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Warm up question

Given a homogeneous nonnegative polynomial p(x , y , z) of
degree 6, does there exist a positive linear map
P : Sym3 → Sym3 such that

det P(xxT ) = p(x , y , z) for all x = [x , y , z]T ?

We will “tackle” this question from three sides:
symmetric quadratic determinantal representations and the
associated sheaves (kernels);
semidefinite linear determinantal representations (LMI
representations of hyperbolic polynomials);
polynomial algebra (SOS and PSD polynomials and
matrices).
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Positive maps

Definition
A linear map P : Sym3 → Sym3 is positive if it sends positive
semidefinite matrices to positive semidefinite matrices.

Positive maps were popular in the 70s as they describe various
quantum states in quantum physics. In the last decade there is
again very active and fertile research in this area due to its
connection to optimization.

A. Buckley Positive semidefinite quadratic determinantal representations



Symmetric quadratic determinantal representations
Linear matrix inequalities
Polynomial nonnegativity

Positive maps
Self-dual sheaves

Positive maps

Definition
A linear map P : Sym3 → Sym3 is positive if it sends positive
semidefinite matrices to positive semidefinite matrices.

Positive maps were popular in the 70s as they describe various
quantum states in quantum physics. In the last decade there is
again very active and fertile research in this area due to its
connection to optimization.

A. Buckley Positive semidefinite quadratic determinantal representations



Symmetric quadratic determinantal representations
Linear matrix inequalities
Polynomial nonnegativity

Positive maps
Self-dual sheaves

Positive maps↔ determinantal representations

Clearly it is enough to check the positivity of P on rank 1
matrices. In coordinates our question then becomes

Question

Given a nonnegative plane sextic C in P2, does there exist a
symmetric quadratic determinantal representation of C which is
semidefinite for all (x , y , z) ∈ P2?

Indeed, P

 x2 xy xz
xy y2 yz
xz yz z2

=

 p0 p1 p3
p1 p2 p4
p3 p4 p5

 ,
where pi = p0ix2 + p1ixy + p2ix2 + p3ixz + p4iyz + p5iz2.
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C. Scheiderer. Hilbert’s theorem on positive ternary
quartics: A refined analysis, JAG, 2010

This is exactly the question Scheiderer asked and thoroughly
answered in the case of plane quartics.

Quadratic determinantal representations
[

p0 p1
p1 p2

]
1−1←→

globally generated (i.e., non-exceptional) ACM rank 1
sheaves with selfduality F ∼= Hom (F ,OC(2)). The number
of such representations depends only on the singularities
of C.
Determine which and how many of the above
determinantal representations are semidefinite.
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Quadratic determinantal representations

Without the nonnegativity and semidefiniteness conditions this
is a classical case of determinantal hypersurfaces

Question
Given a plane curve C of degree 2d, does there exist a d × d
symmetric quadratic determinantal representation of C?
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Beauville: Determinantal Hypersurfaces, 2000

On an integral curve C, a coherent torsion-free rank 1
(arithmetically Cohen-Macaulay, ACM) sheaf F that is

generated by its global sections and F ∼= Hom (F ,OC(2d − 2))

admits a resolution

0→ OP2(−2)d M−→ Od
P2 → F → 0,

where M is a symmetric quadratic matrix with det M = p.

Remark: The above F is non-exceptional. This is equivalent to
H0(C,F(−1)) = H1(C,F) = 0. Then h0(C,F) = d and its
global sections yield M.
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Beauville: Determinantal Hypersurfaces, 2000

Actually, any F that is self-dual

F ∼= Hom (F ,OC(2d − 2))

admits a resolution 0→
l⊕

i=1

OP2(−2−di)
M−→

l⊕
i=1

OP2(di)→ F → 0,

where M = [mij ] is symmetric with mij of degree di + di − 2.

Remark: We are only interested in non-exceptional F , for
which di = 0 for i = 1, . . . ,d . The set of such pairs (C,F) is
Zariski dense in the universal Jacobian J 2d(d−1)

2d .
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Beauville: Determinantal Hypersurfaces, 2000

Define the moduli space R2d of pairs (C, α), where C is a
smooth plane curve of degree 2d (over a field of char 0), and α
is a half-period, i.e. a 2-torsion divisor on Jac(C), i.e. a
nontrivial line bundle on C satisfying α⊗2 ∼= OC .

Proposition

For (C, α) general in R2d , the half-period α admits a minimal
resolution

0→ OP2(−d − 1)d M−→ OP2(−d + 1)d → α→ 0,

where M is a symmetric quadratic matrix with det M = p.

Note, F is obtained from the half-period α by F=α⊗OC(d − 1).

A. Buckley Positive semidefinite quadratic determinantal representations



Symmetric quadratic determinantal representations
Linear matrix inequalities
Polynomial nonnegativity

Positive maps
Self-dual sheaves

Simple singularities

When C/C has only simple (this means AED) singularities,
there are finitely many ACM sheaves with the following
self-duality

F ∼= Hom (F ,OC(2d − 2)).

It is possible to explicitly count them using methods in
[Piontkowski, 2007]. Their number depends on the genus of the
curve and the local type of F : (Fs)s∈Sing C is a collection of
self-dual modules Fs ∼= Hom(Fs,OC,s(2d − 2)). For a simple
singularity there are only finitely many isomorphism classes of
indecomposable torsion-free modules over its local ring.

A smooth C has 22g self-dual F ; the number decreases rapidly
with the number and order of singularities An,Dm,El . When all
F are exceptional, C has no quadratic representations.
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F ∼= Hom (F ,OC(2d − 2))

Minimal resolutions M = [mij ] with deg mij = di + dj + 2:

F non-except. F exceptional

quartic SINGULAR: SQUARE
[

2 2
2 2

] 2 2 1
2 2 1
1 1 0

 ,


2 2 1 1
2 2 1 1
1 1 0 0
1 1 0 0



sextic:

2 2 2
2 2 2
2 2 2




2 2 2 1
2 2 2 1
2 2 2 1
1 1 1 0

,


2 2 2 1 1
2 2 2 1 1
2 2 2 1 1
1 1 1 0 0
1 1 1 0 0

, square
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Terminology An ↔ Pn

An : spectrahedron RZ-polynomial rigidly convex set PSD LMI
l l l l

Pn : spectrahedral cone hyperbolic poly. hyperbolicity cone SD LMI
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Cubic curve (x0 − x1)(x0 + x1)(x0 − 4x1)− x1x2
2 = 0

a

0

line t a
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Cubic curve (x0 − x1)(x0 + x1)(x0 − 4x1)− x1x2
2 = 0

has three symmetric determinantal representations:
• two are definite determinantal representations x0 − x1√

2
x1√

2
− x1√

2
8x0−x1+4x2

8 −x1
8

x1√
2

− x1
8

8x0−x1−4x2
8

 ,
 x0 − x1

2
√

2
x1

2
√

2
− x1

2
√

2
8x0−x1+4x2

8 −7x1
8

x1
2
√

2
−7x1

8
8x0−x1−4x2

8


• one is nondefinite

x0 Id +x2

 0 0 0
0 1/2 0
0 0 −1/2

+ x1

 0 i
2
√

2
−i

2
√

2
i

2
√

2
−1

8
9
8

−i
2
√

2
9
8 −1

8
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Veronese surface

In coordinates write P5 as a symmetric matrix

z0 z1 z3
z1 z2 z4
z3 z4 z5

,

and consider the Veronese embedding

ν2 : P2 −→ P5

(x , y , z) 7→

 x2 xy xz
xy y2 yz
xz yz z2

 .
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Cubic symmetroid as LMI

Cubic symmetroid in P5 is the hypersurface defined by

det

z0 z1 z3
z1 z2 z4
z3 z4 z5

 = 0.

It is singular along the Veronese surface. Semidefinite matrices
lie in the spectrahedral cone(z0, . . . , z5) ∈ P5 :

z0 z1 z3
z1 z2 z4
z3 z4 z5

 � 0

 .
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Cubic symmetroid as LMI
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Cubic symmetroid as LMI

“Being” a spectrahedral cone is much more than a convex cone!

SD matrix symmetroid

rk 1 ↔ points on the Veronese

rk 2 ↔ ∂ spectrahedral cone
λaaT + (1− λ)bbT , λ ∈ [0,1]

rk ≤ 3 ↔ spectrahedral cone
αaaT + βbbT + γccT , α, β, γ ≥ 0
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Hyperplane sections of symmetroid

The Veronese map ν2 is given by the complete linear system.
Thus the preimage of a hyperplane H in P5 is a conic QH in P2.

Conic QH is singular⇐⇒ H is tangent to the Veronese surface

More precisely,
if QH is a line pair, then H is a tangent to the Veronese
surface at a single point,
if QH is a double line, then H is tangent to the Veronese
surface along the curve that is the image of Qred

H under
the restriction of ν2.
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Back to our problem

Recall that P : Sym3 → Sym3 is positive if and only if p0 p1 p3
p1 p2 p4
p3 p4 p5

 � 0 for all x = (x , y , z) ∈ P2,

where

pi = p0ix2 + p1ixy + p2iy2 + p3ixz + p4iyz + p5iz2

and P = [pij ]0≤i,j≤5 : P5 → P5 in the corresponding basis.
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Map νP

This way P : Sym3 → Sym3 induces

νP : P2 → P5

(x , y , z) 7→ (p0, . . . ,p5),

Lemma
P is positive if and only if the image of νP lies in the
spectrahedral cone of the cubic symmetroid.

Therefore, classifying positive maps is the same as classifying
linear maps P : P5 → P5 that preserve the spectrahedral cone
of the cubic symmetroid.
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The convex hull of Im (νP)

When P is invertible, νP is given by the complete linear system.
In this case the image of νP is the singular locus of the
hypersurface

det P−1

x0 x1 x3
x1 x2 x4
x3 x4 x5

 = 0.

In other words, the convex hull of Im νP equals to the
spectrahedral cone of the above hypersurface.
Else, the convex hull of Im (νp) is a projection of a
spectrahedral cone shadow (inside the spectrahedral cone of
the symmetroid).
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The convex hull of Im (νP−1)

On the other side, the hypersurface

det P

z0 z1 z3
z1 z2 z4
z3 z4 z5

 = 0

contains the Veronese surface in its spectrahedral cone. When
P is invertible, this spectrahedral cone equals to the convex hull
of the image of

νP−1 : P2 −→ P5

(x , y , z) 7→ P−1

 x2 xy xz
xy y2 yz
xz yz z2
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Spectrahedral cones of:
det P([zij ]) = 0 , det[zij ] = 0 , det P−1([zij ]) = 0
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Choi’s example

Matrix x2 + z2 −xy −xz
−xy x2 + y2 −yz
−xz −yz y2 + z2


is positive definite for all (x , y , z) ∈ P2 except at the 7 points:
(1,1,1), (−1,1,1), (1,−1,1), (1,1,−1), (1,0,0), (0,1,0), (0,0,1).
The Veronese surface therefore lies inside the spectrahedral
cone of

det

z0 + z5 −z1 −z3
−z1 z0 + z2 −z4
−z3 −z4 z2 + z5

 = 0

and intersects its boundary in
(1,1,1,1,1,1), (1,−1,1,−1,1,1), (1,−1,1,1,−1,1), (1,1,1,−1,−1,1),
(1,0,0,0,0,0), (0,0,1,0,0,0), (0,0,0,0,0,1)
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Choi’s example and the cubic symmetroid
det P([zij ]) = 0 , det[zij ] = 0 ;

intersected with z0 = z1 = z2 = 1, thus containing
(1,1,1,1,1,1), (1,−1,1,−1,1,1), (1,−1,1,1,−1,1), (1,1,1,−1,−1,1):
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Choi’s example and the cubic symmetroid
det P([zij ]) = 0 , det[zij ] = 0 ;

intersected with z3 = z4 = z5 = 1− z0 − z2, thus containing
(1,1,1,1,1,1), (1,0,0,0,0,0), (0,0,1,0,0,0).
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Convex algebraic geometry

Pn,2d = {non-negative (PSD) forms in R[x0, . . . , xn−1] of degree 2d}
∪

Σn,2d = {sums of squares (SOS-polynomials)}

det ⇑

PM
n,2d = {positive semidefinite d × d matrix quadratic polynomials}
∪

ΣM
n,2d = {SOS-matrix quadratic polynomials}
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Convex cone: p,q ∈ C ⇒ λp + µq ∈ C for all λ, µ > 0

Pn,2d = {PSD polynomials of degree 2d}

Σn,2d = {SOS polynomials of degree 2d}

are both convex cones in RN where N =
(n+2d−1

2d

)
.

We know since Hilbert that

Σn,2d ⊂ Pn,2d ;

testing if p ∈ Pn,2d is NP-hard,
but testing if p ∈ Σn,2d is an SDP (using Gram matrix).
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Hilbert’s 17th problem

Hilbert in 1888 showed that Σn,2d = Pn,2d in the following cases:

n\2d 2 4 6 8 · · ·
2 = = = =
3 = = ⊂ ⊂
4 = ⊂ ⊂ ⊂
5 = ⊂ ⊂ ⊂
...

. . .

2d = 2, quadratic polynomial forms
n = 2, homogeneous polynomials in two variables
2d = 4,n = 3, quartic forms in three variables
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Hilbert’s 17th problem

Artin in 1927 showed that every
PSD polynomial is an SOS of
rational functions.

A constructive solution was
found in 1984 by Delzell.
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Hilbert’s 17th problem

In 1967 Motzkin constructed the first example of a positive
semidefinite polynomial, that is not a sum of squares:

p(x , y , z) = x2y4 + x4y2 + z6 − 3x2y2z2
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Examples of P3,6\Σ3,6

Blekherman in 2012 provided a geometric explanation for the
containment Σ3,6 ⊂ P3,6. The difference lies in fulfillment of
certain linear relations (Cayley-Bacharach relations) from
Hilbert’s proof.

Robinson’s polynomial with 10 zeros (1973):

x6+y6+z6−x4y2−x4z2−y4x2−y4z2−z4x2−z4y2+3x2y2z2;

lots of examples from Reznick’s construction (2007).
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The geometry of P3,6\Σ3,6 remains puzzling!

An algebraic boundary of a cone is the hypersurface that arises
as Zariski closure of its topological boundary.

Nie, 2011: The algebraic boundary of the cone Pn,2d is the
discriminant of degree n(2d − 1)n−1.
Blekherman, Sturmfels, et al., 2011: Discriminant is also a
component in the algebraic boundary of Σ3,6. Besides,
∂ Σ3,6 has another unique non-discriminant component of
degree 83200 which consists of forms that are sums of
three squares of cubics.

Remark: A sextic C that is a sum of three squares of cubics
coincides with an ACM rk 1sheaf F ∼= Hom (F ,OC(3)) that is
globaly generated; this is exactly an effective even theta
characteristic.
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PSD and SOS matrices

Definition
A symmetric polynomial matrix P(x) is an SOS-matrix if

P(x) = M(x) M(x)T

for a possibly non-square polynomial matrix M(x).

Definition
A matrix polynomial P(x) is positive semidefinite if P(x) is
positive semidefinite for all x = (x0, . . . , xn−1) ∈ Rn.
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Connection to biquadratic forms

Recall the natural 1− 1 correspondence between:
positive linear maps P : Sym3 → Sym3;
PSD quadratic ternary matrices P( x xT );
non-negative biquadratic forms utP( x xT ) u,
where x = [x , y , z]T and u = [u, v ,w ]T .

Lemma

P is positive ⇔ uT P( x xT ) u is a PSD polynomial

⇔ P( x xT ) is a PSD quadratic matrix .
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Choi matrix (analogy to the Gram matrix for SOS polynomials)

Choi map: A linear map φ : M3 → M3 induces a linear map
Φ : M9 → M9 by the following rule

Φ
(
[Xij ]i,j=1,2,3

)
= [φ(Xij)]i,j=1,2,3.

Theorem (Choi, 1974)
Choi matrix

[φ(Eij)]i,j=1,2,3 is positive semidefinite

if and only if the restriction φ : Sym3 → Sym3 induces an

SOS quadratic matrix φ( x xT ).

This is equivalent to uT P( x xT ) u being a biquadratic SOS
form.

Such φ are called completely positive, in optimization they are
called SOS.
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SOS matrices

The third equivalent definition of quadratic SOS matrices is the
following:

Lemma

Quadratic matrix P(x xT ) is an SOS matrix if and only if there
exist Aj ∈ R3,3 such that

P(x , y , z) =
r∑

j=1

AjXAT
j , where X = x xT =

 x2 xy xz
xy y2 yz
xz yz z2

 .
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SOS matrices

Indeed, for the 3× r linear matrix M = [m1 · · ·mr ] write

P(x , y , z) = M MT =
r∑

j=1

mj mT
j =

r∑
j=1

m1j
m2j
m3j

 · [m1j m2j m3j ]

=
r∑

j=1

Aj

x
y
z

· [x y z] AT
j .

Here the linear forms mij determine Aj .
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We need examples!

Like in the polynomial case,
Hilbert,1888→ Motzkin, 1967→ Reznick, 2007,
we need lots of examples to understand the difference between
the convex cones PM

3,6 and ΣM
3,6.
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We need examples!

Until recently, the only examples have been derived from
Choi’s quadratic matrix:

det

x2 + z2 −xy −xz
−xy x2 + y2 −yz
−xz −yx y2 + z2

 = x4y2+y4z2+z4x2−3x2y2z2.

The corresponding biquadratic form has 7 zeros

(1,1,1; 1,1,1), (−1,1,1;−1,1,1), (1,−1,1; 1,−1,1), (1,1,−1; 1,1,−1),
(1,0,0; 0,0,1), (0,1,0; 1,0,0), (0,0,1; 0,1,0).
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Nonnegative biquadratic form with 10 zeros (max!)

Theorem (Šivic)
The map Pt : Sym3 → Sym3 defined by


z0 z1 z3

z1 z2 z4

z3 z4 z5

 7→

(t2−1)2z0+z2+t4z5 −(t4−t2+1)z1 −(t4−t2+1)z3

−(t4−t2+1)z1 t4z0+(t2−1)2z1+z5 −(t4−t2+1)z4

−(t4−t2+1)z3 −(t4−t2+1)z4 z0+t4z2+(t2−1)2z5


is positive for all t ∈ R. When t /∈ {1,0,−1}, the associated
biquadratic form uT Pt ( x xT ) u has 10 zeros:

{[1,1,1; 1,1,1], [−1,1,1;−1,1,1], [1,−1,1; 1,−1,1], [1,1,−1; 1,1,−1],
[1,±t ,0;±t ,1,0], [0,1,±t ; 0,±t ,1], [±t ,0,1; 1,0,±t ]}.
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Nonnegative biquadratic form with 10 zeros (max!)

In particular, for

Pt ( x xT ) =


(t2−1)2x2+y2+t4z2 −(t4−t2+1)xy −(t4−t2+1)xz

−(t4−t2+1)xy t4x2+(t2−1)2y2+z2 −(t4−t2+1)yz

−(t4−t2+1)xz −(t4−t2+1)yz x2+t4y2+(t2−1)2z2


det Pt ( x xT )/(t2 − 1)2 = t4(x6+y6+z6)+

(t8−2t2)(x4y2+y4z2+z4x2)+(1−2t6)(x2y4+y2z4+z2x4)−3(t8−2t6+t4−2t2+1)x2y2z2

is the generalized Robinson’s polynomial with 10 singularities
of type A1.
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Extremal nonnegative biquadratic forms

Our example is a parametrization of the extremal PSD
quadratic matrices in the family:

Pa,b,c( x xT ) =


(−1+a)x2+by2+cz2 −xy −xz

−xy cx2+(−1+a)y2+bz2 −yz

−xz −yz bx2+cy2+(−1+a)z2

.
Cho, Kye and Lee (Generalized Choi maps, LAA 1992) proved
that Pa,b,c is positive if and only if:

a ≥ 1,
a + b + c ≥ 3,
bc ≥ (2− a)2 if 1 ≤ a ≤ 2.

a ≥ 1 and a + b + c ≥ 3 and {bc ≥ (2− a)2 if 1 ≤ a ≤ 2}.
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Nonnegative biquadratic form with 8 zeros

The family of biquadratic forms with 8 zeros:

(1,1,1; 1,1,1), (−1,1,1;−1,1,1), (1,−1,1; 1,−1,1), (1,1,−1; 1,1,−1),
(1,0,0; 0,0,1), (0,1,0; 1,0,0), (0,0,1; 0,1, µ), (0, ν,1; 0,1,0)

is given by a linear combination of

a


x2+z2 −xy −xz

−xy x2 0

−xz 0 y2

+


(µ+ν)2x2 µ(µ+ν)x(−y+νz) −ν(µ+ν)x(µy+z)

µ(µ+ν)x(−y+νz) µ2(y−νz)2 µν(µy+z)(y−νz)

−ν(µ+ν)x(µy+z) µν(µy+z)(y−νz) ν2(µy+z)2

.
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Nonnegative biquadratic form with 8 zeros

sph[θ1, φ1, θ2, φ2] :=
{Cos[θ1]Cos[φ1], Cos[θ1]Sin[φ1], Sin[θ1],
Cos[θ2]Cos[φ2], Cos[θ2]Sin[φ2], Sin[θ2]}

biq8pt[x,y,z,u,v,w] :=
{u,v,w} · Pa,µ,ν[x,y,z]·{u,v,w} ≥ 0

RegionPlot3D[ Apply[And,
Map[biq8pt, Map[sph, RandomReal[2π, {9000,4}]]]],
{µ,−2,2}, {ν,−2,2}, {a,0,1/2} ]
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Nonnegative biquadratic form with 8 zeros

It is easy to check that for µ = −1/3 and ν = 1/2
the extremal PSD quadratic matrix is obtained at a = 1/18:


3/2x2+z2 −1/2xz 1/2x(y−5z)

−1/2xz x2+1/2(z−2y)2 1/2(y−3z)(2y−z)

1/2x(y−5z) 1/2(y−3z)(2y−z) y2+1/2(y−3z)2

.

The associated nonnegative biquadratic form is also extremal
with zeros:

(1,1,1; 1,1,1), (−1,1,1;−1,1,1), (1,−1,1; 1,−1,1), (1,1,−1; 1,1,−1),
(1,0,0; 0,0,1), (0,1,0; 1,0,0), (0,0,1; 0,1,−1/3), (0,1/2,1; 0,1,0)
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Nonnegative biquadratic form with 9 zeros

Positive map P =


((3+2

√
2)z0+(3−2

√
2)z2+2z5)/4 −z1 −z3

−z1 (z+z2)/2 0

−z3 0 ((3−2
√

2)z0+(−1+2
√

2)z2+2z5)/4


induces an extremal nonnegative biquadratic form uT P( x xT ) u
with zeros:

(1,1,1; 1,1,1), (−1,1,1;−1,1,1), (1,−1,1; 1,−1,1),(1,1,−1; 1,1,−1),

(1,0,−1√
2

;1−
√

2,0,1), (1,0, 1√
2

;
√

2−1,0,1),

(1−
√

2,1,0;1,−1√
2
,0), (
√

2−1,1,0;1, 1√
2
,0),

(0,0,1; 0,1,0).
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“TO DO LIST”

Find examples of non-negative polynomials that have no
PSD quadratic determinantal representation.
This would prove that det : PM

3,6 −→ P3,6 is not surjective.

We believe that Robinson’s polynomial is such, due to the

particular configuration of its 10 zeros

{[1,1,1], [−1,1,1], [1,−1,1], [1,1,−1], [1,±1,0], [0,1,±1], [±1,0,1]}.

What about Motzkin polynomial?
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“TO DO LIST”

Understand the map det : PM
3,6 −→ P3,6.

Clearly, determinant of an SOS quadratic matrix is an SOS
sextic polynomial. On the other hand, Quarez’s example

det

x2 + z2 0 −xz
0 x2 + y2 −yz
−xz −yx y2 + z2

 = x4y2 + y4x2 + z4x2 + y4z2

is a positive semidefinite quadratic matrix that is not SOS, but
its determinant is an SOS sextic polynomial.
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“TO DO LIST”

Find geometric explanation for the containment
ΣM

3,6 ⊂ PM
3,6.

Follow Blekherman’s explanation of the difference between

the two cones in the polynomial case. The proof of Hilbert’s 17th

theorem for matrices is more constructive than for polynomials

(because of the Cayley-Hamilton theorem).

What are the Cayley-Bacharach relations for matrix polynomials?
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“TO DO LIST”

Find algebraic boundaries ∂PM
3,6 and ∂ΣM

3,6.

We proved that ∂PM
3,6 is the discriminant for biquadratic ternary

forms. It is an ireducible hypersurface in P35 of degree 1328.

Recall that the non-discriminant boundary for Σ3,6 consists of
polynomials that are sums of three squares. Our “guess” is that
the non-discriminant boundary ∂ΣM

3,6 =
{∑5

j=1 AjXAT
j

}
: Take

P ∈ ΣM
3,6 that is a sum of 4 squares. This means that P = M MT

for a linear 3× 4 matrix M. By the Cauchy-Binet formula
det P = det M2

123 + det M2
124 + det M2

134 + det M2
234. Therefore

the set of real zeros equals to the determinantal variety
rankM ≤ 2 which consists of 6 points.
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