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Problem
Notation

Two questions

(1) Consider a set of matricesM⊂ Cd×d . When are all the
elements ofM simultaneously equivalent to hermitian
matrices under the natural action of GLd (C)×GLd (C)? In
other words, when do there exist A,B ∈ GLd (C) such that
ANB is hermitian for all N ∈M?

(2) Assume that the answer to (1) is positive. Is there an
element inM that is equivalent (under this simultaneous
equivalence) to a positive definite matrix? In other words,
given a set of hermitian d × d matrices, when do these
matrices admit a positive definite linear combination?
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Approaches

linear algebra: simultaneous reduction of a set of
matrices to hermitian (or symmetric) form
semidefinite programming: linear matrix inequality (LMI)
representations
algebraic geometry: cubic curves, surfaces and
hypersurfaces as zero loci of determinants
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Approaches

Computationally both questions are straightforward:

Question (1) reduces to a system of linear equations over R,

CN∗i = NiC∗, i + 1, . . . ,n,

where C = A−1B∗ and N1, . . . ,Nn is a basis of the R−linear
span ofM.
Question (2) is solved by semidefinite programming (at least
for small d and n).
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Simultaneously self-adjoint sets of matrices

Definition

LetM⊂ Cd×d be a set of square matrices. We callM
simultaneously self-adjoint if there exist invertible
A, B ∈ GLd (C) such that ANB are complex hermitean matrices
for all N ∈M.

We can restrict to finite sets:

Lemma
The following statements are equivalent:

M is simultaneously self-adjoint
LinRM is simultaneously self-adjoint.
Any basis of LinRM is simultaneously self-adjoint.
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Problem
Notation

Definite and indefinite sets of matrices

A setM of complex hermitean matrices is definite if there
exist k0, . . . , kn ∈ R and M0, . . . ,Mn ∈M such that

k0M0 + k1M1 + · · ·+ knMn > 0.

It is indefinite otherwise.
A vector v ∈ Cd is self-orthogonal forM if

vNv∗ = 0 for all N ∈M.

Note thatM with a self-orthogonal vector is always indefinite.
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Determinantal representations

SubsetM is regular if it contains an invertible matrix, i.e.
M∩GL3(C) 6= ∅.
ToM with a basis {M0, . . . ,Mn} we assign matrix

M(x0, . . . , xn) = x0M0 + x1M1 + . . .+ xnMn

whose entries are linear in x0, . . . , xn. WhenM is regular,
we call the matrix M a determinantal representation of the
hypersurface

{(x0, . . . , xn) ⊂ Pn ; det M(x0, . . . , xn) = 0}.

We say that the setM has a determinantal representation.
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Hypersurfaces

The underlying field is C, often we restrict to R.
F (x0, . . . , xn) is a homogeneous polynomial of degree
d ≥ 2 in n + 1 variables.
The zero locus {F (x0, . . . , xn) = 0} ⊂ Pn defines a
hypersurface in Pn

Example: The Weierstrass cubic curve is defined by

{(x , y , z) ⊂ P2 ; −y2z + x3 + px2z + qxz2 = 0}, p,q ∈ C.

The set of zeros F (x0, x1, x2, x3) defines a surface in P3.
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Determinantal representations are well-defined.

Different choices of basis forM yield projectively
equivalent hypersurfaces (linear coordinate change in the
determinant polynomials).
Equivalent determinantal representations M(x0, . . . , xn)
and M ′(x0, . . . , xn) = A M(x0, . . . , xn) B for A,B ∈ GLd ,
define the same hypersurface.

Lemma
A regular setM is simultaneously self-adjoint if and only if any
(and therefore every) corresponding determinantal
representation M(x0, . . . , xn) is equivalent to some self-adjoint
determinantal representation.
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Question (2) can be solved by using semidefinite programming.

Assume thatM is simultaneously self-adjoint. Therefore each
corresponding determinantal representation is equivalent to
some self-adjoint determinantal representation

x0A0 + x1A1 + · · ·+ xnAn, where all Ai ∈ Hd×d .

Matrices admit a positive definite linear combination if and only
if

{(x0, x1, ..., xn) ∈ Pn ; x0A0 + x1A1 + · · ·+ xnAn ≥ 0} 6= ∅.
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Semidefinite programming (SDP)

Semidefinite programming is probably the most important new
development in optimization in the last 20 years.

The semidefinite programme

is to minimize an affine linear functional l on Rn subject to a
linear matrix inequality (LMI) constraint

A0 + x1A1 + · · ·+ xnAn ≥ 0, where all Ai ∈ Hd×d .

SDP can be efficiently solved:
theoretically by finding an approximate solution with
accuracy ε in a time that is polynomial in log(1

ε ) and in the
input size of the problem,
using interior point methods in many concrete situations.
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Which convex sets are feasible sets for SDP?

In other words, given a convex set C ⊂ Rn, do there exist
matrices such that

(∗) C = {x = (x1, ..., xn) ∈ Rn ; A0 + x1A1 + · · ·+ xnAn ≥ 0}?

We refer to (∗) as a linear matrix inequality (LMI) representation
of C. Sets having a LMI representation are also called
spectrahedra.

Question (2): Given a determinantal representation of a
self-adjoint setM, is it also a LMI representation?

In order to describe feasible sets for SDP, we examine the
determinant of a LMI representation.
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Rigidly convex algebraic interior

Let q(x) = det(A0 + x1A1 + · · ·+ xnAn). Take
x0 = (x0

1 , . . . , x
0
n ) ∈ Int C and normalize the LMI representation

by A0 + x0
1 A1 + · · ·+ x0

n An = Id. We restrict the polynomial q to
a straight line through x0: for any x ∈ Rn consider

q(x0 + tx) = det(Id +t(x1A1 + · · ·+ xnAn)).

Since all the eigenvalues of x1A1 + · · ·+ xnAn are real, we
conclude that q(x0 + tx) ∈ R[t ] has only real zeroes. We say
that it satisfies the real zero (RZ) condition with respect to
x0 ∈ Rn. An algebraic interior C whose minimal defining
polynomial satisfies the RZ condition with respect to one and
then every point of Int C is rigidly convex.
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Example

The circle {(x1, x2) ; x2
1 + x2

2 ≤ 1} is a rigidly convex
algebraic interior,
the "flat TV screen" {(x1, x2) ; x4

1 + x4
2 ≤ 1} is not.
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Rigidly convex algebraic interior↔ LMI

Theorem
Set C that admits a LMI representation is a rigidly convex
algebraic interior. Furthermore, determinant of the LMI
representation is a multiple of the minimal defining polynomial
of C .

Theorem

A necessary and sufficient condition for C ⊂ R2 to admit a LMI
representation is that C is a rigidly convex algebraic interior.
Moreover, the size of the matrices in a LMI representation is
equal to the degree a minimal defining polynomial of C.

There can be no exact analogue for n > 2.
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n = 1
n = 2: cubic curve
n = 3: cubic surface
n ≥ 4

Lemma
Every pair of 3× 3 matrices whose determinant induces a real
polynomial is simultaneously self-adjoint.

Kronecker canonical forms for the pencil x0M0 + x1M1 can be
made self-adjoint by suitable left multiplications:

x1I + x2

 a 1 0
0 a 1
0 0 a

 7→ x1

 0 0 1
0 1 0
1 0 0

+ x2

 0 0 a
0 a 1
a 1 0

 ,

x1I + x2

 a 1 0
0 a 0
0 0 b

 7→ x1

 0 1 0
1 0 0
0 0 1

+ x2

 0 a 0
a 1 0
0 0 b

 ,

x1I + x2

 a 0 0
0 b 0
0 0 b

 7→ x1

 1 0 0
0 0 1
0 1 0

+ x2

 a 0 0
0 0 b
0 b 0

 .
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n = 2: cubic curve

Pick a basis forM, such that

det(x0M0 +x1M1 +x2M2) = −x2
1 x2 +x3

0 +px2
0 x2 +qx3

2 , p,q ∈ R

is in the Weierstrass form.
The group action

x0M0+x1M1+x2M2 −→ A(x0M0+x1M1+x2M2)B, A,B ∈ GL3(C)

in a unique way reduces the representation to

(∗) x0 Id +x1

 0 1 0
0 0 1
0 0 0

+ x2

 t
2 l p + 3

4 t2

0 −t −l
−1 0 t

2


where t , l ∈ C satisfy l2 = t3 + pt + q.
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(∗) ·

 0 0 1
0 1 0
1 0 0

 proves:

Proposition
M = x0M0 + x1M1 + x2M2 can be in unique way transformed to
an equivalent representation x2(p + 3

4 t2) x1 + x2l x0 + x2
t
2

x1 − x2l x0 − x2t 0
x0 + x2

t
2 0 −x2

 , where l2 = t3 + pt + q.

The set {M0,M1,M2} is simultaneously self-adjoint if and only if
t ∈ R and l ∈ iR.
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Definite triplets

Write s = i l . Then (t , s) ⊂ R2 are points on the affine curve
−s2 = t3 + pt + q.

Theorem
The representation x0A0 + x1A1 + x2A2 is definite (LMI
representation) if and only if the corresponding point (t , s) lies
on the compact component of the affine curve
−s2 = t3 + pt + q.
A triple of complex hermitean matrices A0,A1,A2 is either
definite or A0,A1,A2 have a common self-orthogonal vector.
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Smooth cubics −s2 = t(t + θ1)(t + θ2)

θ1, θ1 ∈ R θ1 = θ̄1.
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Singular cubics
−s2 = t3, −s2 = t2(t − 1), −s2 = t(t − 1)2.
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n = 3: cubic surface

Proposition

Determinantal representation M(x1, x2, x3, x4) of a real smooth
cubic surface is equivalent to a self-adjoint representation if and
only if the double-six corresponding to M,M t is mutually
self-conjugate, i.e. (

a1 . . . a6
b1 . . . b6

)
equals to one of the(

a1 a2 a3 a4 a5 a6
ai1 ai2 ai3 ai4 ai5 ai6

)
.
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Definite 4-tuples

Let A(x0, x1, x2, x3) be a self-adjoint determinantal
representation of a smooth cubic surface S. The only type of
mutually self-conjugate double-six, which does not have a
self-orthogonal vector is(

a1 a2 a3 a4 a5 a6
a2 a1 a4 a3 a6 a5

)
.

Let π11 = 〈a1,a1〉 , π22 = 〈a2,a2〉 be tritangent planes spanned
by the lines of S. Then A(x0, x1, x2, x3) is definite if and only if
the ovoidal and non-ovoidal piece of S lie in different wedges
cut out by π11 and π22.
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n ≥ 4

For a setM with 5 matrices it is enough to check if two of its 4
dimensional subsets are simultaneously self-adjoint.

Theorem
To a 5 dimensionalM we assign a determinantal
representation M = x0M0 + · · ·+ x4M4 which defines a cubic
threefold F (x0, . . . , x4) in P4.
Let π1 and π2 be hyperplanes in P4 such that F ∩ π2 and F ∩ π2
are smooth cubic surfaces. ThenM is simultaneously
self-adjoint if and only if M|π1 and M|π2 are equivalent to some
self-adjoint representations.

WLG: for n ≥ 4, we only need to test the sets {M0,M1,M2,Mk}
for k = 3, . . . ,n.
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Definite subspaces for n ≥ 4

To a n dimensionalM we assign a self-adjoint determinantal
representation x0A0 + · · ·+ xnAn =

[
aij
]3

i,j=1 , which defines a
real cubic hypersurface F (x0, . . . , xn) in Pn.

Proposition
M is definite if and only if there exist k0, . . . , kn ∈ R such that

L : a11 + a22 + a33,

Q : a11a22 − a12a12 + a11aa33 − a13a13 + a22a33 − a23a23,

F : det
[
aij
]

evaluated in k0, . . . , kn ∈ R are all strictly positive.
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n-tuples with n ≥ 5 – 2

Proposition

The representation M is indefinite if and only if the conic Q = 0
and its interior Q > 0 are entirely included in the L · F < 0 part.
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