Simultaneously self-adjoint sets of matrices

Anita Buckley and Tomaž Košir

Department of Mathematics Faculty of Mathematics and Physics University of Ljubljana Slovenia

7th Linear Algebra Workshop Ljubljana, June 4-12, 2014

イロト イポト イヨト イヨト

Outline

- 3 approaches to 2 questions
 - Problem
 - Notation
- 2 Sets of matrices ightarrow determinantal representations
- Semidefinite programming
 - Linear matrix inequality (LMI)
 - Rigidly convex algebraic sets
 - Sets of 3×3 matrices
 - *n* = 1
 - *n* = 2: cubic curve
 - *n* = 3: cubic surface
 - n ≥ 4

個 とくき とくきと

Two questions

(1) Consider a set of matrices $\mathcal{M} \subset \mathbb{C}^{d \times d}$. When are all the elements of \mathcal{M} simultaneously equivalent to hermitian matrices under the natural action of $GL_d(\mathbb{C}) \times GL_d(\mathbb{C})$? In other words, when do there exist $A, B \in GL_d(\mathbb{C})$ such that *ANB* is hermitian for all $N \in \mathcal{M}$?

Problem

(2) Assume that the answer to (1) is positive. Is there an element in \mathcal{M} that is equivalent (under this simultaneous equivalence) to a positive definite matrix? In other words, given a set of hermitian $d \times d$ matrices, when do these matrices admit a positive definite linear combination?

(4回) (日) (日)

Two questions

(1) Consider a set of matrices $\mathcal{M} \subset \mathbb{C}^{d \times d}$. When are all the elements of \mathcal{M} simultaneously equivalent to hermitian matrices under the natural action of $GL_d(\mathbb{C}) \times GL_d(\mathbb{C})$? In other words, when do there exist $A, B \in GL_d(\mathbb{C})$ such that *ANB* is hermitian for all $N \in \mathcal{M}$?

Problem

(2) Assume that the answer to (1) is positive. Is there an element in \mathcal{M} that is equivalent (under this simultaneous equivalence) to a positive definite matrix? In other words, given a set of hermitian $d \times d$ matrices, when do these matrices admit a positive definite linear combination?

< 回 > < 回 > < 回 >

ns Problem ng Notation

- **linear algebra:** simultaneous reduction of a set of matrices to hermitian (or symmetric) form
- semidefinite programming: linear matrix inequality (LMI) representations
- algebraic geometry: cubic curves, surfaces and hypersurfaces as zero loci of determinants

イロト イポト イヨト イヨト

- Inear algebra: simultaneous reduction of a set of matrices to hermitian (or symmetric) form
- semidefinite programming: linear matrix inequality (LMI) representations

Problem

algebraic geometry: cubic curves, surfaces and

ヘロト ヘ戸ト ヘヨト ヘヨト

Problem Notation

- **linear algebra:** simultaneous reduction of a set of matrices to hermitian (or symmetric) form
- semidefinite programming: linear matrix inequality (LMI) representations
- algebraic geometry: cubic curves, surfaces and hypersurfaces as zero loci of determinants

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Approaches

Computationally both questions are straightforward:

Question (1) reduces to a system of linear equations over \mathbb{R} ,

$$CN_i^* = N_iC^*, i+1,\ldots,n,$$

Problem

where $C = A^{-1}B^*$ and N_1, \ldots, N_n is a basis of the \mathbb{R} -linear span of \mathcal{M} .

Question (2) is solved by semidefinite programming (at least for small *d* and *n*).

イロト 不得 とくほ とくほとう

Problem Notation

Simultaneously self-adjoint sets of matrices

Definition

Let $\mathcal{M} \subset \mathbb{C}^{d \times d}$ be a set of square matrices. We call \mathcal{M} simultaneously self-adjoint if there exist invertible $A, B \in GL_d(\mathbb{C})$ such that *ANB* are complex hermitean matrices for all $N \in \mathcal{M}$.

We can restrict to finite sets:

_emma

The following statements are equivalent:

- *M* is simultaneously self-adjoint
- $\mathcal{L}in_{\mathbb{R}}\mathcal{M}$ is simultaneously self-adjoint.
- Any basis of $\mathcal{L}in_{\mathbb{R}}\mathcal{M}$ is simultaneously self-adjoint.

イロト イポト イヨト イヨト

Problem Notation

Simultaneously self-adjoint sets of matrices

Definition

Let $\mathcal{M} \subset \mathbb{C}^{d \times d}$ be a set of square matrices. We call \mathcal{M} simultaneously self-adjoint if there exist invertible $A, B \in GL_d(\mathbb{C})$ such that *ANB* are complex hermitean matrices for all $N \in \mathcal{M}$.

We can restrict to finite sets:

Lemma

The following statements are equivalent:

- *M* is simultaneously self-adjoint
- $\mathcal{L}in_{\mathbb{R}}\mathcal{M}$ is simultaneously self-adjoint.
- Any basis of $\mathcal{L}in_{\mathbb{R}}\mathcal{M}$ is simultaneously self-adjoint.

ヘロマ ヘビマ ヘビマ

3 approaches to 2 questions Sets of matrices → determinantal representations Sets of a × 3 matrices Sets of 3 × 3 matrices

Problem Notation

Definite and indefinite sets of matrices

A set *M* of complex hermitean matrices is definite if there exist *k*₀,..., *k_n* ∈ ℝ and *M*₀,..., *M_n* ∈ *M* such that

$$k_0M_0+k_1M_1+\cdots+k_nM_n>0.$$

It is indefinite otherwise.

• A vector $v \in \mathbb{C}^d$ is self-orthogonal for \mathcal{M} if

 $vNv^* = 0$ for all $N \in \mathcal{M}$.

Note that $\ensuremath{\mathcal{M}}$ with a self-orthogonal vector is always indefinite.

ヘロト 人間 ト ヘヨト ヘヨト

3 approaches to 2 questions Sets of matrices → determinantal representations Sets of a × 3 matrices Sets of 3 × 3 matrices

Problem Notation

Definite and indefinite sets of matrices

A set *M* of complex hermitean matrices is definite if there exist *k*₀,..., *k_n* ∈ ℝ and *M*₀,..., *M_n* ∈ *M* such that

$$k_0M_0+k_1M_1+\cdots+k_nM_n>0.$$

It is indefinite otherwise.

• A vector $v \in \mathbb{C}^d$ is self-orthogonal for \mathcal{M} if

$$vNv^* = 0$$
 for all $N \in \mathcal{M}$.

Note that \mathcal{M} with a self-orthogonal vector is always indefinite.

ヘロト ヘワト ヘビト ヘビト

Determinantal representations

Subset *M* is regular if it contains an invertible matrix, i.e.
 M ∩ GL₃(ℂ) ≠ Ø.

• To \mathcal{M} with a basis $\{M_0, \ldots, M_n\}$ we assign matrix

 $M(x_0,\ldots,x_n)=x_0M_0+x_1M_1+\ldots+x_nM_n$

whose entries are linear in x_0, \ldots, x_n . When \mathcal{M} is regular, we call the matrix M a determinantal representation of the hypersurface

$$\{(x_0,\ldots,x_n)\subset\mathbb{P}^n: \det M(x_0,\ldots,x_n)=0\}$$

We say that the set ${\mathcal M}$ has a determinantal representation.

・ロット (雪) () () () ()

Determinantal representations

- Subset *M* is regular if it contains an invertible matrix, i.e.
 M ∩ GL₃(ℂ) ≠ Ø.
- To \mathcal{M} with a basis $\{M_0, \ldots, M_n\}$ we assign matrix

$$M(x_0,\ldots,x_n)=x_0M_0+x_1M_1+\ldots+x_nM_n$$

whose entries are linear in x_0, \ldots, x_n . When \mathcal{M} is regular, we call the matrix M a determinantal representation of the hypersurface

$$\{(x_0,\ldots,x_n)\subset\mathbb{P}^n: \det M(x_0,\ldots,x_n)=0\}$$

We say that the set ${\mathcal M}$ has a determinantal representation.

ヘロン 人間 とくほど くほとう

Determinantal representations

- Subset *M* is regular if it contains an invertible matrix, i.e.
 M ∩ GL₃(ℂ) ≠ Ø.
- To \mathcal{M} with a basis $\{M_0, \ldots, M_n\}$ we assign matrix

$$M(x_0,\ldots,x_n)=x_0M_0+x_1M_1+\ldots+x_nM_n$$

whose entries are linear in x_0, \ldots, x_n . When \mathcal{M} is regular, we call the matrix M a determinantal representation of the hypersurface

$$\{(x_0,\ldots,x_n)\subset \mathbb{P}^n ; \det M(x_0,\ldots,x_n)=0\}.$$

We say that the set ${\mathcal M}$ has a determinantal representation.

・ロット (雪) (き) (ほ)

Determinantal representations

- Subset *M* is regular if it contains an invertible matrix, i.e.
 M ∩ GL₃(ℂ) ≠ Ø.
- To \mathcal{M} with a basis $\{M_0, \ldots, M_n\}$ we assign matrix

$$M(x_0,\ldots,x_n)=x_0M_0+x_1M_1+\ldots+x_nM_n$$

whose entries are linear in x_0, \ldots, x_n . When \mathcal{M} is regular, we call the matrix M a determinantal representation of the hypersurface

$$\{(x_0,\ldots,x_n)\subset \mathbb{P}^n ; \det M(x_0,\ldots,x_n)=0\}.$$

We say that the set \mathcal{M} has a determinantal representation.

・ロト ・ 同ト ・ ヨト・

Hypersurfaces

- The underlying field is \mathbb{C} , often we restrict to \mathbb{R} .
- *F*(x₀,...,x_n) is a homogeneous polynomial of degree d ≥ 2 in n + 1 variables.
- The zero locus {*F*(*x*₀,..., *x_n*) = 0} ⊂ ℙⁿ defines a hypersurface in ℙⁿ

Example: The Weierstrass cubic curve is defined by

 $\{(x, y, z) \subset \mathbb{P}^2 ; -y^2 z + x^3 + p x^2 z + q x z^2 = 0\}, \quad p, q \in \mathbb{C}.$

The set of zeros $F(x_0, x_1, x_2, x_3)$ defines a surface in \mathbb{P}^3 .

ヘロア ヘビア ヘビア・

Determinantal representations are well-defined.

- Different choices of basis for *M* yield projectively equivalent hypersurfaces (linear coordinate change in the determinant polynomials).
- Equivalent determinantal representations $M(x_0, ..., x_n)$ and $M'(x_0, ..., x_n) = AM(x_0, ..., x_n) B$ for $A, B \in GL_d$, define the same hypersurface.

Lemma

A regular set \mathcal{M} is simultaneously self-adjoint if and only if any (and therefore every) corresponding determinantal representation $M(x_0, \ldots, x_n)$ is equivalent to some self-adjoint determinantal representation.

ヘロト ヘアト ヘビト ヘビト

ъ

Question (2) can be solved by using semidefinite programming.

Assume that \mathcal{M} is simultaneously self-adjoint. Therefore each corresponding determinantal representation is equivalent to some self-adjoint determinantal representation

$$x_0A_0 + x_1A_1 + \cdots + x_nA_n$$
, where all $A_i \in \mathbb{H}^{d \times d}$.

Matrices admit a positive definite linear combination if and only if

$$\{(x_0, x_1, ..., x_n) \in \mathbb{P}^n ; x_0 A_0 + x_1 A_1 + \cdots + x_n A_n \ge 0\} \neq \emptyset.$$

イロト イポト イヨト イヨト

Semidefinite programming (SDP)

Semidefinite programming is probably the most important new development in optimization in the last 20 years.

The semidefinite programme

is to minimize an affine linear functional I on \mathbb{R}^n subject to a linear matrix inequality (LMI) constraint

 $A_0 + x_1 A_1 + \cdots + x_n A_n \ge 0$, where all $A_i \in \mathbb{H}^{d \times d}$.

SDP can be efficiently solved:

- theoretically by finding an approximate solution with accuracy ε in a time that is polynomial in log(¹/_ε) and in the input size of the problem,
- using interior point methods in many concrete situations.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Which convex sets are feasible sets for SDP?

In other words, given a convex set $\mathcal{C} \subset \mathbb{R}^n,$ do there exist matrices such that

(*)
$$C = \{x = (x_1, ..., x_n) \in \mathbb{R}^n ; A_0 + x_1 A_1 + \cdots + x_n A_n \ge 0\}$$
?

We refer to (*) as a linear matrix inequality (LMI) representation of C. Sets having a LMI representation are also called spectrahedra.

Question (2): Given a determinantal representation of a self-adjoint set \mathcal{M} , is it also a LMI representation?

In order to describe feasible sets for SDP, we examine the determinant of a LMI representation.

ヘロト ヘ戸ト ヘヨト ヘヨト

Linear matrix inequality (LMI) Rigidly convex algebraic sets

Rigidly convex algebraic interior

Let $q(x) = \det(A_0 + x_1A_1 + \dots + x_nA_n)$. Take $x^0 = (x_1^0, \dots, x_n^0) \in \operatorname{Int} \mathcal{C}$ and normalize the LMI representation by $A_0 + x_1^0A_1 + \dots + x_n^0A_n = \operatorname{Id}$. We restrict the polynomial q to a straight line through x^0 : for any $x \in \mathbb{R}^n$ consider

$$q(x^0 + tx) = \det(\operatorname{Id} + t(x_1A_1 + \cdots + x_nA_n)).$$

Since all the eigenvalues of $x_1A_1 + \cdots + x_nA_n$ are real, we conclude that $q(x^0 + tx) \in \mathbb{R}[t]$ has only real zeroes. We say that it satisfies the real zero (RZ) condition with respect to $x^0 \in \mathbb{R}^n$. An algebraic interior C whose minimal defining polynomial satisfies the RZ condition with respect to one and then every point of Int C is rigidly convex.

ヘロア ヘビア ヘビア・

Linear matrix inequality (LMI) Rigidly convex algebraic sets

- The circle {(x₁, x₂) ; x₁² + x₂² ≤ 1} is a rigidly convex algebraic interior,
- the "flat TV screen" $\{(x_1, x_2) ; x_1^4 + x_2^4 \le 1\}$ is not.

イロン 不同 とくほう イヨン

æ

Rigidly convex algebraic interior \leftrightarrow LMI

Theorem

Set C that admits a LMI representation is a rigidly convex algebraic interior. Furthermore, determinant of the LMI representation is a multiple of the minimal defining polynomial of C.

Theorem

A necessary and sufficient condition for $C \subset \mathbb{R}^2$ to admit a LMI representation is that C is a rigidly convex algebraic interior. Moreover, the size of the matrices in a LMI representation is equal to the degree a minimal defining polynomial of C.

There can be no exact analogue for n > 2.

< < >> < <</>

n = 1 n = 2: cubic curve n = 3: cubic surface $n \ge 4$

Lemma

Every pair of 3×3 matrices whose determinant induces a real polynomial is simultaneously self-adjoint.

Kronecker canonical forms for the pencil $x_0M_0 + x_1M_1$ can be made self-adjoint by suitable left multiplications:

$$\begin{array}{c} x_1 l + x_2 \left(\begin{array}{ccc} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{array} \right) \mapsto x_1 \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right) + x_2 \left(\begin{array}{ccc} 0 & 0 & a \\ 0 & a & 1 \\ a & 1 & 0 \end{array} \right), \\ x_1 l + x_2 \left(\begin{array}{ccc} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{array} \right) \mapsto x_1 \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right) + x_2 \left(\begin{array}{ccc} 0 & a & 0 \\ a & 1 & 0 \\ 0 & 0 & b \end{array} \right), \\ x_1 l + x_2 \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & \overline{b} \end{array} \right) \mapsto x_1 \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) + x_2 \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & 0 & \overline{b} \end{array} \right), \\ x_1 l + x_2 \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & \overline{b} \end{array} \right) \mapsto x_1 \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) + x_2 \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & 0 & \overline{b} \end{array} \right).$$

イロト イポト イヨト イヨト

n = 1 n = 2: cubic curve n = 3: cubic surface $n \ge 4$

n = 2: cubic curve

Pick a basis for \mathcal{M} , such that

$$\det(x_0M_0+x_1M_1+x_2M_2)=-x_1^2x_2+x_0^3+\rho x_0^2x_2+qx_2^3, \ \rho,q\in\mathbb{R}$$

is in the Weierstrass form. The group action

$$x_0M_0+x_1M_1+x_2M_2 \longrightarrow A(x_0M_0+x_1M_1+x_2M_2)B, A, B \in GL_3(\mathbb{C})$$

in a unique way reduces the representation to

(*)
$$x_0 \operatorname{Id} + x_1 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + x_2 \begin{pmatrix} \frac{t}{2} & l & p + \frac{3}{4}t^2 \\ 0 & -t & -l \\ -1 & 0 & \frac{t}{2} \end{pmatrix}$$

where $t, l \in \mathbb{C}$ satisfy $l^2 = t^3 + pt + q$.

$$(*) \cdot \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right) \text{ proves:}$$

Proposition

 $M = x_0 M_0 + x_1 M_1 + x_2 M_2$ can be in unique way transformed to an equivalent representation

$$\begin{pmatrix} x_2(p+\frac{3}{4}t^2) & x_1+x_2l & x_0+x_2\frac{t}{2} \\ x_1-x_2l & x_0-x_2t & 0 \\ x_0+x_2\frac{t}{2} & 0 & -x_2 \end{pmatrix}, \text{ where } l^2=t^3+pt+q.$$

The set $\{M_0, M_1, M_2\}$ is simultaneously self-adjoint if and only if $t \in \mathbb{R}$ and $l \in i\mathbb{R}$.

ヘロト 人間 とくほとくほとう

ъ

n = 1n = 2: cubic curve n = 3: cubic surface $n \ge 4$

Definite triplets

Write s = i l. Then $(t, s) \subset \mathbb{R}^2$ are points on the affine curve $-s^2 = t^3 + pt + q$.

Theorem

The representation $x_0A_0 + x_1A_1 + x_2A_2$ is definite (LMI representation) if and only if the corresponding point (t, s) lies on the compact component of the affine curve $-s^2 = t^3 + pt + q$. A triple of complex hermitean matrices A_0, A_1, A_2 is either definite or A_0, A_1, A_2 have a common self-orthogonal vector.

イロト 不得 とくほと くほとう

n = 1 n = 2: cubic curve n = 3: cubic surface n > 4

Smooth cubics $-s^2 = t(t + \theta_1)(t + \theta_2)$

n = 1 n = 2: cubic curve n = 3: cubic surface $n \ge 4$

Singular cubics $-s^2 = t^3$, $-s^2 = t^2(t-1)$, $-s^2 = t(t-1)^2$.

イロン 不得 とくほ とくほ とうほ

n = 1 n = 2: cubic curve n = 3: cubic surface $n \ge 4$

n = 3: cubic surface

Proposition

Determinantal representation $M(x_1, x_2, x_3, x_4)$ of a real smooth cubic surface is equivalent to a self-adjoint representation if and only if the double-six corresponding to M, M^t is mutually self-conjugate, i.e.

$$\left(egin{array}{ccc} a_1 & \ldots & a_6 \\ b_1 & \ldots & b_6 \end{array}
ight)$$

equals to one of the

$$\left(\begin{array}{ccc} \underline{a_1} & \underline{a_2} & \underline{a_3} & \underline{a_4} & \underline{a_5} & \underline{a_6} \\ \overline{a_{i_1}} & \overline{a_{i_2}} & \overline{a_{i_3}} & \overline{a_{i_4}} & \overline{a_{i_5}} & \overline{a_{i_6}} \end{array}\right).$$

イロト イ理ト イヨト イヨト

n = 1 n = 2: cubic curve n = 3: cubic surface $n \ge 4$

Definite 4-tuples

Let $A(x_0, x_1, x_2, x_3)$ be a self-adjoint determinantal representation of a smooth cubic surface *S*. The only type of mutually self-conjugate double-six, which does **not** have a self-orthogonal vector is

Let $\pi_{11} = \langle a_1, \overline{a_1} \rangle$, $\pi_{22} = \langle a_2, \overline{a_2} \rangle$ be tritangent planes spanned by the lines of *S*. Then $A(x_0, x_1, x_2, x_3)$ is **definite** if and only if the ovoidal and non-ovoidal piece of *S* lie in different wedges cut out by π_{11} and π_{22} .

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

n ≥ 4

For a set \mathcal{M} with 5 matrices it is enough to check if two of its 4 dimensional subsets are simultaneously self-adjoint.

Theorem

To a 5 dimensional \mathcal{M} we assign a determinantal representation $M = x_0 M_0 + \cdots + x_4 M_4$ which defines a cubic threefold $F(x_0, \ldots, x_4)$ in \mathbb{P}^4 .

Let π_1 and π_2 be hyperplanes in \mathbb{P}^4 such that $F \cap \pi_2$ and $F \cap \pi_2$ are smooth cubic surfaces. Then \mathcal{M} is simultaneously self-adjoint if and only if $M|_{\pi_1}$ and $M|_{\pi_2}$ are equivalent to some self-adjoint representations.

WLG: for $n \ge 4$, we only need to test the sets $\{M_0, M_1, M_2, M_k\}$ for k = 3, ..., n.

・ロト ・ 理 ト ・ ヨ ト ・

n = 1 n = 2: cubic curve n = 3: cubic surface $n \ge 4$

Definite subspaces for $n \ge 4$

To a *n* dimensional \mathcal{M} we assign a self-adjoint determinantal representation $x_0A_0 + \cdots + x_nA_n = [a_{ij}]_{i,j=1}^3$, which defines a real cubic hypersurface $F(x_0, \ldots, x_n)$ in \mathbb{P}^n .

Proposition

 \mathcal{M} is definite if and only if there exist $k_0, \ldots, k_n \in \mathbb{R}$ such that

evaluated in $k_0, \ldots, k_n \in \mathbb{R}$ are all strictly positive.

ヘロト 人間 ト ヘヨト ヘヨト

n = 1 n = 2: cubic curve n = 3: cubic surface n > 4

n-tuples with $n \ge 5-2$

Proposition

The representation M is indefinite if and only if the conic Q = 0and its interior Q > 0 are entirely included in the $L \cdot F < 0$ part.

ヘロト 人間 ト ヘヨト ヘヨト

- J. Harris. *Galois groups of enumerative problems*, Duke Math. J., Vol. 46 (1979).
- J.H. Silverman and J. Tate. *Rational Points on Elliptic Curves*, UTM, Springer (1992).
- V. Vinnikov. *Self-adjoint determinantal rep.s of real irred. cubics,* Oper. Th.: Adv. Appl., Vol. 19, (1986).
- —. Complete description of determinantal rep.s of smooth irreducible curves, Lin. Alg. Appl., Vol. 125 (1989).
- —. Elementary transformations of determinantal rep.s of alg. curves, Lin. Alg. Appl., Vol. 135 (1990).
- —. LMI Representations of convex semialgebraic sets and determinantal rep.s of algebraic hypersurfaces: Past, present, and future, Oper. Th.: Adv. Appl., Vol. 222 (2012).