Simultaneously self-adjoint sets of matrices

Anita Buckley and Tomaž Košir

Department of Mathematics
Faculty of Mathematics and Physics
University of Ljubljana
Slovenia

7th Linear Algebra Workshop
Ljubljana, June 4-12, 2014

Outline

(9) 3 approaches to 2 questions

- Problem
- Notation

2) Sets of matrices \rightarrow determinantal representations
(3) Semidefinite programming

- Linear matrix inequality (LMI)
- Rigidly convex algebraic sets

4) Sets of 3×3 matrices

- $n=1$
- $n=2$: cubic curve
- $n=3$: cubic surface
- $n \geq 4$

Two questions

(1) Consider a set of matrices $\mathcal{M} \subset \mathbb{C}^{d \times d}$. When are all the elements of \mathcal{M} simultaneously equivalent to hermitian matrices under the natural action of $\mathrm{GL}_{d}(\mathbb{C}) \times \mathrm{GL}_{d}(\mathbb{C})$? In other words, when do there exist $A, B \in \mathrm{GL}_{d}(\mathbb{C})$ such that $A N B$ is hermitian for all $N \in \mathcal{M}$?
(2) Assume that the answer to (1) is positive. Is there an element in \mathcal{M} that is equivalent (under this simultaneous equivalence) to a positive definite matrix? In other words, given a set of hermitian $d \times d$ matrices, when do these matrices admit a positive definite linear combination?

Two questions

(1) Consider a set of matrices $\mathcal{M} \subset \mathbb{C}^{d \times d}$. When are all the elements of \mathcal{M} simultaneously equivalent to hermitian matrices under the natural action of $\mathrm{GL}_{d}(\mathbb{C}) \times \mathrm{GL}_{d}(\mathbb{C})$? In other words, when do there exist $A, B \in \mathrm{GL}_{d}(\mathbb{C})$ such that ANB is hermitian for all $N \in \mathcal{M}$?
(2) Assume that the answer to (1) is positive. Is there an element in \mathcal{M} that is equivalent (under this simultaneous equivalence) to a positive definite matrix? In other words, given a set of hermitian $d \times d$ matrices, when do these matrices admit a positive definite linear combination?

Approaches

- linear algebra: simultaneous reduction of a set of matrices to hermitian (or symmetric) form
- semidefinite programming: linear matrix inequality (LMI) representations
- algebraic qeometry: cubic curves, surfaces and hypersurfaces as zero loci of determinants

Approaches

- linear algebra: simultaneous reduction of a set of matrices to hermitian (or symmetric) form
- semidefinite programming: linear matrix inequality (LMI) representations
- algebraic geometry: cubic curves, surfaces and hypersurfaces as zero loci of determinants

Approaches

- linear algebra: simultaneous reduction of a set of matrices to hermitian (or symmetric) form
- semidefinite programming: linear matrix inequality (LMI) representations
- algebraic geometry: cubic curves, surfaces and hypersurfaces as zero loci of determinants

Approaches

Computationally both questions are straightforward:
Question (1) reduces to a system of linear equations over \mathbb{R},

$$
C N_{i}^{*}=N_{i} C^{*}, \quad i+1, \ldots, n,
$$

where $C=A^{-1} B^{*}$ and N_{1}, \ldots, N_{n} is a basis of the \mathbb{R}-linear span of \mathcal{M}.
Question (2) is solved by semidefinite programming (at least for small d and n).

Simultaneously self-adjoint sets of matrices

Definition

Let $\mathcal{M} \subset \mathbb{C}^{d \times d}$ be a set of square matrices. We call \mathcal{M} simultaneously self-adjoint if there exist invertible
$A, B \in \mathrm{GL}_{d}(\mathbb{C})$ such that $A N B$ are complex hermitean matrices for all $N \in \mathcal{M}$.

We can restrict to finite sets:

```
Lemma
The following statements are equivalent:
    - M}\mathrm{ is simultaneously self-adjoint
    - }\mp@subsup{\operatorname{Lin}}{\mathbb{R}}{}\mathcal{M}\mathrm{ is simultaneously self-adjoint.
    - Any hasis of }\operatorname{Sin
```


Simultaneously self-adjoint sets of matrices

Definition

> Let $\mathcal{M} \subset \mathbb{C}^{d \times d}$ be a set of square matrices. We call \mathcal{M} simultaneously self-adjoint if there exist invertible
> $A, B \in \mathrm{GL}_{d}(\mathbb{C})$ such that $A N B$ are complex hermitean matrices for all $N \in \mathcal{M}$.

We can restrict to finite sets:

Lemma

The following statements are equivalent:

- \mathcal{M} is simultaneously self-adjoint
- $\mathcal{L i n}_{\mathbb{R}} \mathcal{M}$ is simultaneously self-adjoint.
- Any basis of $\mathcal{L i n}_{\mathbb{R}} \mathcal{M}$ is simultaneously self-adjoint.

Definite and indefinite sets of matrices

- A set \mathcal{M} of complex hermitean matrices is definite if there exist $k_{0}, \ldots, k_{n} \in \mathbb{R}$ and $M_{0}, \ldots, M_{n} \in \mathcal{M}$ such that

$$
k_{0} M_{0}+k_{1} M_{1}+\cdots+k_{n} M_{n}>0
$$

It is indefinite otherwise.

- A vector $v \in \mathbb{C}^{d}$ is self-orthogonal for \mathcal{M} if

$$
v N v^{*}=0 \quad \text { for all } N \in \mathcal{M}
$$

Note that \mathcal{M} with a self-orthogonal vector is always indefinite.

Definite and indefinite sets of matrices

- A set \mathcal{M} of complex hermitean matrices is definite if there exist $k_{0}, \ldots, k_{n} \in \mathbb{R}$ and $M_{0}, \ldots, M_{n} \in \mathcal{M}$ such that

$$
k_{0} M_{0}+k_{1} M_{1}+\cdots+k_{n} M_{n}>0 .
$$

It is indefinite otherwise.

- A vector $v \in \mathbb{C}^{d}$ is self-orthogonal for \mathcal{M} if

$$
v N v^{*}=0 \quad \text { for all } N \in \mathcal{M} .
$$

Note that \mathcal{M} with a self-orthogonal vector is always indefinite.

Determinantal representations

- Subset \mathcal{M} is regular if it contains an invertible matrix, i.e. $\mathcal{M} \cap \mathrm{GL}_{3}(\mathbb{C}) \neq \emptyset$.
- To \mathcal{M} with a basis $\left\{M_{0}, \ldots, M_{n}\right\}$ we assign matrix

whose entries are linear in x_{0}, \ldots, x_{n}. When \mathcal{M} is regular, we call the matrix M a determinantal representation of the hypersurface

We say that the set \mathcal{M} has a determinantal representation.

Determinantal representations

- Subset \mathcal{M} is regular if it contains an invertible matrix, i.e. $\mathcal{M} \cap \mathrm{GL}_{3}(\mathbb{C}) \neq \emptyset$.
- To \mathcal{M} with a basis $\left\{M_{0}, \ldots, M_{n}\right\}$ we assign matrix

$$
M\left(x_{0}, \ldots, x_{n}\right)=x_{0} M_{0}+x_{1} M_{1}+\ldots+x_{n} M_{n}
$$

whose entries are linear in x_{0}, \ldots, x_{n}. When \mathcal{M} is regular,
we call the matrix M a determinantal representation of the hypersurface

$$
\left\{\left(x_{0}, \ldots, x_{n}\right) \subset \mathbb{P}^{n} ; \operatorname{det} M\left(x_{0}, \ldots, x_{n}\right)=0\right\}
$$

We say that the set \mathcal{M} has a determinantal representation.

Determinantal representations

- Subset \mathcal{M} is regular if it contains an invertible matrix, i.e. $\mathcal{M} \cap \mathrm{GL}_{3}(\mathbb{C}) \neq \emptyset$.
- To \mathcal{M} with a basis $\left\{M_{0}, \ldots, M_{n}\right\}$ we assign matrix

$$
M\left(x_{0}, \ldots, x_{n}\right)=x_{0} M_{0}+x_{1} M_{1}+\ldots+x_{n} M_{n}
$$

whose entries are linear in x_{0}, \ldots, x_{n}. When \mathcal{M} is regular, we call the matrix M a determinantal representation of the hypersurface

$$
\left\{\left(x_{0}, \ldots, x_{n}\right) \subset \mathbb{P}^{n} ; \operatorname{det} M\left(x_{0}, \ldots, x_{n}\right)=0\right\}
$$

We say that the set \mathcal{M} has a determinantal representation.

Determinantal representations

- Subset \mathcal{M} is regular if it contains an invertible matrix, i.e. $\mathcal{M} \cap \mathrm{GL}_{3}(\mathbb{C}) \neq \emptyset$.
- To \mathcal{M} with a basis $\left\{M_{0}, \ldots, M_{n}\right\}$ we assign matrix

$$
M\left(x_{0}, \ldots, x_{n}\right)=x_{0} M_{0}+x_{1} M_{1}+\ldots+x_{n} M_{n}
$$

whose entries are linear in x_{0}, \ldots, x_{n}. When \mathcal{M} is regular, we call the matrix M a determinantal representation of the hypersurface

$$
\left\{\left(x_{0}, \ldots, x_{n}\right) \subset \mathbb{P}^{n} ; \operatorname{det} M\left(x_{0}, \ldots, x_{n}\right)=0\right\}
$$

We say that the set \mathcal{M} has a determinantal representation.

Hypersurfaces

- The underlying field is \mathbb{C}, often we restrict to \mathbb{R}.
- $F\left(x_{0}, \ldots, x_{n}\right)$ is a homogeneous polynomial of degree $d \geq 2$ in $n+1$ variables.
- The zero locus $\left\{F\left(x_{0}, \ldots, x_{n}\right)=0\right\} \subset \mathbb{P}^{n}$ defines a hypersurface in \mathbb{P}^{n}

Example: The Weierstrass cubic curve is defined by

$$
\left\{(x, y, z) \subset \mathbb{P}^{2} ;-y^{2} z+x^{3}+p x^{2} z+q x z^{2}=0\right\}, \quad p, q \in \mathbb{C} .
$$

The set of zeros $F\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ defines a surface in \mathbb{P}^{3}.

Determinantal representations are well-defined.

- Different choices of basis for \mathcal{M} yield projectively equivalent hypersurfaces (linear coordinate change in the determinant polynomials).
- Equivalent determinantal representations $M\left(x_{0}, \ldots, x_{n}\right)$ and $M^{\prime}\left(x_{0}, \ldots, x_{n}\right)=A M\left(x_{0}, \ldots, x_{n}\right) B$ for $A, B \in \mathrm{GL}_{d}$, define the same hypersurface.

Lemma
A regular set \mathcal{M} is simultaneously self-adjoint if and only if any (and therefore every) corresponding determinantal representation $M\left(x_{0}, \ldots, x_{n}\right)$ is equivalent to some self-adjoint determinantal representation.

Question (2) can be solved by using semidefinite programming.
Assume that \mathcal{M} is simultaneously self-adjoint. Therefore each corresponding determinantal representation is equivalent to some self-adjoint determinantal representation

$$
x_{0} A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \text {, where all } A_{i} \in \mathbb{H}^{d \times d} .
$$

Matrices admit a positive definite linear combination if and only if

$$
\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{P}^{n} ; x_{0} A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \geq 0\right\} \neq \emptyset .
$$

Semidefinite programming (SDP)

Semidefinite programming is probably the most important new development in optimization in the last 20 years.

The semidefinite programme

is to minimize an affine linear functional I on \mathbb{R}^{n} subject to a linear matrix inequality (LMI) constraint

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \geq 0, \text { where all } A_{i} \in \mathbb{H}^{d \times d} .
$$

SDP can be efficiently solved:

- theoretically by finding an approximate solution with accuracy ε in a time that is polynomial in $\log \left(\frac{1}{\varepsilon}\right)$ and in the input size of the problem,
- using interior point methods in many concrete situations.

Which convex sets are feasible sets for SDP?

In other words, given a convex set $\mathcal{C} \subset \mathbb{R}^{n}$, do there exist matrices such that

$$
(*) \quad \mathcal{C}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \geq 0\right\} ?
$$

We refer to $(*)$ as a linear matrix inequality (LMI) representation of \mathcal{C}. Sets having a LMI representation are also called spectrahedra.

Question (2): Given a determinantal representation of a self-adjoint set \mathcal{M}, is it also a LMI representation?

In order to describe feasible sets for SDP, we examine the determinant of a LMI representation.

Rigidly convex algebraic interior

Let $q(x)=\operatorname{det}\left(A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)$. Take $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right) \in \operatorname{Int} \mathcal{C}$ and normalize the LMI representation by $A_{0}+x_{1}^{0} A_{1}+\cdots+x_{n}^{0} A_{n}=$ Id. We restrict the polynomial q to a straight line through x^{0} : for any $x \in \mathbb{R}^{n}$ consider

$$
q\left(x^{0}+t x\right)=\operatorname{det}\left(\operatorname{ld}+t\left(x_{1} A_{1}+\cdots+x_{n} A_{n}\right)\right)
$$

Since all the eigenvalues of $x_{1} A_{1}+\cdots+x_{n} A_{n}$ are real, we conclude that $q\left(x^{0}+t x\right) \in \mathbb{R}[t]$ has only real zeroes. We say that it satisfies the real zero (RZ) condition with respect to $x^{0} \in \mathbb{R}^{n}$. An algebraic interior \mathcal{C} whose minimal defining polynomial satisfies the RZ condition with respect to one and then every point of $\operatorname{Int} \mathcal{C}$ is rigidly convex.

Example

- The circle $\left\{\left(x_{1}, x_{2}\right) ; x_{1}^{2}+x_{2}^{2} \leq 1\right\}$ is a rigidly convex algebraic interior,
- the "flat TV screen" $\left\{\left(x_{1}, x_{2}\right) ; x_{1}^{4}+x_{2}^{4} \leq 1\right\}$ is not.

Rigidly convex algebraic interior \leftrightarrow LMI

Theorem

Set \mathcal{C} that admits a LMI representation is a rigidly convex algebraic interior. Furthermore, determinant of the LMI representation is a multiple of the minimal defining polynomial of \mathcal{C}.

Theorem

A necessary and sufficient condition for $\mathcal{C} \subset \mathbb{R}^{2}$ to admit a LMI representation is that \mathcal{C} is a rigidly convex algebraic interior. Moreover, the size of the matrices in a LMI representation is equal to the degree a minimal defining polynomial of \mathcal{C}.

There can be no exact analogue for $n>2$.

Lemma

Every pair of 3×3 matrices whose determinant induces a real polynomial is simultaneously self-adjoint.

Kronecker canonical forms for the pencil $x_{0} M_{0}+x_{1} M_{1}$ can be made self-adjoint by suitable left multiplications:

$$
\begin{aligned}
x_{1} I+x_{2}\left(\begin{array}{lll}
a & 1 & 0 \\
0 & a & 1 \\
0 & 0 & a
\end{array}\right) & \mapsto x_{1}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & a \\
0 & a & 1 \\
a & 1 & 0
\end{array}\right), \\
x_{1} I+x_{2}\left(\begin{array}{lll}
a & 1 & 0 \\
0 & a & 0 \\
0 & 0 & b
\end{array}\right) & \mapsto x_{1}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & a & 0 \\
a & 1 & 0 \\
0 & 0 & b
\end{array}\right), \\
x_{1} I+x_{2}\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & b
\end{array}\right) & \mapsto x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & b \\
0 & b & 0
\end{array}\right) .
\end{aligned}
$$

$n=2$: cubic curve

Pick a basis for \mathcal{M}, such that
$\operatorname{det}\left(x_{0} M_{0}+x_{1} M_{1}+x_{2} M_{2}\right)=-x_{1}^{2} x_{2}+x_{0}^{3}+p x_{0}^{2} x_{2}+q x_{2}^{3}, \quad p, q \in \mathbb{R}$
is in the Weierstrass form.
The group action
$x_{0} M_{0}+x_{1} M_{1}+x_{2} M_{2} \longrightarrow A\left(x_{0} M_{0}+x_{1} M_{1}+x_{2} M_{2}\right) B, \quad A, B \in \mathrm{GL}_{3}(\mathbb{C})$
in a unique way reduces the representation to

$$
(*) \quad x_{0} \operatorname{ld}+x_{1}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{ccc}
\frac{t}{2} & l & p+\frac{3}{4} t^{2} \\
0 & -t & -l \\
-1 & 0 & \frac{t}{2}
\end{array}\right)
$$

where $t, I \in \mathbb{C}$ satisfy $I^{2}=t^{3}+p t+q$.

Proposition

$M=x_{0} M_{0}+x_{1} M_{1}+x_{2} M_{2}$ can be in unique way transformed to an equivalent representation

$$
\left(\begin{array}{ccc}
x_{2}\left(p+\frac{3}{4} t^{2}\right) & x_{1}+x_{2} l & x_{0}+x_{2} \frac{t}{2} \\
x_{1}-x_{2} l & x_{0}-x_{2} t & 0 \\
x_{0}+x_{2} \frac{t}{2} & 0 & -x_{2}
\end{array}\right) \text {, where } l^{2}=t^{3}+p t+q .
$$

The set $\left\{M_{0}, M_{1}, M_{2}\right\}$ is simultaneously self-adjoint if and only if $t \in \mathbb{R}$ and $I \in \mathbb{R}$.

Definite triplets

Write $s=i l$. Then $(t, s) \subset \mathbb{R}^{2}$ are points on the affine curve $-s^{2}=t^{3}+p t+q$.

Theorem

The representation $x_{0} A_{0}+x_{1} A_{1}+x_{2} A_{2}$ is definite ($L M I$ representation) if and only if the corresponding point (t, s) lies on the compact component of the affine curve
$-s^{2}=t^{3}+p t+q$.
A triple of complex hermitean matrices A_{0}, A_{1}, A_{2} is either definite or A_{0}, A_{1}, A_{2} have a common self-orthogonal vector.

3 approaches to 2 questions
Sets of matrices \rightarrow determinantal representations
Semidefinite programming Sets of 3×3 matrices
$n=1$
$n=2$: cubic curve
$n=3$: cubic surface
$n \geq 4$

Smooth cubics $-s^{2}=t\left(t+\theta_{1}\right)\left(t+\theta_{2}\right)$

$$
\theta_{1}, \theta_{1} \in \mathbb{R}
$$

$$
\theta_{1}=\overline{\theta_{1}} .
$$

$n=2$: cubic curve
$n=3$: cubic surface
$n \geq 4$

Singular cubics

$-s^{2}=t^{3},-s^{2}=t^{2}(t-1),-s^{2}=t(t-1)^{2}$.

$n=1$
$n=2$: cubic curve
$n=3$: cubic surface
$n \geq 4$

$n=3$: cubic surface

Proposition

Determinantal representation $M\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of a real smooth cubic surface is equivalent to a self-adjoint representation if and only if the double-six corresponding to M, M^{t} is mutually self-conjugate, i.e.

$$
\left(\begin{array}{ccc}
a_{1} & \ldots & a_{6} \\
b_{1} & \ldots & b_{6}
\end{array}\right)
$$

equals to one of the

$$
\left(\begin{array}{llllll}
\frac{a_{1}}{a_{i_{1}}} & \frac{a_{2}}{a_{i_{2}}} & \frac{a_{3}}{a_{i 3}} & \frac{a_{4}}{a_{i_{4}}} & \frac{a_{5}}{a_{i_{5}}} & \frac{a_{6}}{a_{i_{6}}}
\end{array}\right) .
$$

Definite 4-tuples

Let $A\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ be a self-adjoint determinantal representation of a smooth cubic surface S. The only type of mutually self-conjugate double-six, which does not have a self-orthogonal vector is

$$
\left(\begin{array}{llllll}
\frac{a_{1}}{a_{2}} & \frac{a_{2}}{a_{1}} & \frac{a_{3}}{a_{4}} & \frac{a_{4}}{a_{3}} & \overline{a_{5}} & \frac{a_{6}}{a_{6}}
\end{array}\right) .
$$

Let $\pi_{11}=\left\langle a_{1}, \overline{a_{1}}\right\rangle, \pi_{22}=\left\langle a_{2}, \overline{a_{2}}\right\rangle$ be tritangent planes spanned by the lines of S. Then $A\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is definite if and only if the ovoidal and non-ovoidal piece of S lie in different wedges cut out by π_{11} and π_{22}.

$n \geq 4$

For a set \mathcal{M} with 5 matrices it is enough to check if two of its 4 dimensional subsets are simultaneously self-adjoint.

Theorem

To a 5 dimensional \mathcal{M} we assign a determinantal representation $M=x_{0} M_{0}+\cdots+x_{4} M_{4}$ which defines a cubic threefold $F\left(x_{0}, \ldots, x_{4}\right)$ in \mathbb{P}^{4}.
Let π_{1} and π_{2} be hyperplanes in \mathbb{P}^{4} such that $F \cap \pi_{2}$ and $F \cap \pi_{2}$ are smooth cubic surfaces. Then \mathcal{M} is simultaneously self-adjoint if and only if $\left.M\right|_{\pi_{1}}$ and $\left.M\right|_{\pi_{2}}$ are equivalent to some self-adjoint representations.

WLG: for $n \geq 4$, we only need to test the sets $\left\{M_{0}, M_{1}, M_{2}, M_{k}\right\}$ for $k=3, \ldots, n$.

Definite subspaces for $n \geq 4$

To a n dimensional \mathcal{M} we assign a self-adjoint determinantal representation $x_{0} A_{0}+\cdots+x_{n} A_{n}=\left[a_{i j}\right]_{i, j=1}^{3}$, which defines a real cubic hypersurface $F\left(x_{0}, \ldots, x_{n}\right)$ in \mathbb{P}^{n}.

Proposition

\mathcal{M} is definite if and only if there exist $k_{0}, \ldots, k_{n} \in \mathbb{R}$ such that
L: $a_{11}+a_{22}+a_{33}$,
$Q: \quad a_{11} a_{22}-a_{12} \overline{a_{12}}+a_{11} a a_{33}-a_{13} \overline{a_{13}}+a_{22} a_{33}-a_{23} \overline{a_{23}}$,
F : $\operatorname{det}\left[a_{i j}\right]$
evaluated in $k_{0}, \ldots, k_{n} \in \mathbb{R}$ are all strictly positive.

n-tuples with $n \geq 5-2$

Proposition

The representation M is indefinite if and only if the conic $Q=0$ and its interior $Q>0$ are entirely included in the $L \cdot F<0$ part.

E．J．Harris．Galois groups of enumerative problems，Duke Math．J．，Vol． 46 （1979）．

目 J．H．Silverman and J．Tate．Rational Points on Elliptic Curves，UTM，Springer（1992）．

击 V．Vinnikov．Self－adjoint determinantal rep．s of real irred． cubics，Oper．Th．：Adv．Appl．，Vol．19，（1986）．

囦－Complete description of determinantal rep．s of smooth irreducible curves，Lin．Alg．Appl．，Vol． 125 （1989）．

囯－Elementary transformations of determinantal rep．s of alg．curves，Lin．Alg．Appl．，Vol． 135 （1990）．

囯－LMI Representations of convex semialgebraic sets and determinantal rep．s of algebraic hypersurfaces：Past， present，and future，Oper．Th．：Adv．Appl．，Vol． 222 （2012）．

