$$
\lambda\left(x^{3}+y^{3}+z^{3}\right)=\mu x y z, \quad \lambda, \mu \in \mathbb{P}^{1}
$$

Definition: Determinantal representation

It is very useful to represent F as a determinant of some matrix: Find a $3 r \times 3 r$ matrix with linear terms

$$
M(x, y, z)=x A+y B+z C
$$

such that

$$
\operatorname{det} M(x, y, z)=c F^{r}(x, y, z), \text { for some } c \neq 0
$$

Matrix M is a determinantal representation (of order r) of \mathcal{C}.
Clearly, multiplying a determinantal representation by invertible
matrices preserves the underlying curve. Two determinantal
representations M and M^{\prime} are equivalent if
$M^{\prime}=X M Y$ for some $X, Y \in G L(3 r, \mathbb{C})$.
We consider determinantal representations, up, tosequivalence.

Definition: Determinantal representation

It is very useful to represent F as a determinant of some matrix: Find a $3 r \times 3 r$ matrix with linear terms

$$
M(x, y, z)=x A+y B+z C
$$

such that

$$
\operatorname{det} M(x, y, z)=c F^{r}(x, y, z), \text { for some } c \neq 0
$$

Matrix M is a determinantal representation (of order r) of \mathcal{C}. Clearly, multiplying a determinantal representation by invertible matrices preserves the underlying curve. Two determinantal representations M and M^{\prime} are equivalent if

$$
M^{\prime}=X M Y \text { for some } X, Y \in \mathrm{GL}(3 r, \mathbb{C})
$$

We consider determinantal representations up to equivalence.

Pfaffian representation

Pfaffian representation is a representation of order 2 with all 6×6 matrices being skew-symmetric. Study of pfaffian representations is strongly related to and motivated by determinantal representations. Every 3×3 determinantal representation A induces decomposable pfaffian representation

$$
\left[\begin{array}{cc}
0 & M \\
-M^{t} & 0
\end{array}\right]
$$

Note that the equivalence relation is well defined since

$$
\left[\begin{array}{cc}
0 & X M Y \\
-(X M Y)^{t} & 0
\end{array}\right]=\left[\begin{array}{cc}
X & 0 \\
0 & Y^{t}
\end{array}\right]\left[\begin{array}{cc}
0 & M \\
-M^{t} & 0
\end{array}\right]\left[\begin{array}{cc}
X^{t} & 0 \\
0 & Y
\end{array}\right]
$$

Theorem (Beauville, 2000: plane cubics as determinants)

Let L be a line bundle of degree 0 on \mathcal{C} with $H^{0}(\mathcal{C}, L)=0$. Then there exists a 3×3 linear matrix M such that $F=\operatorname{det} M$ and an exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2)^{3} \xrightarrow{M} \mathcal{O}_{\mathbb{P}^{2}}(-1)^{3} \rightarrow L \rightarrow 0 .
$$

Conversely, let M be a 3×3 linear matrix such that $F=\operatorname{det} M$. Then the cokernel of $M: \mathcal{O}_{\mathbb{P}^{2}}(-2)^{3} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1)^{3}$ is a line bundle L on \mathcal{C} of degree 0 with $H^{0}(\mathcal{C}, L)=0$.

This is the famous $1-1$ correspondence between detreminantal representations of hypersurfaces and points on the Jacobian variety, first described in Cook and Thomas, Line bundles and homogeneous matrices, (1979).

Theorem (Beauville, 2000: plane cubics as pfaffians)

Let E be a rank 2 vector bundle on \mathcal{C} with $\operatorname{det} E \cong \omega_{\mathcal{C}}$ and $H^{0}(\mathcal{C}, E)=0$. Then E admits a minimal resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2)^{6} \xrightarrow{A} \mathcal{O}_{\mathbb{P}^{2}}(-1)^{6} \rightarrow E \rightarrow 0,
$$

where the matrix A is linear skew-symmetric and $F=\operatorname{Pf} A$.
Note that the condition $H^{0}(\mathcal{C}, E)=0$ implies that E is semi-stable.

$\tilde{M} \cdot M=\operatorname{det} M \cdot \operatorname{ld}$

Theorem (Dolgachev's explicit 1 - 1 correspondence)

Let $L \in \operatorname{Pic}(\mathcal{C})^{0} \backslash W_{0}$, where $\operatorname{Pic}(\mathcal{C})^{0}$ is the Picard variety of degree 0 invertible sheaves (divisor classes) on \mathcal{C} and W_{0} its subset of effective divisors. Then L and L^{-1} define a unique regular map

$$
\mathcal{C} \rightarrow\left|H^{0}(\mathcal{C}, L(1))^{\vee} \otimes H^{0}\left(\mathcal{C}, L^{-1}(1)\right)\right|
$$

which extends to a rational map on \mathbb{P}^{2}. In coordinates, this is the adjugate matrix of a determinantal representation of \mathcal{C}. Conversely, the kernel and cokernel (twisted by -1) of a given determinantal representation define L and L^{-1} with the above properties.

We generalize Dolgachev's construction to rank 2

Define the pfaffian adjoint of A to be the skew-symmetric matrix

$$
\tilde{A}=\left[\begin{array}{cccc}
0 & & & \\
& \ddots & (-1)^{i+j} \mathrm{Pf}^{\mathrm{ij}} A \\
& & \ddots & \\
& & & 0
\end{array}\right]
$$

By analogy with determinants the following holds

$$
\tilde{A} \cdot A=\operatorname{Pf} A \cdot \operatorname{ld}
$$

Definition

Determinantal representations vs vector bundles Symmetric determinantal representations

Proposition

Let A be a pfaffian representation of a smooth plane curve C defined by a homogeneous polynomial F of degree d. Then $\mathcal{E}=\operatorname{Coker} A$ is a rank 2 vector bundle on C and
(i) $h^{0}(C, \mathcal{E})=2 d$,
(ii) $H^{0}(C, \mathcal{E}(-1))=H^{1}(C, \mathcal{E}(-1))=0$,
(iii) $\operatorname{det} \mathcal{E}=\Lambda^{2} \mathcal{E}=\mathcal{O}_{C}(d-1)$.

Proposition

Let C be a smooth plane curve of degree d. To every rank 2 vector bundle \mathcal{E} on C with properties
(i) $h^{0}(C, \mathcal{E})=2 d$,
(ii) $H^{0}(C, \mathcal{E}(-1))=0$,
(iii) $\operatorname{det} \mathcal{E}=\Lambda^{2} \mathcal{E}=\mathcal{O}_{C}(d-1)$
we can assign a pfaffian representation $A_{\mathcal{E}}$. In particular, isomorphic bundles induce equivalent representations.

We will define a map ψ from C to the space of $2 d \times 2 d$ skew-symmetric matrices with entries from the space of homogeneous polynomials of degree $d-1$, such that $\psi^{-1}\left(\mathcal{P}_{d}\right)=C$.
Let $U=H^{0}(C, \mathcal{E})$ be the $2 d$ dimensional vector space of global sections of \mathcal{E}. Choose a basis $\left\{s_{1}, \ldots, s_{2 d}\right\}$ for U and define

Since $s_{i} \wedge s_{j} \in \Lambda^{2} U$, by property (iii) the map ψ extends to

$$
\Psi: \mathbb{P}(\mathcal{E}) \longrightarrow \mathbb{P}\left(\bigwedge^{2} U\right)
$$

given by a linear system of plane curves of degree $d-1$. In coordinates it equals to a $2 d \times 2 d$ skew-symmetric matrix with entries from the space of homogeneous polynomials of degree $d-1$. This is exactly the adjoint matrix of the pfaffian representation.

Theta characteristic

It is obvious that a 3×3 determinantal representation is symmetric if and only if $L \cong L^{-1}$. Such L is by definition a non-effective theta characteristic i.e., $L^{\otimes 2} \cong \omega_{C}$ and $H^{0}(C, L)=\{0\}$. Since every nonsingular cubic has exactly three even theta characteristics we get:

Corollary

A smooth cubic curve has three symmetric determinantal representations.

The following theorem constructs all three symmetric 3×3 representations:

Theorem (J. Harris, 1979, p. 696)

There exist precisely three points $(a, b) \in \mathbb{C}^{2}$ such that

$$
a F=\operatorname{Hes}(b F+\operatorname{Hes}(F)),
$$

where Hes is the Hessian i.e., the determinant of the second partial derivatives matrix. The resulting three symmetric determinantal representations of F are inequivalent.

Using elementary transformations [Vinnikov] we can obtain all
3×3 determinantal representations of F from a given one .

The following theorem constructs all three symmetric 3×3 representations:

Theorem (J. Harris, 1979, p. 696)

There exist precisely three points $(a, b) \in \mathbb{C}^{2}$ such that

$$
a F=\operatorname{Hes}(b F+\operatorname{Hes}(F)),
$$

where Hes is the Hessian i.e., the determinant of the second partial derivatives matrix. The resulting three symmetric determinantal representations of F are inequivalent.

Using elementary transformations [Vinnikov] we can obtain all 3×3 determinantal representations of F from a given one.

Jacobian

One could naively generalise the following

- Let C be a smooth curve defined by a polynomial F of degree d in \mathbb{P}^{2}. All linear determinantal $d \times d$ representations of F (up to equivalence) can be parametrised by points on the Jacobian variety of C not on the exceptional subvariety W_{g-1}.
- When C is a cubic, its Jacobian equals the curve itself and $W_{0}=\left\{\mathcal{O}_{C}\right\}$. Therefore determinantal representations can be parametrised by affine points on C.

Moduli space

In the rank 2 case, the role of the Jacobian is replaced by the moduli space $M_{C}\left(2, \mathcal{O}_{C}(d-3)\right)$ of (semi-stable) rank 2 vector bundles on C with determinant $\mathcal{O}_{C}(d-3)$.

We would expect

- There is a one to one correspondence between linear pfaffian representations of F (up to equivalence) and rank 2 bundles (up to isomorphism) on C in the open set $M_{C}\left(2, \mathcal{O}_{C}(d-3)\right)-\Theta_{2, \mathcal{O}_{C}(d-3)}$.
- When C is a cubic, the space $M_{C}\left(2, \mathcal{O}_{C}\right)$ consists only of direct sums of line bundles. Therefore pfaffian representations can be parametrised by the Kummer variety $\left\{L \oplus L^{-1} ; L \in J C\right\}-\left\{\mathcal{O}_{C} \oplus \mathcal{O}_{C}\right\}$.

Ravindra and Tripathi, 2014 predicted three indecomposable pfaffian representations induced by non-trivial extensions of even theta characteristics.

On a smooth cubic C consider the non-trivial extension:

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow H \rightarrow \mathcal{O}_{C} \rightarrow 0
$$

If $L \neq \mathcal{O}_{C}$ satisfies $L \otimes L=\mathcal{O}_{C}$, then $E=H \otimes L$ has $\operatorname{det}(H)=\mathcal{O}_{C}$, and E is indecomposable because H is. Also, we have $h^{0}(E)=0$ and $h^{0}(E(1))=6$, so our construction gives an indecomposable (non-block-diagonal) pfaffian representation.

Vinnikov explicitly parametrised determinantal representations by points on the affine curve:

Lemma

Consider the cubic in Weierstrass form:

$$
F(x, y, z)=-y z^{2}+x^{3}+\alpha x y^{2}+\beta y^{3} .
$$

A complete set of determinantal representations of F is

$$
x \operatorname{ld}+z\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)+y\left(\begin{array}{ccc}
\frac{t}{2} & s & \alpha+\frac{3}{4} t^{2} \\
0 & -t & -s \\
-1 & 0 & \frac{t}{2}
\end{array}\right)
$$

where $s^{2}=t^{3}+\alpha t+\beta$. Note that the last equation is exactly the affine part $F(t, 1, s)$.

Main theorem

Let C be a smooth cubic in the Weierstrass form

$$
F(x, y, z)=y z^{2}-x(x-y)(x-\lambda y)
$$

A complete set of pfaffian representations of F consists of three indecomposable representations and for the whole affine curve of decomposable representations:

for $t=0,1, \lambda$;

and

$x\left(\begin{array}{rrrrr}0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ & 0 & 0 & 0 \\ & & 0 & 0 \\ & & & 0\end{array}\right)+z\left(\begin{array}{rrrrr}0 & 0 & 0 & 0 & 1\end{array}\right)$
where $s^{2}=t(t-1)(t-\lambda)$. Note that the last equation is exactly the affine part $F(t, 1, s)$.

A. Ayyer: Determinants and Perfect Matchings, J. Combin. Theory (2013)

Ayyer gives a combinatorial interpretation of the determinant of a matrix as a generating function over Brauer diagrams. As a corollary he obtains Cayley's relation between determinants and Pfaffians.

Determinantal representations induced by higher order torsion points

Even theta characteristics are 2-torsion elements in $\mathrm{Pic}^{0}(C)$. Repeated extension of an r-torsion line bundle with itself gives

Theorem (Ravindra, Tripathi)

Let M be a minimal $3 r \times 3 r$ linear matrix such that the cokernel

$$
\mathcal{O}_{\mathbb{P}^{2}}(-2)^{3 r} \xrightarrow{M} \mathcal{O}_{\mathbb{P}^{2}}(-1)^{3 r}
$$

is an indecomposable rank r bundle E with $\operatorname{det} E=\mathcal{O}_{C}$. Then $\operatorname{det} M=F^{r}$. Furthermore, such E and M are in 1 - 1 correspondence with nontrivial r-torsion points of C.

Determinantal representations Indecomposable pfaffian representations Ayyer's combinatorial proof: $\operatorname{det}=\mathrm{Pf}^{2}$

Generalisations to rank $r=3$ Weierstrass form

Question

What symmetries does the repeated extension of an r-torsion line bundle with itself impose on the $3 r \times 3 r$ linear matrix?

Determinant

Let A be a $d \times d$ matrix. By definition,

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{d}} \operatorname{sgn}(\sigma) \prod_{i=1}^{d} a_{i, \sigma(i)}
$$

A permutation

$$
\sigma=\left[\begin{array}{lllll}
1 & 2 & 3 & \cdots & d \\
j_{1} & j_{2} & j_{3} & \cdots & j_{d}
\end{array}\right]
$$

can be written as $\left\{\left(1, j_{1}\right),\left(2, j_{2}\right), \ldots,\left(d, j_{d}\right)\right\}$.

$$
\text { Then } \operatorname{det}(A)=\sum_{\sigma \in S_{d}} \operatorname{sgn}(\sigma) \prod a_{1, j_{1}} a_{2, j_{2}} \cdots a_{d, j_{d}}
$$

Pfaffian

Let A be a $2 d \times 2 d$ skew-symmetric matrix.

$$
\operatorname{Pf}(A)=\sum_{\sigma \in \Pi} \operatorname{sgn}(\sigma) \prod_{i=1}^{d} a_{\sigma(2 i-1), \sigma(2 i)}, \text { where we sum over }
$$

$\Pi=\left\{\sigma \in S_{d}: \sigma(2 i-1)<\sigma(2 i)\right.$ and $\sigma(2 i-1)<\sigma(2 i+1)$.
A partition of $\{1,2, \ldots, 2 d\}$ into pairs can be written as $\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{d}, j_{d}\right)\right\}$ with $i_{k}<j_{k}$ and $i_{k}<i_{k+1}$.
Let $\sigma=\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & \cdots & 2 d \\ i_{1} & j_{1} & i_{2} & j_{2} & \cdots & j_{d}\end{array}\right]$ be the corresponding permutation.
Then $\operatorname{Pf}(A)=\sum_{\sigma \in \Pi} \operatorname{sgn}(\sigma) \prod a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} \cdots a_{i_{d}, j_{d}}$.

Tri???an

A partition of $\{1,2, \ldots, 3 d\}$ into triplets can be written as $\left\{\left(i_{1}, j_{1}, k_{1}\right),\left(i_{2}, j_{2}, k_{2}\right), \ldots,\left(i_{d}, j_{d}, k_{d}\right)\right\}$ with $i_{m}<j_{m}<k_{m}$ and $i_{m}<i_{m+1}$.

Let $\sigma=\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & \cdots & 3 d \\ i_{1} & j_{1} & k_{1} & i_{2} & \cdots & k_{d}\end{array}\right]$ be the corresponding permutation.
We could define

$$
\operatorname{Tri}(A)=\sum_{\sigma \in \Pi} \operatorname{sgn}(\sigma) \prod a_{i_{1}, j_{1}, k_{1}} a_{i_{2}, j_{2}, k_{2}} \cdots a_{i_{d}, j_{d}, k_{d}}
$$

In this case A is a three dimensional matrix representing a three dimensional tensor.

How can we generalise the identities involving the adjugate matrix: $\tilde{M} \cdot M=\operatorname{det} M$ Id and $\tilde{A} \cdot A=\operatorname{Pf} A \operatorname{ld}$?

We wish

Let C be a smooth plane curve of degree d. To every rank 3 vector bundle \mathcal{E} on C with properties
(i) $h^{0}(C, \mathcal{E})=3 d$,
(ii) $H^{0}(C, \mathcal{E}(-1))=0$,
(iii) $\operatorname{det} \mathcal{E}=\bigwedge^{3} \mathcal{E}=\mathcal{O}_{C}(d-1)$
we can assign a representation $A_{\mathcal{E}}$. In particular, isomorphic bundles induce equivalent representations.

We can define a map ψ from C to the space of $3 d \times 3 d \times 3 d$ matrices with entries from the space of homogeneous polynomials of degree $d-1$, such that $\psi^{-1}\left(\mathcal{P}_{d}\right)=C$. Choose a basis $\left\{s_{1}, \ldots, s_{3 d}\right\}$ for $H^{0}(C, \mathcal{E})$ and define

$$
x \stackrel{山}{\mapsto} \sum_{1 \leq i<j<k \leq 3 d}\left(s_{i}(x) \wedge s_{j}(x) \wedge s_{k}(x)\right)\left(E_{i j k}-E_{j i k}+E_{j k i}+E_{k i j}-E_{k j i}-E_{i k j}\right)
$$

However, we would like A to be a $3 d \times 3 d$ matrix with ???
symmetry for two reasons:

- Ravindra Tripathi determinantal representations corresponding to 3-torsion line bundles are of such 9×9 form.
- Decomposable bundles can be represented by block matrices (like in the case of decomposable pfaffian representations).

Let V be a representation of $G, \rho: G \rightarrow \mathrm{Gl}(V)$. We have two groups acting on $V^{\otimes n}$. The symmetric group S_{n} acts by permuting the factors

$$
\sigma \in S_{n}: u_{1} \otimes \cdots \otimes u_{n} \mapsto u_{\sigma(1)} \otimes \cdots \otimes u_{\sigma(n)}
$$

and G acts diagonally

$$
\rho^{\otimes n}(g): u_{1} \otimes \cdots \otimes u_{n} \mapsto \rho(g) u_{1} \otimes \cdots \otimes \rho(g) u_{n}
$$

Proposition

The above actions of G and S_{n} commute. Moreover, every S_{n}-isotypical component of $V^{\otimes n}$ is a G-sub-representation.

Recall the familiar representations of S_{n} :

- the trivial 1-dim representation;
- the 1-dim sign representation $\epsilon: S_{3} \rightarrow \pm 1$,
- S_{3} also has the geometric (or standard) 2-dim representation.
The blocks of the trivial and the sign representation in $V^{\otimes n}$ are Sym ${ }^{n} V$ and $\wedge^{n} V$ respectively. In particular,

$$
S_{2} \text { induces } \quad V \otimes V=\operatorname{Sym}^{2} V \oplus \wedge^{n} V
$$

and
S_{3} induces $\quad V \otimes V \otimes V=S^{2} m^{2} V \oplus \wedge^{n} V \oplus$ two copies of V.
S_{3} naturally acts on $V \otimes V \otimes V$ as described above.
But our aim is to produce matrix determinantal representations.

Example

To a 3-torsion point on a cubic curve F, we would like to assign 9×9 linear matrix whose determinant equals F^{3}. For this we need S_{3} to act on 9-dimensional V as a subrepresentation of $\mathrm{Gl}(9)$. Then S_{3} also acts diagonally on $V \otimes V$ and commutes with S_{2}.

Weierstrass canonical form

Theorem

By a projective change of coordinates, every irreducible curve can be brought into the Weierstrass form

$$
y^{2} z=x^{3}+p x z^{2}+q z^{3}, \quad p, q \in \mathbb{C}
$$

or equivalently $y^{2} z=x\left(x+\theta_{1} z\right)\left(x+\theta_{2} z\right), \quad \theta_{1}, \theta_{2} \in \mathbb{C}$.
Moreover, every reduced curve is projectively equivalent to one of the

Weierstrass canonical form

Theorem

By a projective change of coordinates, every irreducible curve can be brought into the Weierstrass form

$$
y^{2} z=x^{3}+p x z^{2}+q z^{3}, \quad p, q \in \mathbb{C}
$$

or equivalently $y^{2} z=x\left(x+\theta_{1} z\right)\left(x+\theta_{2} z\right), \quad \theta_{1}, \theta_{2} \in \mathbb{C}$.
Moreover, every reduced curve is projectively equivalent to one of the

$$
\begin{array}{ll}
x^{3}, x^{2} y, x y(x+y), x y z & \text { or } \\
(\alpha x+\beta y+\gamma z)\left(x^{2}-y z\right) & \text { for some } \alpha, \beta, \gamma \in \mathbb{C}
\end{array}
$$

Why do we want the Weierstrass canonical form?

Corollary

Any coordinate independent statement that holds for a Weierstrass cubic, holds for any irreducible cubic curve.

This implies:

- Determinantal representations of any cubic curve \mathcal{C} are in one to one correspondence with affine points on \mathcal{C}.

Why do we want the Weierstrass canonical form?

Corollary

Any coordinate independent statement that holds for a Weierstrass cubic, holds for any irreducible cubic curve.

This implies:

- Determinantal representations of any cubic curve \mathcal{C} are in one to one correspondence with affine points on \mathcal{C}.

Canonical form Inflection point Algorithm

Inflection point

Every irreducible cubic has inflection points: $\{F=0\} \cap\{$ Hes $F=0\} \subset \mathbb{P}^{2}$.

Proposition

If we find an inflection point on \mathcal{C}, we can put it into the Weierstrass form.

Change the coordinates so that the inflection point is $(0,1,0)$ and the inflection tangent is $z=0$. Considering all possible monomials occurring in F yields the Weierstrass form.

Corolary
When the defining polynomial F is real, a real change of coordinates gives the Weierstrass form with $p, q \in \mathbb{R}$.

Inflection point

Every irreducible cubic has inflection points: $\{F=0\} \cap\{$ Hes $F=0\} \subset \mathbb{P}^{2}$.

Proposition

If we find an inflection point on \mathcal{C}, we can put it into the Weierstrass form.

Change the coordinates so that the inflection point is $(0,1,0)$ and the inflection tangent is $z=0$. Considering all possible monomials occurring in F yields the Weierstrass form.

Corolary
When the defining polynomial F is real, a real change of coordinates gives the Weierstrass form with $p, q \in \mathbb{R}$.

Inflection point

Every irreducible cubic has inflection points: $\{F=0\} \cap\{$ Hes $F=0\} \subset \mathbb{P}^{2}$.

Proposition

If we find an inflection point on \mathcal{C}, we can put it into the Weierstrass form.

Change the coordinates so that the inflection point is $(0,1,0)$ and the inflection tangent is $z=0$. Considering all possible monomials occurring in F yields the Weierstrass form.

Corollary

When the defining polynomial F is real, a real change of coordinates gives the Weierstrass form with $p, q \in \mathbb{R}$.

Algorithm

- The enumerative problem of locating flexes of a plane cubic is solvable, since the corresponding Galois group is solvable [Harris, 1979].
- When \mathcal{C} contains a rational point [Silverman and Tate, 1992] provided an algorithm that puts it into a Weierstrass form.
A. Ayyer. Determinants and perfect matchings, J. Combin. Theory Ser. A, 120 (2013).
A. Beauville. Determinantal Hypersurfaces, Michigan Math. J. Vol. 48 (2000).
© A. Buckley and T. Košir. Plane Curves as Pfaffians, Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, (2010).

圊 R. J. Cook and A. D. Thomas. Line bundles and homogeneous matrices, Quart. J. Math. Oxford (1979).

用 I. V. Dolgachev. Classical Algebraic Geometry, Cambridge (2012).

圊 W．Fulton and J．Harris Representation Theory，A First Course，Springer（2004）．

圊 I．M．Gelfand，M．M Kapranov，A．V Zelevinsky Discriminants， Resultants and Multidimensional Determinants，Birkhauser （1994）．
嗇 J．Harris．Galois groups of enumerative problems，Duke Math．J．，Vol． 46 （1979）．

R．Tapia．Invariants and polnomial identities for higher rank matrices arXiv 2008
目 D．Plaumann，B．Sturmfels and C．Vinzant．Computing linear matrix representations of Helton－Vinnikov curves， Operator Theory：Advances and Applications，Vol． 222 （2012）．
R. G. Ravindra and A. Tripathi Torsion p[oints and matrices defining elliptic curves, Int J Algebra Comput 24 (2014).
圊 J.H. Silverman and J. Tate. Rational Points on Elliptic Curves, Undergraduate Texts in Mathematics, Springer (1992).
V. Vinnikov. Complete description of determinantal representations of smooth irreducible curves, Linear Algebra and its Applications, Vol. 125 (1989).
嗇 V. Vinnikov. Elementary transformations of determinantal representations of algebraic curves, Linear Algebra and its Applications, Vol. 135 (1990).

