CONSTRUCTION OF SELF-ADJOINT DETERMINANTAL REPRESENTATIONS OF SMOOTH CUBIC SURFACES

Anita Buckley and Tomaž Košir
Department of Mathematics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
tomaz.kosir@fmf.uni-lj.si(T. Košir)

Abstract

We consider a smooth cubic surface S and its determinantal representations. The equivalence classes of determinantal representations correspond to sixes of skew lines on S. There are 72 such sixes of lines on S and thus there are 72 nonequivalent determinantal representations of S. The aim of our paper is to provide two procedures for computation of determinantal representations of cubic surfaces. For smooth real cubic surface we also construct self-adjoint and definite determinantal representations when they exist. For the first procedure we assume that S is given as a blow-up of six points in a projective plane and for the second that we are given equations of a line on S or an equation a tritangent plane of S. The key step in the constructions is computation of explicit equations of all the 27 lines on S. Exact computations are possible if S is given as a blow-up of six points or if we are given an equation of a tritangent plane. It is known that if we are given a defining polynomial for S then, in general, computation of a line or a tritangent plane requires transcendental methods since the Galois group of the corresponding equation is not solvable. One can then use transcendental methods introduced by Klein and Coble or use numerical methods and approximate computations instead of exact ones. Both authors were supported in part by the Research Agency of the Republic of Slovenia. Math. Subj. Class. (2000): Primary. 13P99, 14J26, 14Q10. Secondary. 15A15, 68W30.

Keywords: Cubic surfaces. Blow-up. Determinantal representations. Self-adjoint and definite determinantal representations.

Presenting Author's Biography

Tomaž Košir is a professor of mathematics at the Faculty of Mathematics and Physics, University of Ljubljana. He did his Ph.D. in 1993 at the University of Calgary in Canada. After that he spent two years at Dalhousie University, Halifax, Canada as a postdoctoral fellow. Later, he was a visiting professor at the University of Southern California in Los Angeles and at Dalhousie University. His main research interest are in algebra, geometry, and their applications in partial differential equations.

1 Introduction

We consider a smooth cubic surface S in $\mathbb{P}^{3}=\mathbb{P}^{3}(\mathbb{C})$ given by equation

$$
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0
$$

where F is a homogeneous cubic polynomial over \mathbb{R} or \mathbb{C}. If F is real then we say that S is a real cubic surface. It is well known that a smooth cubic surface S contains 27 lines. A plane intersecting S in three lines is called a tritangent plane. Every line on S lies exactly on 5 tritangent planes and there are 45 tritagent planes for S. We refer to Henderson [9] or Reid [13] for the geometry of the 27 lines. A great source for the geometry of real cubic surfaces is Segre [16]. One can find chapters on cubic surfaces also in Shafarevich [17] and Dolgachev [6].
The most elegant way to study curves on S (our particular interest will be in lines) is by defining S as a blow up of 6 points in the plane, no three collinear and not on a conic. Every nonsingular cubic surface in $\mathbb{P}^{3}(\mathbb{C})$ can be obtained this way [8].
A determinantal representation of a smooth cubic surface is a 3×3 matrix of linear forms
$M=M\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0} M_{0}+z_{1} M_{1}+z_{2} M_{2}+z_{3} M_{3}$
satisfying $\operatorname{det} M=c F$, where $M_{0}, M_{1}, M_{2}, M_{3} \in$ $\mathrm{M}_{3}(\mathbb{C})$ and $c \in \mathbb{C}, c \neq 0$. Two determinantal representations M and M^{\prime} are equivalent if there exist $X, Y \in \mathrm{GL}_{3}(\mathbb{C})$ such that $M^{\prime}=X M Y$.

It is known that a smooth cubic surface S allows exactly 72 nonequivalent determinantal representations. In fact, there is a one-to-one correspondence between:

- equivalence classes of determinantal representations of S,
- linear systems of twisted cubic curves on S,
- sets of six lines on S that do not intersect each other.

This was most likely known in the 19th century (see $[3,5,14])$. Since it is hard to find a modern reference we provided a proof in [2]. There we also studied self-adjoint and definite determinantal representations of smooth real cubic surfaces.
A determinantal representation $M=z_{0} M_{0}+z_{1} M_{1}+$ $z_{2} M_{2}+z_{3} M_{3}$ is self-adjoint if $M_{j}^{*}=M_{j}$ for all j. Two self-adjoint determinantal representations M and M^{\prime} are equivalent if there exist $X \in \mathrm{GL}_{3}(\mathbb{C})$ such that $M^{\prime}=X M X^{*}$. A self-adjoint determinantal representation is definite if there exist $c_{0}, c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that the matrix $c_{0} M_{0}+c_{1} M_{1}+c_{2} M_{2}+c_{3} M_{3}$ is positivedefinite. All smooth cubic surfaces are divided into 5 types according to the geometry of the corresponding 27 lines (see Segre [16]). The number of nonequivalent self-adjoint determinantal representations depends on the Segre type $F_{i}, i=1, \ldots, 5$, of S. A surface of type
$F_{i}, i=1, \ldots, 4$ has exactly $2(i-1)$ nonequivalent selfadjoint determinantal representations none of which is definite, while a surface of type F_{5} has 24 nonequivalent self-adjoint determinantal representations, 16 of which are definite [2].
The main topic of our current presentation is explicit construction of determinantal representations of a smooth cubic surface and in particular of all self-adjoint and definite representations when they exist. We discuss two procedures. In the first, we assume that we are given six points in the plane such that S is blowup at these six points. In the second, we assume that we are given equations of a line on S or an equation of a tritangent plane to S. It is known that if we are given a defining polynomial F then in general it is not possible to express a line on S by radicals since the corresponding Galois group is not solvable. We refer to Hunt [10] for a nice review of the classical construction of a line on S using transcendental methods of Klein and Coble. One could use Coble's hexahedral form of S (see Coble's original papers [4] or Hunt [10]) to find explicit equations of a line.
Our motivation to study explicit constructions of determinantal representations comes from possible application to multiparameter spectral theory [11]. Important motivation to study self-adjoint and definite determinantal representations is provided by Vinnikov [19, 20]. Such representations appear as determinantal representations of discriminant varieties in the theory of commuting nonselfadjoint operators in a Hilbert space [12]. Cubic surfaces are used also in modeling with algebraic surfaces [1, 15, 18].

2 Algorithms if given six points of a blowup

A possible construction of a cubic surface is by blowing-up of six points in general position in a projective plane \mathbb{P}^{2} (see e.g. [7, 8, 17]). Suppose that $\mathbb{X}=\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$ is a set of six points in \mathbb{P}^{2}, no three collinear and not on a conic. Denote by x_{0}, x_{1}, x_{2} the homogeneous coordinates of \mathbb{P}^{2}. Then it is easy to see that the vector space of all cubic forms f in x_{0}, x_{1}, x_{2} such that $f\left(P_{i}\right)=0$ for $i=1,2, \ldots, 6$, is four dimensional. Assume that $f_{0}, f_{1}, f_{2}, f_{3}$ form a basis for this vector space. Then we consider the rational mapping

$$
\Phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{3}
$$

given by

$$
\Phi(Q)=\left[f_{0}(Q), f_{1}(Q), f_{2}(Q), f_{3}(Q)\right]
$$

It is well defined at every point away from \mathbb{X}. It gives a blow-up constructions at points in \mathbb{X}. The closure of its image is a smooth cubic surface S. We refer to Geramita [7] for elementary proofs of the above statements. The 27 lines on S are then the following (see e.g. [8, Theorem V.4.8.]):

- a_{1}, \ldots, a_{6} are the exceptional lines of the blow-up Φ,
- $c_{i j}=c_{j i}$ is the strict transform of the line through P_{i} and P_{j} in \mathbb{P}^{2}, where $1 \leq i<j \leq 6$.
- b_{1}, \ldots, b_{6}, with b_{j} being the strict transform of the plane conic through the five $P_{i}, i \neq j$.

Observe that a_{1}, \ldots, a_{6} are mutually skew, b_{1}, \ldots, b_{6}, are mutually skew and a_{i} intersects b_{j} if and only if $i \neq j$. Every configuration of 12 lines on S with this property is called a Schläfli's double-six. Every smooth cubic surface S contains 36 double-sixes of lines. The 27 lines have a high degree of symmetry: for any set l_{1}, \ldots, l_{6} of mutually skew lines on S there exist 6 points in \mathbb{P}^{2} and a blow-up for which l_{1}, \ldots, l_{6} are the exceptional lines. Proof of this can be found in [8, Proposition V.4.10.]. These lines then uniquely determine another set of 6 mutually skew lines to form together a double-six. Using the above notation the double-sixes on S are:

$$
\begin{gather*}
\left(\begin{array}{ccc}
a_{1} & \ldots & a_{6} \\
b_{1} & \ldots & b_{6}
\end{array}\right) \tag{1}\\
\left(\begin{array}{cccccc}
a_{i} & b_{i} & c_{k l} & c_{k m} & c_{k n} & c_{k p} \\
a_{k} & b_{k} & c_{i l} & c_{i m} & c_{i n} & c_{i p}
\end{array}\right) \tag{2}\\
\left(\begin{array}{cccccc}
a_{i} & a_{k} & a_{l} & c_{m n} & c_{m p} & c_{n p} \\
c_{k l} & c_{i l} & c_{i k} & b_{p} & b_{n} & b_{m}
\end{array}\right) \tag{3}
\end{gather*}
$$

Here i, k, l, m, n, p are all distinct.
The 27 lines lie in triples on 45 tritangent planes. The coplanar triples of lines are

$$
\begin{array}{lllllll}
a_{i} & b_{j} & c_{i j} & \text { and } & c_{i k} & c_{l m} & c_{n p} \tag{4}
\end{array}
$$

for distinct i, j and i, k, l, m, n, p, respectively.
Next we give an explicit procedure to find equations for the 27 lines given a set of six points \mathbb{X} in general position.
Suppose that

$$
L_{i j}=L_{i j}(s, t)=\left[l_{0 i j}(s, t), l_{1 i j}(s, t), l_{2 i j}(s, t)\right]
$$

where $l_{k i j}$ are linear forms in s and t, is a parametrization of line through P_{i} and $P_{j}, i \neq j$, in \mathbb{P}^{2}. Assume that

$$
\begin{equation*}
L_{i j}(1,0)=P_{i} \text { and } L_{i j}(0,1)=P_{j} \tag{5}
\end{equation*}
$$

Then $\left[f_{0}\left(L_{i j}\right), \ldots, f_{3}\left(L_{i j}\right)\right]$ is a parametrization of $c_{i j}$ in \mathbb{P}^{3}. From this it is easy to find explicit equations of the $c_{i j}$. The assumption (5) and the choice of f_{k} imply that each $f_{k}\left(L_{i j}(s, t)\right)$ is divisible by both s and t. Denote by

$$
\begin{equation*}
m_{k i j}(s, t) \tag{6}
\end{equation*}
$$

the remaining linear factor of $f_{k}\left(L_{i j}(s, t)\right)$. Observe that

$$
\begin{equation*}
m_{k i j}(1,0) \text { and } m_{k i j}(0,1) \tag{7}
\end{equation*}
$$

are points on lines a_{i} and a_{j}, respectively. Using these points for various k we can determine the equations for the lines a_{i}. Since b_{j} is the intersection of the planes $\left\langle a_{i}, c_{i j}\right\rangle \cap\left\langle a_{k}, c_{k j}\right\rangle$ for two distinct i and k we can obtain equations for the lines b_{j} as well. Here we denote
by $\langle a, b\rangle$ the plane spanned by two intersecting lines a and b in \mathbb{P}^{3}.

The procedure to find all the nonequivalent determinantal representations of a surface given by the blow-up of points in \mathbb{X} is then the following:

Algorithm 2.1 Given $\mathbb{X}=\left\{P_{1}, P_{2}, \ldots P_{6}\right\}$.
Find a basis $f_{0}, f_{1}, f_{2}, f_{3}$.
For all pairs of distinct i, j parametrise the line through P_{i} and P_{j}. Compute equations for the line $c_{i j}$.
Find linear factors $m_{k i j}$ and compute equations for the lines a_{i}.
Find equations for 45 tritangent planes. The lines that span them are given in (4).
Among the equations of the tritagent planes find equations for the lines b_{j}.
For each of the double-sixes in the list (1)-(3) do: If

$$
\left(\begin{array}{ccc}
a_{1} & \ldots & a_{6} \tag{8}\\
b_{1} & \ldots & b_{6}
\end{array}\right)
$$

is a double-six, then consider the tritangent planes

$$
\begin{equation*}
\pi_{12}, \pi_{23}, \pi_{31}, \pi_{13}, \pi_{21}, \pi_{32} \tag{9}
\end{equation*}
$$

where $\pi_{i j}=\left\langle b_{i}, a_{j}\right\rangle$. Use a point outside the lines a_{i} and b_{j} to determine λ such that

$$
\begin{equation*}
F=\pi_{12} \pi_{23} \pi_{31}+\lambda \pi_{13} \pi_{21} \pi_{32} \tag{10}
\end{equation*}
$$

Modify one of the equations $\pi_{i j}$ so that $\lambda=1$. Then

$$
\Re=\left(\begin{array}{ccc}
0 & \pi_{12} & \pi_{13} \tag{11}\\
\pi_{21} & 0 & \pi_{23} \\
\pi_{31} & \pi_{32} & 0
\end{array}\right)
$$

and

$$
\Re^{T}=\left(\begin{array}{ccc}
0 & \pi_{21} & \pi_{31} \tag{12}\\
\pi_{12} & 0 & \pi_{32} \\
\pi_{13} & \pi_{23} & 0
\end{array}\right)
$$

are two nonequivalent determinantal representations corresponding to (8).

Example 2.2 We used Mathematica 5.0 (software for symbolic computations) to compute the steps of the above procedure. Since a complete list of equations of lines, tritangent planes and determinantal representations is large we include only a small sample.
Suppose that $\mathbb{X}=\left\{P_{1}, P_{2}, \ldots P_{6}\right\}$ is the set of points

$$
\{[1,0,0],[0,1,0],[0,0,1],[1,1,1],[1,2,3],[1,3,7]\} .
$$

It is easy to verify that these points are in general position. We choose the cubic forms

$$
\begin{aligned}
f_{0} & =4 x_{0}^{2} x_{1}-6 x_{0}^{2} x_{2}+x_{0} x_{1}^{2}+x_{0} x_{1} x_{2} \\
f_{1} & =9 x_{0} x_{1}^{2}+15 x_{0}^{2} x_{1}-25 x_{0}^{2} x_{2}+x_{0} x_{2}^{2} \\
f_{2} & =10 x_{0} x_{1}^{2}+19 x_{0}^{2} x_{1}-30 x_{0}^{2} x_{2}+x_{1}^{2} x_{2} \\
f_{3} & =40 x_{0} x_{1}^{2}+55 x_{0}^{2} x_{1}-96 x_{0}^{2} x_{2}+x_{1} x_{2}^{2}
\end{aligned}
$$

determined by

$$
f_{i}\left(P_{j}\right)=0, \text { for } i=0,1,2,3, j=1,2, \ldots, 6
$$

which define a blow up $\mathbb{P}^{2} \rightarrow \mathbb{P}^{3}$. The line through P_{1} and P_{2} in \mathbb{P}^{2} is parametrized by $[s, t, 0]$. Its direct transform is the line $c_{12}=c_{21}$ parametrized by

$$
s t[4 s+t, 15 s+9 t, 19 s+10 t, 55 s+40 t]
$$

Let $z_{0}, z_{1}, z_{2}, z_{3}$ be the coordinates of \mathbb{P}^{3}. It is now easy to calculate the equations of c_{12} :

$$
\begin{aligned}
z_{1}+z_{2}-z_{3} & =0 \\
5 z_{1}-5 z_{2}+z_{4} & =0
\end{aligned}
$$

Similarly,
the line $P_{1} P_{3}$ is parametrized by $[s, 0, t]$,
the line $P_{2} P_{3}$ is parametrized by $[0, s, t]$,
and the line $P_{4} P_{5}$ is parametrized by $[s+t, s+$ $2 t, s+3 t]$. Their direct transforms c_{13}, c_{23}, c_{45} are parametrized by

$$
\begin{gathered}
s t[-6 s,-25 s+t,-30 s,-96 s] \\
s t[0,0, s, t] \\
s t[-3(s+t),-13(s+t),-17 s-19 t,-52 s-56 t]
\end{gathered}
$$

respectively. The corresponding equations in \mathbb{P}^{3} are

$$
\begin{gathered}
c_{13}: \\
\\
\\
c_{23}: \\
\\
\\
16 z_{1}-z_{3}-z_{4}=0 \\
\\
c_{45}: \\
z_{1}=0 \\
z_{2}=0, \\
\\
13 z_{1}-3 z_{2}=0 \\
6 z_{1}+2 z_{3}-z_{4}=0 .
\end{gathered}
$$

From the parametrisations of $c_{i j}$ we can read the linear forms $m_{k i j}$ defined in (6) and calculate points given by (7) that lie on various a_{j}. Therefore
$[4,15,19,55]$ and $[6,25,30,96]$ are points on a_{1},
$[1,9,10,40]$ and $[0,0,1,0]$ are points on a_{2},
[$0,1,0,0]$ and $[0,0,0,1]$ are points on a_{3}.
Then a_{1}, a_{2}, a_{3} are given by the equations

$$
\begin{aligned}
& a_{1}: \begin{aligned}
25 z_{1}+6 z_{2}-10 z_{3} & =0 \\
65 z_{1}-54 z_{2}+10 z_{4} & =0,
\end{aligned} \\
& a_{2}: \quad \begin{aligned}
9 z_{1}-z_{2} & =0 \\
40 z_{1}-z_{4} & =0,
\end{aligned} \\
& a_{3}: \quad z_{1}=0
\end{aligned}
$$

Recall the tritangent planes listed in (9). From the lines constructed above we find that their equations are

$$
\begin{aligned}
& \pi_{21}=<a_{1}, c_{12}>\equiv 4 z_{1}-6 z_{2}+z_{3}+z_{4}=0 \\
& \pi_{31}=<a_{1}, c_{13}>\equiv 29 z_{1}-9 z_{3}+z_{4}=0 \\
& \pi_{32}=<a_{2}, c_{23}>\equiv 9 z_{1}-z_{2}=0 \\
& \pi_{12}=<a_{2}, c_{12}>\equiv 5 z_{1}-5 z_{2}+z_{4}=0 \\
& \pi_{13}=<a_{3}, c_{13}>\equiv 5 z_{1}-z_{3}=0 \\
& \pi_{23}=<a_{3}, c_{23}>\equiv z_{1}=0 .
\end{aligned}
$$

It is easy to check that the point $[3,13,-6,6]$ lies on c_{45} and on no other line of S. This determines λ in (10). Indeed, $\lambda=-1$ is the solution of $\pi_{12} \pi_{23} \pi_{31}+$ $\lambda \pi_{13} \pi_{21} \pi_{32}=0$ evaluated at $[3,13,-6,6]$.
Then the two nonequivalent determinantal representations corresponding to

$$
\left(\begin{array}{ccc}
a_{1} & \ldots & a_{6} \\
b_{1} & \ldots & b_{6}
\end{array}\right)
$$

are

$$
\left(\begin{array}{ccc}
0 & 5 z_{1}-5 z_{2}+z_{4}-5 z_{1}+z_{3} \\
4 z_{1}-6 z_{2}+z_{3}+z_{4} & 0 & -z_{1} \\
29 z_{1}-9 z_{3}+z_{4} & -9 z_{1}+z_{2} & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
0 & 4 z_{1}-6 z_{2}+z_{3}+z_{4} & 29 z_{1}-9 z_{3}+z_{4} \\
5 z_{1}-5 z_{2}+z_{4} & 0 & 9 z_{1}-z_{2} \\
5 z_{1}-z_{3} & -z_{1} & 0
\end{array}\right)
$$

both defining

$$
\begin{gathered}
F=-35 z_{1}^{3}+145 z_{1}^{2} z_{2}-30 z_{1} z_{2}^{2}-54 z_{1}^{2} z_{3} \\
-8 z_{1} z_{2} z_{3}+6 z_{2}^{2} z_{3}+9 z_{1} z_{3}^{2}-z_{2} z_{3}^{2} \\
-11 z_{1}^{2} z_{4}-z_{2} z_{3} z_{4}+z_{1} z_{4}^{2}
\end{gathered}
$$

as their determinant.
In the same way all 45 tritangent planes, 27 lines, 36 double-sixes and 72 determinantal representations on the surface given by F can be computed.

Next we recall from [2] the results on existence and number of self-adjoint and definite determinantal representations of real cubic surfaces.
A double-six $\left(\begin{array}{ccc}a_{1} & \ldots & a_{6} \\ b_{1} & \ldots & b_{6}\end{array}\right)$ is called mutually selfconjugate if $\left\{b_{1}, \ldots, b_{6}\right\}=\left\{\overline{a_{1}}, \ldots, \overline{a_{6}}\right\}$ as sets. Here \bar{a} is the line obtained from line a by conjugation of all points of a. After a suitable permutation of indexes, a mutually self-conjugate double-six is one of the following 4 kinds: a double-six of the I-st kind is of the form

$$
\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
\overline{a_{1}} & \overline{a_{2}} & \overline{a_{3}} & \overline{a_{4}} & \overline{a_{5}} & \frac{a_{6}}{a_{6}}
\end{array}\right)
$$

a double-six of the II-nd kind is of the form

$$
\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
\overline{a_{2}} & \overline{a_{1}} & \overline{a_{3}} & \overline{a_{4}} & \overline{a_{5}} & \overline{a_{6}}
\end{array}\right)
$$

a double-six of the III-rd kind is of the form

$$
\left(\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
\overline{a_{2}} & \overline{a_{1}} & \overline{a_{4}} & \overline{a_{3}} & \overline{a_{5}} & \overline{a_{6}}
\end{array}\right)
$$

and a double-six of the $I V$-th kind is of the form

$$
\left(\begin{array}{llllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
\overline{a_{2}} & \overline{a_{1}} & \overline{a_{4}} & \overline{a_{3}} & \overline{a_{6}} & \overline{a_{5}}
\end{array}\right)
$$

All mutually self-conjugate double-sixes are specified by

Type	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
Number $_{\text {Kind }}$	0	1_{I}	$2_{I I}$	$3_{I I I}$	$12_{I V}$

The four kinds of mutually self-conjugate double-sixes were introduced by Cremona [5]. See [16] for further details on double-sixes and types of real cubic surfaces.

Every mutually self-conjugate double-six induces two nonequivalent self-adjoint determinantal representations. A real cubic surface has the following number of nonequivalent self-adjoint determinantal representations:

Type of the surface	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
Number of s.a. reps	0	2	4	6	24

Only real cubic surfaces of type F_{5} have definite determinantal representations. Each surface of type F_{5} has up to equivalence 16 definite determinantal representations (among the 24 nonequivalent self-adjoint determinantal representations).
The procedure to determine self-adjoint and definite determinantal representations (when they exits) of a real cubic surface is an extension of the procedure to compute all nonequivalent determinantal representations. For each of mutually self-conjugate double-six we find two nonequivalent self-adjoint determinantal representations. Given a determinantal representation M corresponding to a mutually self-conjugate double-six as in Algorithm 2.1 one has to additionally find a matrix $X \in \mathrm{GL}_{4}(\mathbb{C})$ such that $X M=M^{*} X^{*}$. Such X always exists.

A cubic surface given by a blow-up of a set \mathbb{X} in \mathbb{P}^{2} is real if \mathbb{X} is invariant under complex conjugation. The type of a real cubic surface then depends on the number of complex conjugate pairs in \mathbb{X}. It is $F_{i}, i=1,2,3$, if there are $i-1$ pairs of complex conjugate points in \mathbb{X}, and either F_{4} or F_{5} if \mathbb{X} consists of three complex conjugate pairs of points. This follows from the number of real lines on real cubic surfaces of various types [16].

Since the set \mathbb{X} in Example 2.2 consists of real points the corresponding surface is of type F_{1} and it has no self-adjoint representations. Next we give an example of a surface of type F_{2} to illustrate the procedure of finding self-adjoint determinantal representations.

Example 2.3 Suppose that \mathbb{X} contains the following six points:

$$
[1,0,0],[0,1,0],[0,0,1],[1,1,1],[1, i, 1-i]
$$

and

$$
[1,-i, 1+i]
$$

It is obvious that it is invariant under complex conjugation. One can easily check that these points are in
general position. We choose the cubic forms

$$
\begin{aligned}
f_{0} & =-4 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}+2 x_{0} x_{1}^{2}+3 x_{0} x_{1} x_{2} \\
f_{1} & =x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-x_{0} x_{1}^{2}+x_{0} x_{2}^{2} \\
f_{2} & =-2 x_{0}^{2} x_{1}-2 x_{0} x_{1}^{2}+x_{0}^{2} x_{2}+3 x_{1}^{2} x_{2} \\
f_{3} & =-x_{0}^{2} x_{1}+x_{0} x_{1}^{2}-x_{0}^{2} x_{2}+x_{1} x_{2}^{2}
\end{aligned}
$$

for a basis of cubic forms defining the blow-up and such that

$$
f_{i}\left(P_{j}\right)=0, \text { for } i=0,1,2,3, j=1,2, \ldots, 6
$$

The corresponding cubic surface contains one selfconjugate double-six which is of the I-st kind. It is

$$
\left(\begin{array}{cccccc}
a_{5} & b_{5} & c_{16} & c_{26} & c_{36} & c_{46} \\
a_{6} & b_{6} & c_{15} & c_{25} & c_{35} & c_{45}
\end{array}\right)
$$

where $a_{6}=\overline{a_{5}}, b_{6}=\overline{b_{5}}$ and $c_{i 6}=\overline{c_{i 5}}$ for $i=1,2,3$.
The line through P_{1} and P_{5} in \mathbb{P}^{2} is parametrized by $[s+t, i t,(1-i) t]$ and its direct transform c_{15} is parametrized by

$$
\begin{array}{r}
s t[(-1-3 i)(s+t),(-1+2 i)(s+t) \\
(1-3 i) s+(4-6 i) t,-s-3 t]
\end{array}
$$

Its equations are

$$
\begin{aligned}
-z_{0}+2 z_{2}+(3-3 i) z_{3} & =0 \\
z_{0}+(1-i) z_{1} & =0 .
\end{aligned}
$$

Similarly, we see that lines $P_{2} P_{5}$ and $P_{3} P_{5}$ are parametrized as follows:

$$
\begin{aligned}
& P_{2} P_{5} \text { by }[t, s+i t,(1-i) t], \\
& P_{3} P_{5} \text { by }[t, i t, s+(1-i) t] .
\end{aligned}
$$

Their direct transforms c_{25}, c_{35} are parametrised by
$s t[2 s-(1-i) t,-s+(1-2 i) t,(1-3 i) s+(4+2 i) t, s-t]$
and

$$
s t[(-1+3 i) t, s+(1-2 i) t,(-2 t, i s+(1+2 i) t]
$$

respectively. The corresponding equations in \mathbb{P}^{3} are

$$
\begin{aligned}
c_{25}: \quad-5 z_{0}+(3-9 i) z_{1}+(4+3 i) z_{2} & =0 \\
(3-i) z_{0}+(1-2 i) z_{1}-5 z_{3} & =0, \\
c_{35}: \quad z_{0}+(1+2 i) z_{1}+(-2+i) z_{3} & =0 \\
2 z_{1}-(1+i) z_{2}+2 i z_{3} & =0 .
\end{aligned}
$$

We will also use a point on a line c_{12}. It is a direct transform of the line $P_{1} P_{2}$, which is parametrized by $[s, t, 0]$. Then c_{12} is parametrized by

$$
s t[-4 s+2 t, s-t,-2(s+t),-s+t] .
$$

Its equations are

$$
\begin{aligned}
2 z_{0}+6 z_{1}-z_{2} & =0 \\
z_{1}+z_{3} & =0
\end{aligned}
$$

and $[3,-1,0,1]$ is a point on it.
The tritangent planes are listed in (4). We need the tritangent planes $\sigma_{i j}=\left\langle c_{j 5}, \overline{c_{i 5}}\right\rangle=\left\langle c_{j 5}, c_{i 6}\right\rangle$ for $i, j \in\{1,2,3\}$. From the lines constructed above we find that their equations are

$$
\begin{array}{cc}
\sigma_{12}: & (2-2 i) z_{0}+3 z_{1}+(-1+i) z_{2}-3 z_{3}=0, \\
\sigma_{13}: & (1-2 i) z_{0}+3 z_{1}+(-1+i) z_{2}+3 i z_{3}=0, \\
\sigma_{23}: & z_{0}+3 i z_{1}+z_{2}-3 z_{3}=0 .
\end{array}
$$

An equation of the corresponding cubic surface S is then of the form

$$
\sigma_{12} \sigma_{23} \overline{\sigma_{13}}+\lambda \overline{\sigma_{12} \sigma_{23}} \sigma_{13}=0 .
$$

We use a point on S to determine λ. Note that we always have $|\lambda|=1$. If θ is such that $\theta^{2}=\lambda$ then $\theta^{-1}=\bar{\theta}$ and

$$
\sigma_{12} \sigma_{23}\left(\bar{\theta} \overline{\sigma_{13}}\right)+\overline{\sigma_{12} \sigma_{23}}\left(\theta \sigma_{13}\right)=0
$$

is an equation of our surface that gives two self-adjoint determinantal representations

$$
\left(\begin{array}{ccc}
0 & \sigma_{12} & \theta \sigma_{13} \\
\overline{\sigma_{12}} & 0 & \sigma_{23} \\
\bar{\theta} \overline{\sigma_{13}} & \overline{\sigma_{23}} & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
0 & \overline{\sigma_{12}} & \bar{\theta} \overline{\sigma_{13}} \\
\sigma_{12} & 0 & \overline{\sigma_{23}} \\
\theta \sigma_{13} & \sigma_{23} & 0
\end{array}\right) .
$$

Using the point $[3,-1,0,1]$ we find that $\lambda=1$ and we choose $\theta=1$. We compute the determinant and find that the polynomial

$$
\begin{gathered}
F=\quad 2 z_{0}^{3}+9 z_{0}^{2} z_{1}+3 z_{0}^{2} z_{2}-9 z_{0}^{2} z 3 \\
+27 z_{0} z_{1}^{2}-72 z_{0} z_{1} z_{2}-9 z_{0} z_{2}^{2}+9 z_{0} z_{3}^{2} \\
-81 z_{1}^{2} z_{2}+108 z_{1} z_{2}^{2}+27 z_{1} z_{2} z_{3}
\end{gathered}
$$

defines our surface.

3 Algorithms if given a line or a tritangent plane on S

The problem of computing equations of a line on a cubic surface if given a defining polynomial F is, in general, not solvable by radicals. Transcendental methods for finding equations of a line were described by Klein and Coble [4, 10]. Numerical methods to compute equations of a line are given by Szilágy in her Ph.D. thesis [18].

The procedure to find all nonequivalent determinantal representations from an equation $F=0$ for S is therefore not as direct as it was for their construction from the six points of the blow-up. However, once we obtain an equation of a tritangent plane to S we can explicitly compute equations of all tritangent planes. Then we proceed as in Algorithm 2.1.

If we are given an equation of a line then we still need to solve an equation of degree 5 to find an equation of a tritangent plane. Once we have an equation of a tritangent plane it is possible to compute exactly equations for all 27 lines and 45 tritangent planes.
Suppose we know the tritangent plane π_{21} and the lines a_{1}, b_{2} and c_{12}. Since all the tritangent planes that contain a given line on S can be computed explicitly by solving a quintic equation [13, pp. 106-107] we can explicitly find the remaining four tritangent planes that contain either of a_{1}, b_{2} or c_{12} since we know π_{21}. Continuing in this manner we can explicitly compute equations for all 45 tritangent planes and 27 lines on S.

For real cubic surfaces we can compute self-adjoint and definite determinantal representations once we know equations of lines and tritangent planes of S.
To conclude, we briefly discuss two examples taken from [2].

Example 3.1 Consider Fermat surface S given by the equation

$$
F=z_{0}^{3}+z_{1}^{3}+z_{2}^{3}+z_{3}^{3}=0 .
$$

We represent a line

$$
\begin{aligned}
\alpha_{0} z_{0}+\alpha_{1} z_{1}+\alpha_{2} z_{2}+\alpha_{3} z_{3} & =0 \\
\beta_{0} z_{0}+\beta_{1} z_{1}+\beta_{2} z_{2}+\beta_{3} z_{3} & =0
\end{aligned}
$$

by a 2×4 matrix

$$
\left(\begin{array}{cccc}
\alpha_{0} & \alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{0} & \beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right) .
$$

Because of the symmetry of F it is easy to obtain the 27 lines on S :

$\left.\begin{array}{llll}0 & 1 & 1\end{array}\right)\left(\begin{array}{llll}0 & 0 & 1 & \omega\end{array}\right)\left(\begin{array}{lllll}0 & 0 & \omega & 1\end{array}\right)$
$\left(\begin{array}{llll}1 & \omega & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right),\left(\begin{array}{llll}1 & \omega & 0 & 0 \\ 0 & 0 & 1 & \omega\end{array}\right),\left(\begin{array}{cccc}1 & \omega & 0 & 0 \\ 0 & 0 & \omega & 1\end{array}\right)$
$\left.\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right),\left(\begin{array}{llll}\omega & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega\end{array}\right)$
$\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \omega\end{array}\right),\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & \omega & 0 & 1\end{array}\right)$
$\left(\begin{array}{llll}1 & 0 & \omega & 0 \\ 0 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{llll}1 & 0 & \omega & 0 \\ 0 & 1 & 0 & \omega\end{array}\right),\left(\begin{array}{cccc}1 & 0 & \omega & 0 \\ 0 & \omega & 0 & 1\end{array}\right)$
$\left(\begin{array}{llll}\omega & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{llll}\omega & 0 & 1 & 0 \\ 0 & 1 & 0 & \omega\end{array}\right),\left(\begin{array}{cccc}\omega & 0 & 1 & 0 \\ 0 & \omega & 0 & 1\end{array}\right)$
$\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & \omega & 0\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & \omega & 1 & 0\end{array}\right)$
$\left(\begin{array}{llll}1 & 0 & 0 & \omega \\ 0 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & \omega \\ 0 & 1 & \omega & 0\end{array}\right),\left(\begin{array}{cccc}1 & 0 & 0 & \omega \\ 0 & \omega & 1 & 0\end{array}\right)$
$\left(\begin{array}{llll}\omega & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{llll}\omega & 0 & 0 & 1 \\ 0 & 1 & \omega & 0\end{array}\right),\left(\begin{array}{cccc}\omega & 0 & 0 & 1 \\ 0 & \omega & 1 & 0\end{array}\right)$

where ω is a primitive third root of unity.
Consider determinantal representation

$$
M=\left(\begin{array}{ccc}
0 & z_{0}+z_{1} & z_{2}+z_{3} \\
\omega z_{2}+z_{3} & 0 & z_{0}+\omega z_{1} \\
\omega z_{0}+z_{1} & z_{2}+\omega z_{3} & 0
\end{array}\right) .
$$

Together M and M^{t} correspond to the double six

$$
\binom{\left(\begin{array}{llll}
\omega & 1 & 0 & 0 \\
0 & 0 & \omega & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & \omega
\end{array}\right),\left(\begin{array}{llll}
1 & \omega & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & \omega \\
0 & 1 & \omega & 0
\end{array}\right),\left(\begin{array}{llll}
\omega & 0 & 0 & 1 \\
0 & \omega & 1 & 0
\end{array}\right)}{\left(\begin{array}{lllll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & \omega & 0 & 0 \\
0 & 0 & \omega & 1
\end{array}\right),\left(\begin{array}{lllll}
\omega & 1 & 0 & 0 \\
0 & 0 & 1 & \omega
\end{array}\right),\left(\begin{array}{llll}
\omega & 0 & 0 & 1 \\
0 & 1 & \omega & 0
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & \omega & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & \omega \\
0 & 1 & 1 & 0
\end{array}\right)}
$$

Observe that determinantal representations M is not equivalent to a self-adjoint one, since the double-six contains real lines.
Consider next

$$
M^{\prime}=\left(\begin{array}{ccc}
0 & z_{2}+\omega z_{3} & z_{0}+\omega z_{1} \\
\omega z_{0}+z_{1} & 0 & z_{2}+z_{3} \\
\omega z_{2}+z_{3} & z_{0}+z_{1} & 0
\end{array}\right) .
$$

The determinantal representations M^{\prime} and $\left(M^{\prime}\right)^{t}$ correspond to the double-six

$$
\binom{\left(\begin{array}{llll}
\omega & 1 & 0 & 0 \\
0 & 0 & \omega & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & \omega
\end{array}\right),\left(\begin{array}{llll}
1 & \omega & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & \omega & 0
\end{array}\right),\left(\begin{array}{llll}
\omega & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & \omega \\
0 & \omega & 1 & 0
\end{array}\right)}{\left(\begin{array}{llll}
1 & \omega & 0 & 0 \\
0 & 0 & 1 & \omega
\end{array}\right),\left(\begin{array}{lllll}
\omega & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{lllll}
1 & 1 & 0 & 0 \\
0 & 0 & \omega & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & \omega \\
0 & 1 & 1 & 0
\end{array}\right),\left(\begin{array}{lllll}
1 & 0 & 0 & 1 \\
0 & \omega & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
\omega & 0 & 0 & 1 \\
0 & 1 & \omega & 0
\end{array}\right)}
$$

which is mutually self-conjugate of the $I I I$-rd kind. Therefore M^{\prime} is equivalent to a self-adjoint determinantal representation. Indeed,

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\omega^{2} & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \cdot M^{\prime}= \\
& \left(\begin{array}{ccc}
0 & \omega^{2} z_{2}+z_{3} & \omega^{2} z_{0}+z_{1} \\
\omega z_{2}+z_{3} & z_{0}+z_{1} & 0 \\
\omega z_{0}+z_{1} & 0 & z_{2}+z_{3}
\end{array}\right)
\end{aligned}
$$

We conclude that Fermat surface is of the Segre type F_{4} and thus it has 6 nonequivalent self-adjoint and no definite determinantal representations.

Example 3.2 Let S be a surface defined by equation

$$
\begin{array}{r}
\left(\frac{100}{24} z_{0}^{2}+z_{1}^{2}\right)\left(z_{0}+z_{2}\right) \\
-z_{3}\left(z_{3}-\frac{1}{2} z_{2}\right)\left(z_{3}-\frac{2}{3} z_{2}\right)=0
\end{array}
$$

It is easy to check that S is of type F_{5}. It has 3 real lines on the plane $z_{0}+z_{2}=0$. Through the line

$$
z_{0}+z_{2}=3 z_{3}-2 z_{2}=0
$$

there are 4 real tritangent planes, each containing two intersecting complex conjugate lines:

$$
\begin{array}{r}
z_{0}+0.98987 z_{2}+0.01519 z_{3}=0 \\
z_{0}+0.01345 z_{2}+1.47982 z_{3}=0 \\
z_{0}-3.00333 z_{2}+6.00499 z_{3}=0 \\
3 z_{3}-2 z_{2}=0
\end{array}
$$

Determinantal representation
$\left(\begin{array}{ccc}-z_{0}-0.98987 z_{2}-0.01519 z_{3} & 0 & \frac{2.04124 z_{0}-i z_{1}+8.14425 z_{3}}{28.68441(1-i)} \\ 0 & 3 z_{3}-2 z_{2} & (1+i)\left(\frac{1}{2} z_{0}-i \frac{\sqrt{6}}{10} z_{1}\right) \\ \frac{2.04124 z_{0}+i z_{1}+8.14425 z_{3}}{28.68441(1+i)}(1-i)\left(\frac{1}{2} z_{0}+i \frac{\sqrt{6}}{10} z_{1}\right) & -0.02020 z_{3}\end{array}\right)$
is definite. Indeed, for example evaluate the representation at

$$
z_{0}=0.02, z_{1}=0, z_{2}=-1.2, z_{3}=-0.3
$$

and see that its eigenvalues $1.50013,1.17540,0.00293$ are all positive.

On the other hand, determinantal representation

is non-definite. The proof of non-definiteness is longer and can be found in [2].

4 References

[1] C. L. Bajaj, R. J. Holt, and A. N. Netravali. Rational Parametrizations of Nonsingular Real Cubic Surfaces. ACM Trans. Vol. 17 (1998), 131.
[2] A. Buckley and T. Košir. Determinantal representations of smooth cubic surfaces. To appear in Geometriae Dedicata.
[3] A. Clebsch. Die Geometrie auf den Flächen dritter Ordnung. Jour. f. d. Reine Ang. Math. 65 (1866), 359-380.
[4] A. Coble. Point sets and allied Cremona groups I, II and III. Trans. Amer. Math. Soc. 16 (1915), 155-198, 17 (1916), 335-385 and 18 (1917), 331-372.
[5] L. Cremona. Mémoire de géométrie pure sur les surfaces du troisiéme ordre. Jour. des Mathématiques pures et appliquées 68 (1868), 1-133.
[6] I. V. Dolgachev. Topics in Classical Algebraic Geometry. Part I (2006), www.math.lsa.umich.edu/ idolga/ lecturenotes.html
[7] A. Geramita. Lectures on the non-singular cubic surfaces in \mathbb{P}^{3}. In The Curves Seminar at Queen's. Vol. VI, Queen's Papers in Pure and Applied Math. No. 83, Queen,s University, Kingston, Canada, (1989), A1-A99.
[8] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, 1977.
[9] A. Henderson. The 27 lines upon the Cubic Surface. Hafner Publishing, New York, 1911.
[10] B. Hunt. The Geometry of some special Arithmetical Quotients. Lecture Notes in Math. 1637. Springer-Verlag, 1996.
[11] T. Košir. The Cayley-Hamilton theorem and inverse problems for multiparameter systems. Lin. Alg. Appl. 367 (2003), 155-163.
[12] M. S. Livšic, N. Kravitsky, A. S. Markus, and V. Vinnikov. Theory of Commuting Nonselfadjoint Operators. Kluwer Academic Publishers, 1995.
[13] M. Reid. Undergraduate Algebraic Geometry. London Mathematical Society Student Texts 12, Cambridge University Press, 1988.
[14] H. Schröter. Nachweis der 27 Geraden auf der allgemeinen Oberfläche dritter Ordnung. Jour. f. d. Reine Ang. Math. 62 (1863), 265-280.
[15] T. W. Sederberg. Techniques for Cubic Algebraic Surfaces. IEEE Computer Graphics Appl. Vol. 10, No. 5 (1990), 12-21.
[16] B. Segre. The non-singular cubic surfaces. Oxford University Press, 1942.
[17] I. R. Shafarevich. Basic Algebraic Geometry 1. Springer-Verlag, 1994.
[18] I. Szilágyi. Symbolic-Numeric Techniques for Cubic Surfaces. Ph.D. Thesis. RISC, University of Linz, Austria, 2005. Available at http://www.risc.uni-linz.ac.at/.
[19] V. Vinnikov. Complete description of determinantal representations of smooth irreducible curves. Lin. Alg. Appl. 125 (1989), 103-140.
[20] V. Vinnikov. Self-adjoint determinantal representations of real plane curves. Math. Anal. 296 (1993), 453-479.

