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Ice cream and orbifold Riemann–Roch

A. Buckley, M. Reid, and S. Zhou

Abstract. We give an orbifold Riemann–Roch formula in closed form for
the Hilbert series of a quasismooth polarized n-fold (X, D), under the
assumption that X is projectively Gorenstein with only isolated orbifold
points. Our formula is a sum of parts each of which is integral and Goren-
stein symmetric of the same canonical weight; the orbifold parts are called
ice cream functions. This form of the Hilbert series is particularly use-
ful for computer algebra, and we illustrate it on examples of K3 surfaces
and Calabi–Yau 3-folds. These results apply also with higher dimensional
orbifold strata (see [1] and [2]), although the precise statements are con-
siderably trickier. We expect to return to this in future publications.

Keywords: orbifold, orbifold Riemann–Roch, Dedekind sum, Hilbert
series, weighted projective varieties.

To Professor Igor Rostislavovich Shafarevich on his 90th birthday

§ 1. Introduction

Reid [3] introduced Riemann–Roch (RR) formulas for polarized orbifolds (X, D)
with isolated orbifold locus, of the form

χ(X,OX(D)) = RR(X, D) +
∑
P∈B

cP (D), (1.1)

where RR(X, D) is a Riemann–Roch like expression and the cP (D) are certain
fractional contributions from the orbifold points B, depending only on the local
type of (X, D). The orbifold RR formula of [3] has found numerous subsequent
extensions and applications; see for example A.R. Iano-Fletcher [4], G. Brown,
S. Altınok and M. Reid [5], A. Buckley and B. Szendrői [1], J. J. Chen, J. A. Chen
and M. Chen [6] and M. Kawakita [7], and we expect these ideas to be equally
applicable in the study of higher dimensional varieties.

A general RR formula for abstract orbifolds was first proved by T. Kawasaki [8]
by analytic tools. B. Toën [9] gave another proof using the algebraic methods of
Deligne–Mumford stacks. However, at present, it is not well understood how to use
these abstract results in practice to compute the dimension of RR spaces. Toën’s
result was applied to weighted projective spaces by F. Nironi [10], to quasismooth
varieties in weighted projective spaces by S. Zhou [2] and to twisted curves by
D. Abramovich and A. Vistoli [11]. Edidin’s recent treatment [12] clarifies orbifold
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RR considerably; our results and Zhou’s thesis [2] provide many practical exer-
cises. Our proof, like that of [3], is based on a reduction to Atiyah–Singer and
Atiyah–Segal equivariant Riemann–Roch [13], [14].

Let D be an ample Q-Cartier divisor on a normal projective n-fold X (we usually
work over C). The finite dimensional vector spaces H0(X,OX(mD)) fit together
as a finitely generated graded ring

R(X, D) =
⊕
m>0

H0(X,OX(mD)), (1.2)

with X ∼= ProjR(X, D) and the divisorial sheaf OX(mD) equal to the character
sheaf OX(m) of the Proj. A surjection from a graded polynomial ring

k[x0, . . . , xN ] � R(X, D) with variables xi of weight ai (1.3)

corresponds to an embedding

i : X ∼= ProjR(X, D) ↪→ P(a0, . . . , aN ) (1.4)

of X into a weighted projective space as a projectively normal subscheme.
The Hilbert function m 7→ Pm(X, D) = h0(X,OX(mD)) and the Hilbert series

PX(t) =
∑

m>0 Pmtm encode the numerical data of R(X, D). It is a standard
result that

∏
(1 − tai) · PX(t) is a polynomial where, as above, the ai are the

weights of the generators. The multiplicative group Gm (= C× if the ground field
is C) has a standard action on the graded ring R(X, D) =

⊕
m>0 Rm, with λ ∈ C×

multiplying Rm by λm. Our aim is a character formula expressing the Hilbert series
of R in closed form.

1.1. Plan of the paper. Section 1 recalls notation and background results from
the literature, and states our Main Theorem 1.3. Section 2 defines the ice cream
functions Porb( 1

r (a1, . . . , an), kX) as inverse polynomials modulo 1 + t + · · ·+ tr−1

that contain the same information as Dedekind sums (see especially 2.4). 3.1 deals
with the existence of the RR formula for n-folds with isolated orbifold points and
the precise nature of the term RR(D), as a preliminary to the proof of the main
theorem in 3.2. 3.3 relates the new viewpoint of this paper to traditional formulas
for the Hilbert series of K3 surfaces, Fano 3-folds and canonical 3-folds.

Although this paper mostly deals in isolated orbifold points, our ultimate aspira-
tion is to find closed expressions for the Hilbert series of arbitrary orbifolds, having
a stratification by orbifold loci of any dimension. Section 4 discusses briefly what
we hope to do in this direction, and the difficulties associated with positive dimen-
sional orbifold loci, especially their dissident strata (where the inertia group jumps);
we exemplify this with Buckley’s results on orbifold RR for polarized Calabi–Yau
3-folds [1]. The paper is backed up by a website,

http://warwick.ac.uk/staff/Miles.Reid/Ice ,
containing additional material that does not fit in the paper, including implemen-
tations of our main algorithms in computer algebra and links to other papers.

A long term motivating question for us is the ‘exact plurigenus formula’ for Fano
4-folds and canonical 4-folds. We believe that terminal singularities are intractable
in dimension > 4, so it is unreasonable to hope for a reduction in the style of [3] of

http://warwick.ac.uk/staff/Miles.Reid/Ice
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general terminal singularities to orbifolds points. Nevertheless, the orbifold exam-
ples provide rich experimental material, and some modifications of the ideas of this
paper should apply more generally.

Our term dissident point was originally coined in the 1970s as a reference to
Professor Igor Rostislavovich Shafarevich, who created the Moscow school of alge-
braic geometry, and who has taught us so much. It is a pleasure to offer this paper
to him as a birthday tribute.

1.2. Definitions and notation. A Weil divisor on a normal variety X is a formal
linear combination of prime divisors with integer coefficients. A Weil divisor D is
Q-Cartier if mD is Cartier for some integer m > 0.

We write µr ⊂ Gm for the multiplicative group of rth roots of unity, or the cyclic
subgroup of C× generated by exp 2πi

r . A cyclic orbifold point or cyclic quotient
singularity of type 1

r (a1, . . . , an) is the quotient π : An → An/µr, where µr acts
on An by

µr 3 ε : (x1, . . . , xn) 7→ (εa1x1, . . . , ε
anxn). (1.5)

We usually assume that no factor of r divides all the ai, which is equivalent to
the µr action being effective; the orbifold point is isolated if and only if all the ai are
coprime to r. The sheaf π∗OAn decomposes as a direct sum of divisorial eigensheaves

Li =
{
f | ε(f) = εi · f for all ε ∈ µr

}
for i ∈ Z/r = Hom(µr, Gm). (1.6)

The notation 1
r (a1, . . . , an) refers to polarized orbifold points. The orbinates xj

of degree aj modulo r are local sections of OX(aj), which is locally isomorphic
to L−aj

. In the terminology of [3], Definition 8.3, OX(1) = OX(D) is of type
r−1( 1

r (a1, . . . , an)).
A polarized variety (X, D) is quasismooth if the corresponding affine cone

CX = Spec R(X, D) is nonsingular outside the origin. In this case, the orbifold
points of X arise from the orbits of the group action that are pointwise fixed by
a nontrivial isotropy group, necessarily the cyclic subgroup µr ⊂ Gm for some r.
In terms of (X, D), quasismoothness holds if and only if X has locally cyclic quo-
tient singularities 1

r (a1, . . . , an) and the given Weil divisor D = OX(1) generates
the local class group Z/r = Hom(µr, Gm). Then the local index one cyclic cover
defined by a local identification OX(rD) ∼= OX is nonsingular.

All our concrete examples are subvarieties in weighted projective spaces; see
Iano-Fletcher [4] for definitions and properties. Our quasismoothness assumption
implies that X has no orbifold behaviour in codimension 0 or 1, or is well formed
in the terminology of [4]. This is right here because we work with n-folds for n > 2
with isolated orbifold locus; it means that the orbifold X as a scheme already
knows its orbifold structure, the local universal cover of X \Sing X. This simplifies
the treatment, allowing us to circumvent the language of stacks and the graded
structure sheaf

⊕
i∈ZOX(i) (see Canonaco [15]). Some of our examples involve

fractional divisors on curves, and we leave the elementary treatment of the graded
structure sheaf

⊕
i∈ZOX(i) in this case to the conscientious reader.1

A polarized variety (X, D) is projectively Gorenstein if its affine cone or the
corresponding graded ring R(X, D) is Gorenstein. In this case ωX

∼= OX(kXD) for
1See for example Exercise 2.14. Compare also Demazure [16] and Watanabe [17]; the latter

also treats the graded dualizing sheaf for fractional divisors.
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some kX ∈ Z, called the canonical weight of (X, D), and Hj(X,OX(mD)) = 0 for
all j, 0 < j < dim X, and all m. Bruns and Herzog ([18], Corollary 4.3.8) give the
following elementary result.

Lemma 1.1. Let R be a graded Gorenstein ring of dimension dim R = n + 1 and
canonical weight kR, so that the canonical module of R is ωR = R(kR). Then the
Hilbert series PR(t) of R satisfies the functional equation

tkRP
(

1
t

)
= (−1)n+1P (t). (1.7)

We refer to property (1.7) of a rational function as Gorenstein symmetry.
A palindromic polynomial or Laurent polynomial is Gorenstein symmetric. Exam-
ples: t and t−1 + 1 + t2 + t3 are both palindromic of degree 2.

Proof of Lemma 1.1. This follows from duality: R is a quotient of a weighted
polynomial ring A = k[x0, . . . , xN ] with wt xi = ai. A minimal free resolution

R← F0 ← F1 ← · · · ← Fcod ← 0 (1.8)

has length equal to the codimension cod = N − n, and Fcod = A(−α) is the free
module of rank one and degree −α, where α = kR +

∑
ai is the adjunction number

for X = ProjR ⊂ P(a0, . . . , aN ). Duality gives Fcod−i
∼= HomA(Fi, Fcod) so that,

over the denominator
∏

(1−tai) corresponding to A = k[x0, . . . , xN ], the numerator
of the Hilbert series is a sum of terms of the form td + (−1)codtα−d. �

For quasismooth X, the statement corresponds to Serre duality. However, the
proof only uses the definition and basic properties of Gorenstein graded rings, with-
out further assumptions on the singularities of Spec R or ProjR.

Following Mukai [19], we write c = kX +n+1 for the coindex of (X, D). By the
adjunction formula, the coindex is invariant under passing to a hyperplane section
of degree 1. For nonsingular varieties, we have:

Example 1.2.

projective space Pn has coindex 0;
a quadric Q ⊂ Pn+1 has coindex 1;

an elliptic curve, del Pezzo surface
or Fano 3-fold of index 2 has coindex 2;

a canonical curve, K3 surface
or anticanonical Fano 3-fold has coindex 3;

a canonical surface, Calabi–Yau 3-fold
or anticanonical Fano 4-fold has coindex 4.

1.3. The main result. For a quasismooth projectively Gorenstein orbifold (X, D)
with isolated orbifold points, Theorem 1.3 writes the Hilbert series of (X, D) as
a sum of parts, each of which is integral and Gorenstein symmetric of the same
degree kX . We call the orbifold contributions Porb(Q, kX) ice cream functions;
see (2.29). The result expresses PX(t) in a closed form that can be calculated
readily as a few lines of computer algebra.
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Theorem 1.3. Let (X, D) be a quasismooth orbifold of dimension n > 2. Suppose
that (X, D) is projectively Gorenstein of canonical weight kX , and has isolated
orbifold points

B =
{

Q of type
1
r
(a1, . . . , an)

}
.

Then the Hilbert series of X is

PX(t) = PI(t) +
∑
Q∈B

Porb(Q, kX)(t), (1.9)

where:
(i) the initial part has the form PI = A(t)

(1−t)n+1 , where A(t) is the unique integral
palindromic polynomial of degree c = kX +n+1 (the coindex) such that PI(t) equals
the series PX(t) up to and including degree b c

2c; if c < 0 then PI = 0;
(ii) each orbifold part for Q ∈ B of type 1

r (a1, . . . , an) is of the form
Porb(Q, kX) = B(t)

(1−t)n(1−tr) , with

B(t) = InvMod
( n∏

i=1

1− tai

1− t
,
1− tr

1− t
,

⌊
c

2

⌋
+ 1

)
, (1.10)

the unique Laurent polynomial supported in the interval[⌈
c− 1

2

⌉
+ 1,

⌊
c− 1

2

⌋
+ r − 1

]
(1.11)

and equal to the inverse of
∏n

i=1
1−tai

1−t modulo 1−tr

1−t ; the polynomial B(t) has inte-
gral coefficients and is palindromic of degree kX + n + r.

The quantities d c−1
2 e= b

c
2c cause a few headaches of notation and computation.

More conceptually, the numerator has Gorenstein symmetry of degree k + n + r,
giving the part as a whole Gorenstein symmetry of degree k, and is a smallest
residue modulo 1−tr

1−t . The interval (1.11) as written is manifestly symmetric, cen-
tred at k+n+r

2 , and of length 6 r − 2; it contains r − 1 consecutive integers if c is
odd, and r − 2 if c is even. The support of the numerator occupies the end points
of the stated interval in about half the cases. Compare Exercise 2.1.

Addendum 1.4. We suppose that (X, D) is as in Theorem 1.3, but relax the pro-
jectively Gorenstein assumption to assume only that KX is Q-Cartier and numer-
ically equivalent to kXD. (In other words, omit the projectively Cohen–Macaulay
requirement.) Then the Hilbert series of X is

PX(t) = J(t) + PI(t) +
∑
Q∈B

Porb(Q, kX)(t) (1.12)

with PI and Porb as above, where J(t) =
∑

jmtm is a polynomial treating the
irregularity of OX(mD), with coefficients

jm = h0(OX(mD)) + (−1)nhn(OX(mD))− χ(OX(mD))

= −
n−1∑
i=1

(−1)ihi(OX(mD)). (1.13)
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In characteristic zero (or if some form of Kodaira vanishing theorem holds), J(t)
has degree 6 kX .

Example 1.5. Consider the general hypersurface X10 ⊂ P4(1, 1, 2, 2, 3) with coor-
dinates x1, x2, y1, y2, z. Then X10 is a 3-fold with 5 × 1

2 (1, 1, 1) orbifold points
along P1

〈y1,y2〉 and a 1
3 (1, 2, 2) point at Pz = (0, 0, 0, 0, 1). It has canonical weight

kX = 1 and coindex c = kX +n+1 = 5. The Hilbert series is as follows: the initial
part

PI =
1− 2t + 3t2 + 3t3 − 2t4 + t5

(1− t)4
= 1 + t +

t + t2

(1− t)2
+ 2

t2 + t3

(1− t)4
(1.14)

takes care of P1 = 2, P2 = 5. The orbifold parts

Porb

(
1
2 (1, 1, 1), 1

)
=

−t3

(1− t)3(1− t2)
, Porb

(
1
3 (1, 2, 2), 1

)
=

−t3 − t4

(1− t)3(1− t3)
(1.15)

take care of the periodicity, giving

PI + 5 · Porb

(
1
2 (1, 1, 1), 1

)
+ Porb

(
1
3 (1, 2, 2), 1

)
=

1− t10

(1− t)2(1− t2)2(1− t3)
.

Here the numerator of PI is palindromic of degree c = 5, so that PI is Gorenstein
symmetric of degree 1. The two Porb parts are also integral and Gorenstein sym-
metric of degree 1, and they start with t3, so do not affect the first two plurigenera
P1 and P2.

Caution 1.6. The initial part PI handles the first plurigenera P1, . . . , Pb c
2 c, but

is not the leading term of the Hilbert function controlling the order of growth of
the plurigenera: in this example, X10 ⊂ P4(1, 1, 2, 2, 3) is a canonical 3-fold with
KX = OX(1), of degree K3

X = 10
2·2·3 = 5

6 , whereas PI on its own would correspond
to degree K3 = 4 (for this, sum the coefficients in the numerator of PI). In
our formula, the orbifold parts contribute to the global order of growth of the
plurigenera, in this case 5(− 1

2 ) and − 2
3 .

1.4. Appendix: Symmetric integral polynomials. The shape of our Hilbert
series in the nonsingular case comes directly from the following result applied to
Hilbert polynomials.

Proposition 1.7. (I) Let
∑

m>0 ρmtm be a power series, and assume that ρm =
F (m) for all m > m0, where F (x) is a polynomial of degree n and m0 > 0 an
integer. Then (1− t)n+1

(∑
m>0 ρmtm

)
is a polynomial in t of degree 6 m0 +n+1.

(II) Let F (x) ∈ Q[x] be a polynomial taking integer values F (m) for all m ∈ Z.
Then F is an integral linear combination of the binomial coefficients :

F (x) =
n∑

ν=0

cν

(
x

ν

)
with cν ∈ Z. (1.16)

Here n = deg F , and there are n + 1 integral coefficients cν to specify.
(III) Let F (x) ∈ Q[x] be a polynomial taking integer values F (m) for all m ∈ Z.

Assume that F satisfies (−1)nF (k−x) ≡ F (x) for an integer k, where deg F = n.
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Then F (X) and its associated power series
∑

m>0 F (m)tm are integral linear com-
binations of standard terms as follows :

1) if n ≡ k + 1 mod 2, then

F (x) =
∑

−k6ν6n
ν≡n mod 2

bν

(
x + ν−k−1

2

ν

)
,

∑
m>0

F (m)tm =
∑

−k6ν6n
ν≡n mod 2

bν
t

ν+k+1
2

(1− t)ν+1
;

(1.17)
2) if n ≡ k mod2, then

F (x) =
∑

−k6ν6n
ν≡n mod 2

bν

((
x + ν−k

2

ν

)
+

(
x + ν−k−2

2

ν

))
,

∑
m>0

F (m)tm =
∑

−k6ν6n
ν≡n mod 2

bν
(1 + t)t

ν+k
2

(1− t)ν+1
.

(1.18)

There are bk+n+1
2 c integral coefficients bν to specify.

In part (II) or (III), it is enough to assume that F (m) ∈ Z or F (m) ∈ Z and
(−1)nF (k−m) = F (m) for all m in an interval of length n+1. The proof is a little
exercise. Hint: Use induction based on F (x)− F (x− 1).

§ 2. Ice cream functions

2.1. Fun calculation. ‘Income 3
7 per day means ice cream on Wednesdays, Fri-

days and Sundays’. Consider the step function i 7→ b 3i
7 c, where b c denotes the

rounddown or integral part. As a Hilbert series, it gives

P (t) =
∑
i>0

⌊
3i

7

⌋
ti = 0 + 0t + 0t2 + t3 + t4 + 2t5 + 2t6 + 3t7 + · · · , (2.1)

with closed form

P (t) =
t3 + t5 + t7

(1− t)(1− t7)
. (2.2)

Indeed, b 3i
7 c increments by 1 when i = 0, 3, 5 modulo 7, so that

(1− t)P (t) = t3 + t5 + t7 + t10 + · · · (2.3)

is the sum over the jumps, that repeat weekly. Multiplying (2.3) by 1− t7 cuts the
series down to the first week’s ice cream ration:

(1− t)(1− t7)P (t) = t3 + t5 + t7. (2.4)
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The numerator t3 + t5 + t7 can be seen as the inverse of 1−t5

1−t = 1+ t+ t2 + t3 + t4

mod 1−t7

1−t = 1 + t + t2 + t3 + t4 + t5 + t6. Indeed, long multiplication gives

(1 + t + t2 + t3 + t4)× (t3 + t5 + t7)

= t3 + t4 + t5 + t6 + t7

+ t5 + t6 + t7 + t8 + t9

+ t7 + t8 + t9 + t10 + t11

= t3 + t4 + 2t5 + 2t6 + 3t7 + 2t8 + 2t9 + t10 + t11

≡ 3 + 2t + 2t2 + 2t3 + 2t4 + 2t5 + 2t6 ≡ 1, (2.5)

where ≡ denotes congruence modulo 1−t7

1−t . Here 5 = InvMod(3, 7) is the inverse
of 3 modulo 7. The product in (2.5) has 5 · 3 = 15 ≡ 1 mod 7 terms that distribute
themselves equitably among the 7 congruence classes, except that t7 appears once
for each of the 3 terms in the second factor.

There are several other meaningful expressions for P (t). Under ≡, the bounty
t3 + t5 + t7 can be viewed as famine −t − t2 − t4 − t6 ‘no ice cream on Mondays,
Tuesdays, Thursdays or Saturdays’. In other words,

P (t) =
t3 + t5 + t7

(1− t)(1− t7)
=

t

(1− t)2
+
−t− t2 − t4 − t6

(1− t)(1− t7)
. (2.6)

Because t7 ≡ 1, we can shift the exponents of t up or down by 7:

t−4 + t−2 + 1
(1− t)(1− t7)

or
−t−1 − t− t2 − t4

(1− t)(1− t7)
(2.7)

so ‘ice cream rations from Monday before the start of term’ or ‘famine from the
previous Saturday’. More generally, working mod 1−tr

1−t , we can shift exponents
tb 7→ tb−ir mod r and subtract a multiple of 1 + t + · · ·+ tr−1 to fold any Laurent
polynomial into any desired interval [ta, . . . , ta+r−2] of length r−2. Of these possible
shifts as Laurent polynomials with short support, t7i(t3 + t5 + t7) is palindromic of
degree 10 + 14i, and t7i(−t−1 − t − t2 − t4) is palindromic of degree 3 + 14i, and
no other.

In ‘macroeconomic’ terms, the order of growth is the linear function 3i
7 with

fractional seasonal corrections, that is,

P (t) =
3
7

t

(1− t)2
+
− 3

7 t− 6
7 t2 − 2

7 t3 − 5
7 t4 − 1

7 t5 − 4
7 t6

1− t7
(2.8)

(‘on Mondays, we lose 3
7 in small change’, etc.). Notice the coefficient 1

7 of t5: the
inverse of 3 modulo 7 is 5, so as we enjoy our second ice cream of the week on
Fridays, we lose 1

7 , the unit of small change.
We can average out the seasonal corrections in (2.8) to sum to zero, giving

P (t) =
3
7

2t− 1
(1− t)2

+
3
7 −

3
7 t2 + 1

7 t3 − 2
7 t4 + 2

7 t5 − 1
7 t6

1− t7
, (2.9)
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where the coefficients 3
7 , 0, − 3

7 , 1
7 , − 2

7 , 2
7 , − 1

7 are the Dedekind sums σi

(
1
7 (5)

)
(see

Definition 2.5 and compare [3], Theorem 8.5).
The expressions (2.2)–(2.9) represent different views on numerical functions that

grow with periodic corrections. Our main aim is to explain the orbifold contribu-
tions Porb in Theorem 1.3 as minor variations on this simple-minded material.

Exercise 2.1 (One dimensional ice cream functions). Let 0 < a < r be coprime
integers, k ≡ −a mod r and set b = InvMod(a, r). An integer is an ice cream day
for 1

r (a) if its congruence class is one of the b distinct classes

{0, a, 2a, . . . , a(b− 1)} mod r, (2.10)

and a non ice cream day if its congruence class is one of the r − b classes

{1, a + 1, 2a + 1, . . . , a(r − b− 1) + 1} mod r. (2.11)

The two sets are complementary because ai + 1 ≡ a(i + b) mod r.
Then the numerator B(t) of (1.10) is one of

(I) =
∑

tj summed over ice cream days in the interval (1.11) (2.12)

or
(II) =

∑
−tj summed over non ice cream days in (1.11). (2.13)

Hint. Since ab ≡ 1 mod r, the inverse of 1−ta

1−t mod1− tr is 1−tab

1−ta =
∑b−1

i=0 tai.

2.2. The function Inverse Mod. We start with the following basic result.

Theorem 2.2. Fix an integer γ and a monic polynomial F ∈ Q[t] of degree d with
nonzero constant term.

(I) The quotient ring Q[t]/(F ) is a d-dimensional vector space over Q and t is
invertible in it, so that Q[t]/(F ) = Q[t, t−1]/(F ).

(II) Any range [tγ , . . . , tγ+d−1] of d consecutive Laurent monomials maps to
a Q-basis of Q[t]/(F ).

(III) If A ∈ Q[t] is coprime to F , we can write its inverse modulo F uniquely as
a Laurent polynomial B with support in [tγ , . . . , tγ+α−1].

Proof. This is all trivial. The leading term of F is nonzero, so 1, t, . . . , td−1 base
Q[t]/(F ). The constant term of F is nonzero so t is coprime to F , and hence invert-
ible modulo F . Multiplication by t is an invertible linear map, so multiplication
by tγ for any γ ∈ Z takes a basis to another basis. If A is coprime to F it is
invertible in Q[t]/(F ), and its inverse has a unique expression in any basis. �

Definition 2.3. For coprime polynomials A,F ∈ Q[t] we set

InvMod(A,F, γ) = B (2.14)

with B as in (III). That is, B ∈ Q[t, t−1] is the uniquely determined Laurent poly-
nomial supported in [tγ , . . . , tγ+d−1] with AB ≡ 1 modF . For different γ ∈ Z,
these inverses are congruent modulo F , but of course different polynomials in gen-
eral. We also write InvMod(A,F ) with unspecified support for any inverse of A
modulo F in Q[t].
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Fix positive integers r and a1, . . . , an and set

A =
n∏

j=1

(1− taj ), h = hcf(1− tr, A) and F =
1− tr

h
. (2.15)

The polynomial F is the monic polynomial with simple roots only at the rth roots
of unity with A(ε) 6= 0, or equivalently εaj 6= 1 for all aj . Since we take out the hcf,
A and F are coprime. Theorem 2.2 applies to give InvMod(A,F, γ), the inverse
of A modulo F with support in [tγ , . . . , tγ+d−1], where d = deg F and γ ∈ Z is
arbitrary.

We show how to compute InvMod:

Algorithm 2.4. If γ > 0 then tγA and F are coprime polynomials. Set d = deg F .
The Euclidean algorithm in Q[t] provides a unique solution to

tγAB + FG = 1, (2.16)

with B ∈ Q[t] a polynomial of degree < d. Then InvMod(A,F, γ) = tγB.
If γ < 0, choose some m with mr + γ > 0, and solve

tmr+γAB + FG = 1 (2.17)

by the Euclidean algorithm. Then InvMod(A,F, γ) = tmr+γB/tmr = tγB. This
trick works because tmr ≡ 1 modF . For more general polynomials F , one would
need to calculate powers of the matrix Mt corresponding to multiplication by t
in Q[t]/(F ); in our case, Mr

t = 1.

The isolated case is when a1, . . . , an are coprime to r, so h = 1 − t and F =
1 + t + · · · + tr−1 has degree d = r − 1 and roots ε ∈ µr \ {1}. If moreover r is
prime then F is the cyclotomic polynomial, and working modulo F is essentially
the same thing as setting t = ε a primitive rth root of unity.

2.3. Dedekind sums as Inverse Mod. We now recall Dedekind sums, and
relate them to the function InvMod.

Definition 2.5. We define the ith Dedekind sum σi by

σi

(
1
r
(a1, . . . , an)

)
=

1
r

∑
ε∈µr

εaj 6=1 ∀j=1,...,n

εi

(1− εa1) · · · (1− εan)
, (2.18)

where ε runs over the rth roots of unity for which the denominator is nonzero.
Proposition 2.6 characterizes the σi as solutions to a set of linear equations. We
combine them into the Dedekind sum polynomial

∆
(

1
r
(a1, . . . , an), t

)
=

r∑
i=1

σr−it
i with support in [t, . . . , tr]. (2.19)

It is obvious that σi = σr+i. Therefore we only need to consider σi for i =
0, 1, . . . , r − 1. In the coprime case, the sum in (2.18) runs over all nontrivial rth
roots of unity. To stress that a1, . . . , an are not all coprime to r, we may call σi the
ith generalized Dedekind sum.
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Proposition 2.6. Consider the r × r system of linear equations

r−1∑
i=0

σiε
i =

0 if ε ∈ µaj
for some j,

1
(1− ε−a1) · · · (1− ε−an)

otherwise
(2.20)

in unknowns σi indexed by i∈Z/r =Hom(µr, C×), with equations indexed by ε∈µr .
Then (2.20) is a nondegenerate system, with unique solution the Dedekind sums

σi = σi( 1
r (a1, . . . , an)).

Proof. Fix a primitive root of unity ε ∈ µr. Then (εij)i,j=0,...,r−1 is a Vandermonde
matrix, with inverse 1

r (ε−ij)i,j=0,...,r−1. �

Lemma 2.7. The polynomial ∆ in (2.19) is divisible by h = hcf(A, 1− tr).

Proof. The roots of h are the ε ∈ µr for which εaj = 1 for some j. An equivalent
statement is that if β is a common divisor of r and some aj , then∑

i=0,...,r−1
i≡d mod β

σi = 0 for any integer d. (2.21)

In words, the average of the σi over any coset of βZ/r ⊂ Z/r is zero. In particu-
lar,

∑r−1
i=0 σi = 0.

Note that ε ∈ µr gives εβ ∈ µr/β . Then by Definition 2.5,

σd + σd+β + · · ·+ σd+r−β

=
1
r

∑
ε∈µr

εaj 6=1 ∀j

εd∏
j(1− εaj )

(1 + εβ + ε2β + · · ·+ εβ( r
β−1)) = 0. �

For example

σi

(
1
14

(1, 2, 5, 7)
)

=
1
14

{
−2,−2,−1,

1
2
, 0,−1

2
, 1, 2, 2, 1,−1

2
, 0,

1
2
,−1

}
, (2.22)

with σi + σ7+i =
∑6

l=0 σ2l+i =
∑13

l=0 σl+i = 0 for each i.
The next result was first stated and proved by Buckley [20], Theorem 2.2, fol-

lowing the ideas of [3].

Theorem 2.8. Let A, h and F be as in (2.15) and ∆ as in (2.19). Then

∆ = ht · InvMod(htA, F, 0). (2.23)

Proof. Since F is coprime to t and h, multiplying by th before and after tak-
ing Inverse Mod does not change the result modulo F . The factor h makes the
right-hand side of (2.23) divisible by h in accordance with Lemma 2.7. The factor t
then folds it from a polynomial supported in [0, . . . , r− 1] to [1, . . . , r], as in (2.16).
It only remains to prove that

∆ ≡ InvMod(A,F, γ) ∈ Q[t]/(F ) for any γ, (2.24)
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or equivalently, that B(t) := A(t)∆ is congruent to 1 modulo F . For this, substitute
any root t = ε of F in B and use (2.20) with the inverse value of ε. This gives

B(ε) = A(ε)∆ =
A(ε)∏

j(1− εaj )
= 1. (2.25)

This holds for every root ε of F , so B(t)− 1 is divisible by F , that is,

A(t)∆ ≡ 1 modF. � (2.26)

Proposition 2.9. Assume that all the ai are coprime to r, so that h = 1 − t,
F = 1−tr

1−t and d = deg F = r − 1. Then for any γ,

(1− t)n∆ ≡ InvMod
( n∏

j=1

1− taj

1− t
, F

)
≡ InvMod

(
A

(1− t)n
, F, γ + 1

)
=

γ+r−1∑
l=γ+1

θlt
l,

(2.27)
with integer coefficients θl =

∑n
s=0(−1)s

(
n
s

)
(σs−l − σs−γ) ∈ Z.

Proof. Replace the InvMod of a product by the product of InvMods. Each fac-
tor InvMod

(
1−taj

1−t , F, 1
)

is a polynomial with integral coefficients; indeed, by the
calculation in 2.1, or Exercise 2.1, it is the ice cream function for bj

r where
bj = InvMod(aj , r). �

Exercise 2.10 (Serre duality, Gorenstein symmetry). If X is projectively Goren-
stein of canonical weight kX , prove the following:

(1) Each Q = 1
r (a1, . . . , an) satisfies kX +

∑n
j=1 aj ≡ 0 mod r.

(2) The σi are (−1)n symmetric under i 7→
∑

aj − i. (Hint: replace ε 7→ ε−1 in
the characterization (2.20) of the σi, or in (2.18).)

(3) Now let θl be as in Proposition 2.9. Then l1 + l2 ≡ kX + n mod r implies
θl1 = θl2 . In particular, for c even and γ = c

2 , we have θγ+r−1 = 0, since θγ = 0 by
definition.

2.4. Ice cream gives the correct periodicity. There are two expressions for
the orbifold contributions to RR. The first, given in [3], is in terms of Dedekind
sums: ∑r−1

i=1 (σr−i − σ0)ti

1− tr
. (2.28)

The alternative introduced here is the ice cream function

Porb

(
1
r
(a1, . . . , an), kX

)
=

B(t)
(1− t)n(1− tr)

, (2.29)

with

B(t) = InvMod
( n∏

i=1

1− tai

1− t
,
1− tr

1− t
,

⌊
c

2

⌋
+ 1

)
(2.30)

as in (1.10). The first is strictly periodic (because of the denominator 1− tr), but
fractional. The second is integral by Proposition 2.9, and Gorenstein symmetric of
degree k, but has order of growth O(mn). They both give the same periodicity, as
a simple consequence of Proposition 2.9. The point already appeared clearly in the
different treatments of P (t) in (2.1) and (2.8), (2.9).
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Corollary 2.11.

Porb

(
1
r
(a1, . . . , ar), kX

)
−

∑r−1
i=1 (σr−i − σ0)ti

1− tr
=

C(t)
(1− t)n+1

(2.31)

with numerator C(t) ∈ Q[t].

Indeed, put the left hand side over the common denominator (1− t)n(1− tr) and
use Proposition 2.9.

In the noncoprime case, the result is similar, and we leave the proof as an exercise.

Proposition 2.12. Set si = hcf(ai, r), so that hcf(1 − tai , 1 − tr) = 1 − tsi , and
write d = deg F . Then for any γ,

∏
(1− tsi) ·∆ ≡ InvMod

( n∏
j=1

1− taj

1− thj
, F, γ + 1

)

= InvMod
(

A∏
(1− tsi)

, F, γ + 1
)

=
γ+d∑

l=γ+1

θlt
l, (2.32)

with integer coefficients θl.

For an appropriate choice of γ + 1, this gives a generalized ice cream function
that is integral and Gorenstein symmetric, having the same r periodicity as ∆

1−tr .
Compare (4.19).

Example 2.13. The ice cream function of 2.1 corresponds to σi( 1
7 (5)): the periodic

rounding loss of (2.8), (2.9) is

6∑
i=0

σ7−it
i =

1
7
(3− 3t2 + t3 − 2t4 + 2t5 − t6) ≡ InvMod

(
1− t5,

1− t7

1− t
, 0

)
.

Multiplication by 1 − t gives a Gorenstein symmetric polynomial with integral
coefficients θl:

(1− t)× 1
7
(3− 3t2 + t3 − 2t4 + 2t5 − t6)

≡ t3 + t5 + t7 = InvMod
(

1− t5

1− t
,
1− t7

1− t
, 3

)
.

The fractional divisor 3
7P on a nonsingular curve is an orbifold point of type

1
7 (5), with orbinate in O(5) having a genuine pole of order two, but a fractional
zero of order 1

7 in ‘lost change’. As we saw in Exercise 2.1, the same considerations
apply with 3

7 replaced by a general reduced fraction a
r , corresponding to the orbifold

point 1
r (b) with b = InvMod(a, r).

Consider for example the weighted projective line X = P(5, 7). It has kX = −12,
and has two orbifold points of type 1

7 (5) and 1
5 (2). Its Hilbert series,

PX(t) =
1

(1− t5)(1− t7)
, (2.33)
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satisfies Theorem 1.3: since c = −10 < 0, the initial part is PI = 0. Then

PX(t) = Porb

(
1
7
(5),−12

)
+ Porb

(
1
5
(2),−12

)
=

t−4 + t−2 + 1
(1− t)(1− t7)

+
−t−4 − t−2

(1− t)(1− t5)
,

where −t−4 − t−2 = InvMod( 1−t2

1−t , 1−t5

1−t ,−4).

Exercise 2.14. Fun and games with the ice cream functions of 2.1.
(1) An elliptic curve polarized by A = 3

7P embeds as C15 ⊂ P(1, 5, 7) with
canonical weight 2, that is, KC,orb = 2A = 6

7P .
(2) A quasismooth complete intersection C10,15 ⊂ P(1, 3, 5, 7) is a curve of genus 7

with KC = 3P + 9Q having P as an orbifold point of type 1
7 (5), polarized by A =

3
7P + Q and having KC,orb = 9A. (Its initial part PI is quite involved.)

(3) A curve of genus 2 polarized by P + 3
7Q with P a Weierstrass point embeds

in P(1, 2, 3, 5, 7) as a Pfaffian with Hilbert numerator

1− t6 − t7 − t8 − t9 − t10 + t10 + t11 + t12 + t13 + t14 − t20.

§ 3. Proof of Main Theorem

3.1. The existence of the Riemann–Roch formula. Let X be a normal
projective n-fold; assume that the singularities of X are isolated, rational and
Q-factorial. We want to calculate χ(OX(D)) for D a Weil divisor on X using the
RR formula (

ch(OX(D)) · Td(TX)
)
[n], (3.1)

that is, the component of top degree n of the product of

ch(OX(D)) = exp(D) =
∑ Di

i!

and

Td(TX) =
n∑

i=0

Tdi(TX) = 1− 1
2
KX +

1
12

(K2
X + c2)−

1
24

KXc2

− 1
720

(K4
X − 4K2

Xc2 − 3c2
2 + KXc3 + c4) + · · · .

We must get around the problem that the terms in (3.1) are not defined, because TX

is not a vector bundle on a singular X. For this, we use the following conventions.
First, choose a resolution of singularities f : Y → X that is an isomorphism over
the nonsingular locus of X.

(a) Replace the degree n term Tdn(TX) in (3.1) by χ(OX) = χ(OY ) = Tdn(TY ).
(b) Replace the terms involving a product with D on X by the same expression

on Y involving its pullback as a Q-Cartier divisor. In more detail: the pullback of
a Q-Cartier divisor D is defined as usual by f∗D = 1

mf∗(mD) with mD Cartier.
Except for Tdn(TX), the terms in (3.1) are Di Tdn−i(TX)/i! with i > 1, and we
replace

Di Tdn−i(TX) by (f∗D)i Tdn−i(TY ).
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Remark 3.1. Our interpretation of (3.1) is independent of the choice of the resolu-
tion Y . Indeed, χ(OY ) is a birational invariant. Each of the other terms involves
a product with the Q-Cartier divisor D; now a multiple mD is linearly equivalent
to a linear combination of nonsingular prime divisors disjoint from the singularities
of X, so we can calculate Di Td(TX) for i > 0 on the nonsingular locus of X itself.

In (a), we use χ(OX) as a substitute for Tdn(TX). In the 3-fold case, it is
well known that the expression Td3(TX) = − 1

24KX · c2(TX) can be defined using
the same trick as in (b) (taking the pullback of the Q-Cartier divisor KX), but
is not equal to χ(OX) in general. See [3], Corollary 10.3, and compare Kawa-
mata [21], 2.2, and [22].

Theorem 3.2. Let X be a normal projective n-fold with isolated, rational, Q-
factorial singularities and f : Y → X as above. Then the expression

RR(D) = χ(OX) +
n∑

i=1

1
i!

(f∗D)i Tdn−i(TY ) = “
(
ch(OX(D)) · Td(TX)

)
[n]” (3.2)

is a polynomial in the Q-Cartier Weil divisor D such that for every D, the differ-
ence

χ(X,OX(D))− RR(D) =
∑

Q∈Sing X

cQ(D) (3.3)

is a sum of fractional terms cQ(D) ∈ Q depending only on the local analytic type
of X and D at each singular point Q of X .

Plan of proof. We set L = f∗OX(D)/torsion, which is a torsion free sheaf of rank 1
on Y , and write OY (DY ) = L∨∨ for its reflexive hull, which is an invertible sheaf.
The proof has two parts: the first uses the Leray spectral sequence to compare
χ(X,OX(D)) with χ(Y,OY (DY )), given by RR on Y . After this, we compare the
RR formula for DY on Y with our interpretation RR(D) of the RR formula for D
on X. No sooner said than done.

The reflexive hull of L fits in a short exact sequence

0→ L → OY (DY )→ Q→ 0, (3.4)

where the cokernel Q has support of codimension > 2 in Y contained in the excep-
tional locus of f .

Now f∗L = f∗OY (DY ) = OX(D) because OX(D) is saturated. Moreover, all
the sheaves Rif∗L for i > 1 and Rif∗Q for i > 0 are finite dimensional vector
spaces supported at the singular points of X.

Now the Leray spectral sequence together with the long exact sequence associ-
ated with (3.4) gives

χ(Y,OY (DY )) = χ(L) + χ(Q)

= χ(X,OX(D)) +
n−1∑
i=1

(−1)ih0(X, Rif∗L) +
n−1∑
i=0

(−1)ih0(X, Rif∗Q).
(3.5)

We deduce that χ(X,OX(D)) = χ(Y,OY (DY )) + P, where

P = −
∑

i

(−1)ih0(X, Rif∗L)−
∑

i

(−1)ih0(X, Rif∗Q). (3.6)
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The second part of the proof depends on the exceptional locus of f . Write Ej

for the exceptional divisors over the singular points, and set

f∗D = DY + F, where F =
∑

j

mjEj with mj ∈ Q. (3.7)

The exceptional divisor F here is the fixed part of the birational transform of the
linear system |D + H| for any sufficiently ample Cartier divisor H on X.

Then
χ(Y,OY (DY ))− RR(D) =

∑
i>0

1
i!

(−F )i Tdn−i(TY ). (3.8)

In fact, our interpretation RR(D) of ch(D) · Td(TX) replaces Tdn(TX) by
χ(OX) = χ(OY ) = Tdn(TY ), and Di Tdn−i(X) by (f∗D)i Tdn−i(Y ), whereas the
terms in RR on Y are Di

Y Tdn−i(Y ). Therefore the difference in (3.8) is∑
i>0

1
i!

(Di
Y − (f∗D)i) Tdn−i(TY ). (3.9)

However, f∗D is orthogonal to the exceptional divisors, and one checks using the
binomial expansion that Di

Y − (f∗D)i = (DY − f∗D)i = (−F )i.
In conclusion, the difference required in Theorem 3.2 is

χ(X,OX(D))− RR(D) = P +
∑
i>0

1
i!

(−F )i Tdn−i(TY ). (3.10)

We can choose the resolution of singularities of X and D depending only on the
local analytic type of X and D. The resolution determines the sheaves L and Q and
their higher direct images, so the quantity P, and it determines the fixed part F
and its intersection numbers. This proves the theorem.

3.2. The main proof. The Main Theorem 1.3 follows formally from the above
arguments together with Proposition 1.7. The plan of the proof: for an orbifold
point Q, the local analytic type of

(
X,OX(mD)

)
is periodic in m, so also the frac-

tional contributions cQ(mD) of Theorem 3.2. The argument of [3], Theorem 8.5,
calculates them by equivariant RR on a global quotient orbifold as Dedekind sums.
2.3 tells us how to replace the Dedekind sums by ice cream functions, which are
integral and Gorenstein symmetric of the given canonical weight. After subtract-
ing these off, we obtain an integer valued Hilbert polynomial for m � 0 that is
Gorenstein symmetric, to which Proposition 1.7 applies.

Step 1. The local contributions of Theorem 3.2 making up the difference
χ(mD) − RR(mD) were calculated in [3], Theorem 8.5 for an isolated orbifold
point of type 1

r (a1, . . . , an).

Theorem 3.3. Let X be a projective n-fold with a basket of isolated cyclic orbifold
points B = {Q = 1

r (a1, . . . , an)}, and D a Q-Cartier Weil divisor. Then for m ∈ Z,

χ(X,OX(mD)) = RR(mD) +
∑
Q∈B

cQ(mD), (3.11)

where

cQ(mD) = (σr−m − σ0)
(

1
r
(a1, . . . , an)

)
. (3.12)
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Recall the main idea of the proof: by Theorem 3.2, the contributions depend
only on the analytic type of (X, mD). Thus we can reduce to the case of a global
quotient X = M/µr having all fixed points of the same type 1

r (a1, . . . , an). The
result then follows by equivariant RR (that is, the Lefschetz fixed point theorem).

Step 2. Ignoring for the moment finitely many initial terms, as is traditional
in treating Hilbert polynomials, we replace the genuine Hilbert series PX,D(t) =∑

m>0 h0(X, mD)tm by the series Pχ
X,D(t) =

∑
m>0 χ(X, mD)tm. Since in (3.11)

RR(mD) is a polynomial of degree n and the cQ(mD) are periodic, summing them
gives a term of the form A(t)/(1 − t)n+1 with A(t) ∈ Q[t] plus periodic terms of
the form B(t)/(1− tr) for each orbifold point.

Now Corollary 2.11 says that the mth term in Porb(Q, kX) matches the periodic
correction cQ(mD), so that subtracting off our ice cream functions Porb reduces us
to a formal power series

P 0
I (t) = Pχ

X,D(t)−
∑
Q∈B

Porb

(
1
r
(a1, . . . , an), kX

)
, (3.13)

where (1 − t)n+1P 0
I (t) is a polynomial. It follows as usual that the coefficient

of tm in P 0
I (t) is a polynomial H(m) of degree n for m � 0, a modified Hilbert

polynomial.
Step 3. Now H(x) satisfies the assumptions of Proposition 1.7. Indeed, it

is integer valued because χ(OX(mD)) and the coefficients of the power series
Porb are all integers by (2.29). Moreover, H(k − x) = (−1)nH(x) because
χ(OX((k − m)D)) = (−1)nχ(OX(mD)) by Serre duality, and we know by Exer-
cise 2.10 that σk−m = (−1)nσm.

Step 4. We define the initial part PI in terms of the modified Hilbert polynomial:

PI(t) =
∑
m>0

H(m)tm. (3.14)

By construction, the two formal power series PX,D(t) and PI(t)+
∑

Q Porb(t) coin-
cide except for an initial segment (since the first b c

2c coefficients of Porb(t) are zero).
This proves Addendum 1.4.

Step 5. By Appendix 1.4, PI(t) has denominator (1 − t)n+1 and numerator
a palindromic polynomial of degree n + kX + 1, and is therefore determined by
its first b c

2c coefficients. Finally, if R(X, KX) is Gorenstein, then these coefficients
are equal to the first b c

2c values of h0(X, mD). This completes the proof.

3.3. K3 surfaces and Fano 3-folds. Theorem 1.3 simplifies known results
on K3s and Fano 3-folds (see Altınok, Brown and Reid [5]). Let (S, D) be a polar-
ized K3 surface with a basket of orbifold points B = { 1

r (a, r−a)}. By [3], Appendix
to Section 8,

σi =
r2 − 1
12r

− bi(r − bi)
2r

, (3.15)

where ab = 1 mod r and denotes the smallest nonnegative residue mod r. By
Theorem 2.8,

InvMod
(

(1− ta)(1− tr−a),
1− tr

1− t

)
≡ − 1

2r

r−1∑
i=1

bi(r − bi)ti
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and

InvMod
(

(1− ta)(1− tr−a)
(1− t)2

,
1− tr

1− t

)
≡ − (1− t)2

2r

r−1∑
i=1

bi(r − bi)ti.

Applying RR for surfaces ([5], Theorem 4.6) gives the Hilbert series

PS(t) =
1 + t

1− t
+

t + t2

(1− t)3
D2

2
−

∑
B

1
1− tr

r−1∑
i=1

bi(r − bi)
2r

ti. (3.16)

We can parse PS(t) into the ice cream functions of Theorem 1.3 as follows.
Comparing the coefficients of t in (3.16) yields

D2 = 2g − 2 +
∑
B

b(r − b)
r

, (3.17)

where the genus g is defined by P1 = h0(S,OS(D)) = g + 1. Then PS(t) =
PI +

∑
B Porb, where

PI =
1 + (g − 2)t + (g − 2)t2 + t3

(1− t)3
=

1 + t

1− t
+ (g − 1)

t + t2

(1− t)3
, (3.18)

and one checks as above that

Porb =
InvMod

(
(1−ta)(1−tr−a)

(1−t)2 , 1−tr

1−t , 2
)

(1− t)2(1− tr)
(3.19)

=
t + t2

(1− t)3
b(r − b)

2r
− 1

1− tr

r−1∑
i=1

bi(r − bi)
2r

ti. (3.20)

Indeed, the coindex is c = 3 and the numerator of (3.20) is supported in [2, . . . , r].

Corollary 3.4. Let V be a Q-Fano 3-fold with basket B =
{

1
r (1, a, r − a)

}
of

terminal quotient singularities. The Hilbert series of its anticanonical ring is
PV (t) = PI +

∑
B Porb, with

PI =
1 + (g − 2)t + (g − 2)t2 + t3

(1− t)4
, (3.21)

where h0(−KX) = g + 2 and −K3 = 2g − 2 +
∑ b(r−b)

r , and

Porb =
InvMod

(
(1−t)(1−ta)(1−tr−a)

(1−t)3 , 1−tr

1−t , 2
)

(1− t)3(1− tr)
. (3.22)

Proof. By [5], Theorem 4.6, the Hilbert series of (V,−KV ) equals

PV (t) =
1 + t

(1− t)2
− t + t2

(1− t)4
K3

V

2
−

∑
B

1
(1− t)(1− tr)

r−1∑
i=1

bi(r − bi)
2r

ti. (3.23)
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The coefficient of t gives the stated value of −K3
V . Clearly, Fano 3-folds and K3

surfaces have coindex 3 and the same Inverse Mod polynomials:

InvMod
(

(1− t)(1− tb)(1− tr−b)
(1− t)3

,
1− tr

1− t

)
≡ InvMod

(
(1− tb)(1− tr−b)

(1− t)2
,
1− tr

1− t

)
. �

Exercise 3.5. Consider the following general weighted projective hypersurfaces:
1) S5 ⊂ P(1, 1, 1, 2) with an orbifold point of type 1

2 (1, 1) at Q = (0, 0, 0, 1);
2) S7 ⊂ P(1, 1, 2, 3) with basket { 1

2 (1, 1), 1
3 (1, 2)};

3) S11 ⊂ P(1, 2, 3, 5) with basket { 1
2 (1, 1), 1

3 (1, 2), 1
5 (2, 3)}.

All three are K3 surfaces and have kSi = 0 and c = 3. Their Hilbert series parsed
as PSi

(t) = PI +
∑

Bi
Porb are as follows:

PS5(t) =
1− t5

(1− t)3(1− t2)
=

1 + t3

(1− t)3
+

t2

(1− t)2(1− t2)
,

PS7(t) =
1− t7

(1− t)2(1− t2)(1− t3)

=
1− t− t2 + t3

(1− t)3
+

t2

(1− t)2(1− t2)
+

t2 + t3

(1− t)2(1− t3)
,

PS11(t) =
1− t11

(1− t)(1− t2)(1− t3)(1− t5)
=

1− 2t− 2t2 + t3

(1− t)3

+
t2

(1− t)2(1− t2)
+

t2 + t3

(1− t)2(1− t3)
+

2t2 + t3 + t4 + 2t5

(1− t)2(1− t5)
.

§ 4. Towards the nonisolated case

This final section speculates on the shape of the Hilbert series of quasismooth
orbifolds with higher dimensional orbifold loci, and discusses some partial results.
We now have abundant experience of working with these, and definitive results
in special cases, such as the Calabi–Yau 3-fold orbifolds of Buckley’s thesis [1].
Our conjectures in the case of 1-dimensional orbifold locus are fairly specific, and
in principle within reach of our methods, although we do not yet venture formal
proofs.

It is traditional to discuss Hilbert functions in terms of Zariski’s notion of cyclic
polynomial, an integral function H(n) represented for n � 0 by r polynomials
f0, . . . , fr−1 according to n modulo r. In the isolated orbifold case discussed so far,
the fi differ only in their constant terms, so that H(n) behaves periodically with
period r, giving the Hilbert series P (t) =

∑
H(n)tn a simple pole at µr. In the

more general case, the fi differ by terms that grow, giving P (t) higher order poles.
The order of poles corresponds to one plus the dimension of the strata: for if X
has a 1

s orbifold stratum of dimension ν, its graded ring R(X, D) has at least ν + 1
generators xi of degree bi divisible by s, and then P (t) usually has poles of order
ν + 1 at the primitive sth roots of 1.
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Dissident points are nonisolated orbifold points Q where the inertia group jumps.
Experiments and the results of [1] and [2] suggest that for these, the fractional
strictly periodic contribution ∆

1−tr given by generalized Dedekind sums (Defini-
tion 2.5) can be replaced by an integral term, at the expense of modifying the
contributions corresponding to adjacent strata.

4.1. Calabi–Yau 3-folds. The following results illustrate these points. A quasi-
smooth Calabi–Yau 3-fold (X, D) has orbifold locus consisting of:

(a) curves C of generic transverse type 1
s (a, s− a);

(b) points Q of type 1
r (a1, a2, a3) with a1 + a2 + a3 ≡ 0 mod r; if hcf(r, ai) =

si > 1, then Q is a dissident point on a 1
si

curve C.
To handle the periodicity of the Hilbert series of X, we have a choice between

two alternative strategies. First, a partial fraction decomposition over Q with parts
having small denominators, directly linked to the strata of the orbifold locus.

Theorem 4.1. Let (X, D) be as above. Then its Hilbert series is

PX,D(t) = IX,D +
∑
Q

IIQ +
∑
C

(IIIC + IVC). (4.1)

Here the parts are:

IX,D = 1 +
t

(1− t)2
Dc2

12
+

(t + 4t2 + t3)
(1− t)4

D3

6
(4.2)

with Dc2 and D3 as in RR (they are, however, rational numbers ; the same applies
to the degree DC below);

IIQ =
∑

(σi − σ0)ti

1− tr
=

∆
(

1
r (a1, a2, a3)

)
1− tr

, (4.3)

with σi = σi

(
1
r (a1, a2, a3)

)
the Dedekind sum for Q (we note that σ0 = 0 and

σi = −σr−i by Exercise 2.10);

IIIC =
(

sts∆
(1− ts)2

+
t∆′

1− ts
− σ0t

(1− t)2

)
DC, (4.4)

where σ0 and ∆ are now the Dedekind sums for the transverse section 1
s (a, s− a)

of Γ, ∆′ = d∆/dt, and σ0

(
1
s (a, s− a)

)
= s2−1

12s ;

IVC =
NC

72sτC
× B

1− ts
, (4.5)

where the second term has numerator

B = t · InvMod
(

t(1− ta)2(1− ts−a),
1− ts

1− t

)
− t · InvMod

(
t(1− ta)(1− ts−a)2,

1− ts

1− t

)
∈ Q[t] (4.6)
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with support [t, . . . , ts−1], determined by

(1− ta)2(1− ts−a)2B ≡ ta − ts−a mod
1− ts

1− t
, (4.7)

and the coefficient NC

12s2τC
∈ Q depends on the topology of a tubular neighbourhood

of C in X (as described in [1], Theorem 2.1). The dissident points give rise to the
extra denominator τC and, in spirit, NC ∈ Z is the difference between the degrees
of the isotypical components of the normal bundle to C ; interchanging a ↔ s − a
sends NC 7→ −NC .

This result follows on replacing the individual terms Pm in the formulas of [1],
Theorem 2.1, by their corresponding Hilbert series

∑
Pmtm in closed form (with

further calculations that are somewhat involved); it also follows from the results
of [2], Section 5.1. We omit the details since our main aim is to motivate the
philosophy of higher dimensional ice cream, and the detailed statements are not
really the issue.

The second partial fraction decomposition has bigger denominators: each part
has denominator

∏
(1 − ta), a product of n + 1 = 4 factors. The parts are one

further step removed from the topological characters of (X, D) appearing in RR.
The advantage, however, is that each part is integral and Gorenstein symmetric of
the same degree kX = 0.

Theorem 4.2. Let X, D be as above. Then its Hilbert series is

PX(t) = PI +
∑
Q

Porb(Q, kX) +
∑
C

AC +
∑
C

BC , (4.8)

where, as in Theorem 1.3, the initial part PI depends on the first b c
2c = 2 pluri-

genera and Porb(Q, kX) are ice cream functions at the point strata ;

AC =
Porb( 1

s (a, s− a), s)
1− ts

δC (4.9)

with δC an integer corresponding to the degree of C appropriately modified by the
dissident points (see 4.3), and

BC =
Num BC

(1− t)3(1− ts)
, (4.10)

with numerator an integral palindromic polynomial of symmetric degree s + 3 and
short support [3, . . . , s].

The quantities δC and Num BC are deduced by recombining the result of The-
orem 4.1, and can be calculated in any particular example without difficulty, but
the formulas are cumbersome to state. The part BC depends on the degree DC
and the isotypical components of its normal bundles, as modified by the dissident
points (see 4.3). It introduces a periodicity mod s, whereas AC grows linearly in s.
We shall return to the general significance of these two expressions and the relation
between them in 4.3.
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Example 4.3. The Calabi–Yau 3-fold

X40 ⊂ P(2, 5, 8, 10, 15)〈x,y,z,t,u〉 (4.11)

has the 1
2 (1, 1) curve Γ2 = X40∩P2(2, 8, 10)〈x,z,t〉 of degree 1

2 , and the 1
5 (2, 3) curve

C5 = X40 ∩ P2(5, 10, 15)〈y,t,u〉 of degree 4
15 passing through the 1

15 (2, 5, 8) dissident
point Pu. One computes the two alternative expressions for its Hilbert series:

P (t) =
1− t40∏

a∈{2,5,8,10,15}(1− ta)
= I + II + IIIΓ2 + IVΓ2 + IIIC5 + IVC5

= PI + Porb

(
1
15

(2, 5, 8), 0
)

+ AΓ2 + BΓ2 + AC5 + BC5 . (4.12)

Here the parts of the first expression are

I = 1 +
113
240

t

(1− t)2
+

1
1800

t + 4t2 + t3

(1− t)4
, II =

∆( 1
15 (2, 5, 8))
1− t15

,

III2 = −1
8

t + t3

(1− t2)2
, IV2 = 0, (4.13)

III5 =
4
15

1 + t2 + t3

(1− t5)2
, IV5 =

4
25

t4 − 8
3 t3 + t2 − t− 5

1− t5
,

where ∆
(

1
15 (2, 5, 8)

)
is the Dedekind sum polynomial of Theorem 2.8:

∆ = t(1− t5) InvMod
(
t(1− t5) · (1− t2)(1− t5)(1− t8), 1 + t5 + t10

)
=

1
9
(t + 2t2 + t4 − t5 − 2t7 + 2t8 + t10 − t11 − 2t13 − t14).

The parts of the second expression are

PI = 1 +
t2

(1− t)4
=

1− 4t + 7t2 − 4t3 + t4

(1− t)4
,

Porb

(
1
15

(2, 5, 8), 0
)

=
t8 − t9 + t10 − t11 + t12 − t13 + t14

(1− t)2(1− t5)(1− t15)
,

AΓ2 =
Porb( 1

2 (1, 1), 2)
1− t2

, BΓ2 = 0,

AC5 =
Porb( 1

5 (2, 3), 5)
1− t5

, BC5 =
−3t3 + 2t4 − 3t5

(1− t)3(1− t5)
.

As a little exercise, we propose the analogous calculations for the Calabi–Yau
3-fold X80 ⊂ P(3, 4, 15, 20, 38) (or other cases from the vast lists of Kreuzer and
Skarke).

4.2. A general conjecture. Let P (t) = H(t)QN
i=1(1−tbi )

be a rational function with
integral numerator H(t) ∈ Z[t] satisfying Gorenstein symmetry (1.7). For example,
P might be the Hilbert series of a Gorenstein graded ring R of dimension n+1 and
canonical weight kR (more generally, a finite Gorenstein graded module M over
a polynomial ring with (n + 1)-dimensional support).
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Conjecture 4.4. Under the above assumptions, P (t) has a unique partial fraction
decomposition of the form

P (t) =
∑
A

NA∏
a∈A(1− ta)

. (4.14)

The sum runs over sequences A = {a1, . . . , an+1} consisting of a main period r =
an+1 and some divisors ai | r (some or all of the ai may be 1 or r); each ai

divides one of the original bj , so that a priori only finitely many A occur. The
numerator NA of each part is an integral polynomial that is symmetric of degree
kA = k +

∑
a∈A a, so that the part as a whole has the same Gorenstein symmetry ;

moreover NA(t) is ‘of shortest support’, a minimal residue modulo

FA =
1− tr

hcf
(
1− tr,

∏
a∈A,a<r(1− ta)

) (4.15)

(as in (2.15)) supported in an interval of length < deg FA centred at kA/2.
To be on the safe side, we could restrict to quasismooth orbifolds.

If all the bi = 1, there is only one part, and the result follows from Proposition 1.7.
We expect the proof to be formal. The idea is to take account of the poles of P (t)
at roots of unity in terms of its principal parts. The A part should deal with the
highest order principal part of P (t) at primitive rth roots of unity, while possibly
modifying the principal parts of higher order poles at nonprimitive rth roots. The
parts document the periodicity of an integral cyclic polynomial, so should have
coefficients in Z.

Remark 4.5. Conjecture 4.4 delinks Hilbert series and the topological terms in RR.
The conventional narrative is that RR expresses the coherent cohomology invariants
of a projective variety in terms of topological data. However, in dimension > 4 one
does not necessarily aspire to a detailed understanding of all the Chern numbers in
the RR formula. For example, no-one claims intimate acquaintance with c2

1c2, c1c3

and c2
2 in the Todd genus

Td4 =
1

720
(−c4

1 + 4c2
1c2 + c1c3 + 3c2

2 − c4). (4.16)

In fact, in work with 3-folds, we commonly treat the quantity Dc2
12 as a basic invari-

ant, deducing its numerical value from the plurigenera, rather than the other way
around. For a canonical 4-fold (say), the plurigenera P1, P2, P3 are just integers,
and in our treatment, the initial part

PI =
1 + a1t + a2t

2 + a3t
3 + a2t

4 + a1t
5 + t6

(1− t)5
(4.17)

with a1 = P1−5, a2 = P2−5P1+10, a3 = P3−5P2+10P1−10 holds comparatively
few terrors for us, and is arguably a better starting point than the Chern numbers;
for example, they are integers with no implicit congruences of the type 12 | c2

1 + c2.
In the same way, even without tying the orbifold parts PA very closely to topo-

logical invariants (such as the degree of curve orbifold strata and the isotypical
components of their normal bundle), we have formulas that depend in principle
only on a small basket of integers.
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4.3. The case of curve orbifold locus. Let (X, D) be a quasismooth projec-
tively Gorenstein n-fold orbifold of dimension n > 2 with orbifold locus of dimen-
sion 6 1. As before, its orbifold strata are:

(a) curves Γ of transverse type 1
s (a1, . . . , an−1);

(b) points Q of type 1
r (a1, . . . , an).

Write si = hcf(ai, r). Dissident points are characterized by having some si

a nontrivial factor of r, with 1 < si < r. The xi-axis is then pointwise fixed by µsi
,

so its image is contained in a 1
si

orbifold stratum of X. Our assumption on the
dimension of the orbifold locus implies that the si are pairwise coprime, and Q is
in the closure of orbifold curve strata Γi of transverse type 1

si
(a1, . . . , âi, . . . , an).

We summarize the logic of Conjecture 4.4 in this case. We treat the 1
s orbifold

curves (a) by adding contributions of the form

cΓ(t) =
NumDC

(1− ts)2(1− t)n−1
+

NumNC

(1− ts)(1− t)n
, (4.18)

where the numerators are integral, Gorenstein symmetric of the appropriate degree,
and with short support. We expect to see the (1− ts)2 in the denominator for the
reason outlined at the start of Section 4. In the numerators, DC and NC refer to
quantities involving the degree of C, respectively of the isotypical components of its
normal bundle. Multiplying (4.18) by 1− tms, corresponding to taking a transverse
section by a general hypersurface in |msD| for some m, leaves NumDC

distinguished
as the numerator of an isolated orbifold point (times m× deg C). The NC term is
destroyed by taking a hyperplane section, and cannot be recovered after so doing.

We deal with points (b) by putting in ice cream of the form

Porb(Q, kX) =
InvMod(A,F, γ)∏
a∈[s1,...,sn,r](1− ta)

, with A =
∏ 1− tai

1− tsi
, (4.19)

with F as in (2.15), and γ chosen to make the numerator Gorenstein symmetric of
degree kX + r +

∑
si.

The contribution Porb(Q, kX) is well defined, integral and Gorenstein symmetric
of degree k (see Proposition 2.12). It has the right periodicity modulo r by an
argument similar to Corollary 2.11. The curious point, however, is that when
si > 1, it usually contains contributions with denominator (1− tsi)2(1− t)n−1 and
(1 − tsi)(1 − t)n that might at first sight appear to be native to the curves Ci

of type 1
si

(a1, . . . , âi, . . . , an) through P .
A dissident point Q of type 1

r on an orbifold 1
s curve Γ commonly forces the

degree of Γ and of the isotypical components of its normal bundle to become frac-
tional with denominator r, thus adding fractional terms into (4.18). Attributing
fractional terms with denominator (1− tsi)2(1− t)n−1 and (1− tsi)(1− t)n to the
dissident point is the same idea as adding a global fractional term with denominator
(1− t)n+1 into the local contribution from an isolated orbifold point, as discussed
in Caution 1.6.

The meaning of Proposition 2.12 is that Porb(Q, kX) can be viewed as obtained
from the Dedekind sum term ∆

1−tr by multiplying top and bottom of the fraction
by

∏
(1 − tsi), then folding the numerator back into the required interval. Since
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the denominator of Porb(Q, kX) is
∏

a∈[s1,...,sn,r](1− ta), the difference

∆
1− tr

− Porb(Q, kX) (4.20)

between the Dedekind polynomial and the ice cream function has
∏

(1− tsi)2 in its
denominator. This difference has a unique partial fraction decomposition defined
over Q with parts having respective denominators

(1− t)n−2(1− tsi)2, (1− t)n−1(1− tsi) and (1− t)n, (4.21)

and with numerators of short support. Our assertion is that if we parse the Hilbert
series allocating these local parts to the adjacent curves and to the initial part, we
achieve a decomposition with every part integral and Gorenstein symmetric. Thus
using ice cream Porb(Q, kX) in place of the more obvious r periodicity contribution

∆
1−tr effectively cuts the dissident points out of the curve strata C, modifying their
degrees and those of the isotypical components of their normal bundle to be integral.

We believe that for 1-dimensional orbifold locus, the formal statement and proof
of Conjecture 4.4 should be within reach of the strategies of Buckley’s thesis [1].
Her proof in the Calabi–Yau case involves two ingredients: taking cyclic covers in
the style of [3] introduces the Dedekind sums at the dissident points. She deals
with the 1-dimensional orbifold locus by resolving singularities by standard toric
resolutions, then calculating exceptional divisors in the style of our 3.1. Localizing
around the orbifold strata more generally is a stacky business, and when we are
forced to wear that hair shirt, we can also hope for progress by combining the stacky
methods of [12] and [2].
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