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Abstract. In this article we find all (decomposable and indecomposable) linear
pfaffian representations of a plane cubic curve given by a Weierstrass equation.

1. Introduction

Let k be an algebraically closed field and C an irreducible curve in P2 defined
by a polynomial F (x, y, z) of degree 3. Every smooth cubic can be brought (by a
projective change of c0ordinates [7]) into the Weierstrass form

F (x, y, z) = yz2 − x(x− y)(x− λy) = 0,

for some λ 6= 0, 1.

We consider the following question. For given C (and F ) find a linear matrix

A(x, y, z) = xAx + y Ay + z Az

such that

detA(x, y, z) = c F (x, y, z)r

where Ax, Ay, Az ∈ Mat3r(k) and c ∈ k, c 6= 0. Here Mat3r(k) is the algebra of all
3r × 3r matrices over k.

We call A determinantal representation of C of order r. Two determinantal
representations A and A′ are equivalent if there exist X,Y ∈ GL3r(k) such that

A′ = XAY.

Obviously, equivalent determinantal representations define the same curve. Pfaffian
representation is a representation of order 2 with all 6 × 6 matrices being skew-
symmetric. Study of pfaffian representations is strongly related to and motivated by
determinantal representations. Every 3× 3 determinantal representation A induces
decomposable pfaffian representation[

0 A
−At 0

]
.

Note that the equivalence relation is well defined since[
0 XAY

−(XAY )t 0

]
=

[
X 0
0 Y t

] [
0 A
−At 0

] [
Xt 0
0 Y

]
.

2. Determinantal representations

Nonequivalent linear determinantal representations of order 1 are in bijection with
line bundles on C and they can be parametrised by the nonexceptional points on the
Jacobian variety of C. Vinnikov [14] found an explicit one to one correspondence
between the linear determinantal representations (up to equivalence) of C and the
points on an affine piece of C:
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Lemma 2.1 ([14]). Every smooth cubic can be brought into the Weierstrass form

F (x0, x1, x2) = −x1x22 + x30 + αx0x
2
1 + βx31.

A complete set of determinantal representations of F is

x0 Id +x2

 0 1 0
0 0 1
0 0 0

+ x1

 s
2 l α+ 3

4s
2

0 −s −l
−1 0 s

2

 ,

where l2 = s3+αs+β. Note that the last equation is exactly the affine part F (s, 1, l).

Proof. Let A(x0, x1, x2) = x0A0 + x2A2 + x1A1 be a representation of F (x0, x1, x2).
First we show that it is equivalent to a representation with

A0 = Id and A2 =

 0 1 0
0 0 1
0 0 0

 .

We remark that this is a Lancaster Rodman canonical form for real matrix pairs [6] .
Observe that A0 is invertible since detA(1, 0, 0) 6= 0. We can multiply A(x0, x1, x2)
by A−10 to obtain an equivalent representation with A0 = Id. The characteristic
polynomial of A2 equals detA(x0, 0,−1) = x30 which implies that A2 is nilpotent.
The nonzero term x1x

2
2 in F determines the order of nilpotency. Further GL3 action

from left and right which preserves this canonical form (the first two matrices in the
determinantal representation) reduces A1 to the above. �

3. Moduli

In [3] we prove the following two theorems:

Theorem 3.1. Let C be a curve defined by a polynomial F of degree d in P2. There
is a one to one correspondence between linear pfaffian representations of F (up to
equivalence) and rank 2 bundles (up to isomorphism) on C in the open set

MC(2,OC(d− 3)) \ Θ2,OC(d−3).

Theorem 3.2. There is a one to one correspondence between decomposable vector
bundles in MC(2,OC(d− 3)) \ Θ2,OC(d−3) and the open subset of Kummer variety

(JC \ Wg−1) / ≡,

where ≡ is the involution L 7→ L−1 ⊗OC(d− 3).

In the case of cubics we obtain

Corollary 3.3 (§1 in [2]). On a cubic curve C all linear pfaffian representations
can be parametrised by the points on the Kummer variety KC − {one point}.

Proof. Recall that on an elliptic curve KC
∼= OC . Since M s

C(2, 0) is empty, there
are no stable bundles on C. On the other hand, by [2, §4] the non-stable part of
MC(2,OC) consists of decomposable vector bundles of the form L ⊕ L−1 for L in
the Jacobian JC. Obviously L ⊕ L−1 and L−1 ⊕ L are equivalent. For L ∈ JC the
following conditions are equivalent:

• h0(C,L ⊕ L−1) = 0,
• h0(C,L) = 0,
• L 6= OC .



CUBIC CURVES AS PFAFFIANS 3

Therefore

MC(2,OC) \ Θ2,OC
= {L ⊕ L−1; L ∈ JC} \ {OC ⊕OC}.

�

Recall that the Jacobian of a cubic curve C with g = 1 is the curve itself and
J − {W0} is an affine piece of C. In particular, Corollary 3.3 implies that the
complete set of pfaffian representations of F (put in the Weierstrass form) equals[

0 M
−M t 0

]
,

where M are the determinantal representations in Lemma 2.1. Note that M and
−M t are not equivalent determinantal representations, but[

0 M
−M t 0

]
and

[
0 −M t

M 0

]
are quivalent pfaffian representations since[

0 I
I 0

] [
0 M
−M t 0

] [
0 I
I 0

]
=

[
0 −M t

M 0

]
.

Remark 3.4. Each point in the the moduli space MC(2,OC) corresponds to a
decomposable bundle, thus decomposable Pfaffian. However, this does not imply
that all the bundles are decomposable. Moduli space consists of S-equivalence classes
rather than bundles, so that the direct sum of L and L, or the non-trivial extension
of L by L really represent the same point.

4. Pfaffian representations

Pfaffian representations are equivalent under the action

A 7→ P ·A · P t,

where P is an invertible 6× 6 constant matrix. By a suitable P we can reduce the
number of parameters in A. In other words, we will reduce the number of equivalent
representations in each equivalence class. The proof of Theorem 4.1 outlines an
algorithm for finding all pfaffian representations (up to equivalence) of

C = {(x, y, z) ∈ P2 : yz2 − x(x− y)(x− λy) = 0}.

Theorem 4.1. Let C be a smooth cubic in the Weierstrass form

F (x, y, z) = yz2 − x(x− y)(x− λy).

A complete set of pfaffian representations of F consists of three indecomposable
representations and for the whole affine curve of decomposable representations:

x



0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0


+ z



0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0


+ y



0 1 0 3t2−2t(1+λ)−(1−λ)2
4 0 t−1−λ

2
0 0 0 −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0


for t = 0, 1, λ
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and

x



0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0


+ z



0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0


+ y



0 0 0 3t2−2t(1+λ)−(1−λ)2
4 s t−1−λ

2
0 0 −s −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0


,

where s2 = t(t − 1)(t − λ). Note that the last equation is exactly the affine part
F (t, 1, s).

The proof will be based on Lancaster–Rodman canonical forms of matrix pairs [6].
This generalizes Vinnikov’s construction of determinantal representations [14]. Let
A = xAx+zAz+yAy be a pfaffian representation of C. Observe that Ax is invertible
and Az nilpotent since C is defined by Pf A and contains x3 term and no z3 term.
Moreover, yz2 determines the order of nilpotency. This determines the unique skew-
symmetric canonical form [6, Theorem 5.1] of the first two matrices. In other words,
every pfaffian representation of C can be put into the following form

x



0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0


+ z



0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0


+ y



0 c12 c13 c14 c15 c16
0 c23 c24 c25 c26

0 c34 c35 c36
0 c45 c46

0 c56
0


.

Since Pf A defines the equation of C, we get

c36 = −1,

c26 = −c35,
c25 = −1− λ− c16 − c34,
c14 = c16 + c216 + c34 + c16c34 + c234 + 2c24c35 + c16c

2
35 − c34c235 −

c23c45 − c13c46 + c23c35c46 − c12c56 + c13c35c56 + λ(1 + c16 + c34),

c15 = −c24 − c16c35 + c34c35 − c23c46 − c13c56.
There are 15−5 parameters cij left in the representation. Additionally, the coefficient
at y3 equals (c14c26c35−c14c25c36−c13c26c45+c12c36c45+c16(c25c34−c24c35+
c23c45) + c13c25c46 − c12c35c46 − c15(c26c34 − c24c36 + c23c46) + c14c23c56 −
c13c24c56 + c12c34c56) = 0.

Lemma 4.2. The action A 7→ P · A · P t preserves the canonical form of the first
two matrices in the representation if and only if P equals[

P1 P2

P3 P−11 + P3P
−1
1 P2

]
or

[
P2 P1

−P−11 + P3P
−1
1 P2 P3

]
where P1 is invertible and Pi are of the form pi1 pi2 pi3

0 pi1 pi2
0 0 pi1

 , i = 1, 2, 3.

Proof. Denote

I =

 0 0 1
0 1 0
1 0 0

 and N =

 0 1 0
1 0 0
0 0 0

 .



CUBIC CURVES AS PFAFFIANS 5

We will need the following obvious observation, which can be proved directly by
comparing matrix elements:
Let Y, Y ′ be 6× 6 matrices for which

Y.

[
0 I
−I 0

]
=

[
0 I
−I 0

]
.Y ′ and Y.

[
0 N
−N 0

]
=

[
0 N
−N 0

]
.Y ′ hold.

Then Y =

[
Y1 Y2
Y3 Y4

]
and Y ′ =

[
Y t
4 −Y t

3

−Y t
2 Y t

1

]
, where

Yi =

 yi1 yi2 yi3
0 yi1 yi2
0 0 yi1

 , i = 1, 2, 3, 4.

We call the specific form of the above Toeplitz matrices ”4 form”.

Now we can find all invertible

P =

[
P1 P2

P3 P4

]
that satisfy

P.

[
0 I
−I 0

]
.P t =

[
0 I
−I 0

]
and P.

[
0 N
−N 0

]
.P t =

[
0 N
−N 0

]
.

By the above observation all Pi’s are of 4 form. Moreover,

p11p41 − p21p31 = 1,

p22p31 + p21p32 − p12p41 − p11p42 = 0,

p23p31 + p22p32 + p21p33 − p13p41 − p12p42 − p11p43 = 0.

In other words, if P1 is invertible then P4 = P−11 + P3P
−1
1 P2. The same way we see

that P3 = −P−12 + P1P
−1
2 P4 when P2 is invertible.

Since P is invertible and consists of 4 blocks, at least one of P1, P2 is also invert-
ible. Note that [

P1 P2

P3 P4

]
.

[
0 − Id
Id 0

]
=

[
P2 −P1

P4 −P3

]
exchanges P1 and P2 which finishes the proof. �

The action of Lemma 4.2 enables us to reduce the number of parameters cij . We
can choose such P that its action eliminates

c13 = c23 = c46 = c56 = 0, c35 = 0 and c16 = c34.(1)

Indeed, if we choose p11 = 1, the above condtions determine p12, p13 and p22, p23, p32, p33:

p32 → c56 − c35p31 + c56p31p21,

p22 → −c23 + c35p21,

p33 → 1

2
((c16 − c34 + c235 − c23c56)p31 + 2c46(1 + p31p21)),

p23 → 1

2
(−2c13 + (−c16 + c34 + c235 − c23c56)p21),

p12 → −c35 + c56p21,

p13 → 1

2
(c16 − c34 + c235 − c23c56 + 2c46p21).
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The relations among cij then simplify to:

c14 = 3c216 + λ+ 2c16(1 + λ),

c24 = −c15, ,
0 = c215 − 8c316 − c12c45 − λ− λ2 − 8c216(1 + λ)− 2c16(1 + 3λ+ λ2).(2)

which leaves us with 4 parameters c12, c45, c15, c16 and equation (2) connecting
them: 

0 c12 0 c14 c15 c16
0 0 −c15 −1−λ−2c16 0

0 c16 0 −1
0 c45 0

0 0
0

 .

It is easy to check that A 7→ P · A · P t from Lemma 4.2 preserves all zeros and
−1 in the above matrix if and only if

Pi =

 pi1 0 0
0 pi1 0
0 0 pi1

 for i = 1, 2, 3, 4, together with p11p41 − p21p31 = 1.

We can use this ”diagonal” action to make c45 = 0 by chosing appropriate p41 like
in (1). When c15 6= 0 we can furthermore make c12 = 0 by p11 = p41 = 1, p31 =
0, p21 = −c12/2c15. The only case left to consider is c15 = 0. The action which keeps
c45 = 0 maps c12 7→ c12p

2
11 where p11p41 = 1 and p31 = 0. Thus either c12 = 0 or we

can make c12 = 1.

In order to simplify notations even further, we introduce parameters t and s by
c16 = 1

2(t − 1 − λ) and c15 = is (here i2 = −1). When c45 = c12 = 0 the matrix
becomes 

0 0 0 3t2−2t(1+λ)−(1−λ)2
4 s t−1−λ

2
0 0 −s −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0


and relation (2) in the new parameters equals s2 − t(t− 1)(t− λ) = 0.

Additionally we get
0 1 0 3t2−2t(1+λ)−(1−λ)2

4 0 t−1−λ
2

0 0 −s −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0


where t is one of the three solutions of 0 = −t(t− 1)(t− λ).

Remark 4.3. The representations in Theorem 4.1 are non-equivalent to each other,
since they are not connected by the action A 7→ P ·A · P t.
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