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Abstract. Let C be a smooth curve in P
2 given by an equation F = 0 of degree

d. In this paper we consider elementary transformations of linear pfaffian rep-
resentations of C. Elementary transformations can be interpreted as actions on
a rank 2 vector bundle on C with canonical determinant and no sections, which
corresponds to the cokernel of a pfaffian representation. Every two pfaffian rep-
resentations of C can be bridged by a finite sequence of elementary transforma-
tions. Pfaffian representations and elementary transformations are constructed
explicitly. For a smooth quartic, applications to Aronhold bundles and theta
characteristics are given.

1. Introduction

Let k be an algebraically closed field and C a nonsingular curve defined by an ir-
reducible polynomial F (x0, x1, x2) of degree d in P

2. A linear pfaffian representation

of C is a 2d× 2d skew-symmetric matrix

A =















0 L1 2 L1 3 · · · L1 2d

−L1 2 0 L2 3 · · · L2 2d

−L1 3 −L2 3 0
...

...
. . .

...
−L1 2d −L2 2d · · · 0















with linear forms Lij = a0
ijx0 + a1

ijx1 + a2
ijx2 such that

Pf A(x0, x1, x2) = cF (x0, x1, x2) for some c ∈ k, c 6= 0.

Its cokernel is a rank 2 vector bundle on C. Throughout the paper we equate the
notion of vector bundles and locally free sheaves. In particular, we equate line
bundles with invertible sheaves and denote their inverse by −1.

Two pfaffian representations A and A′ are equivalent if there exists X ∈ GL2d(k)
such that

A′ = XAXt.

There is a one to one correspondence between linear pfaffian representations (up
to equivalence) of C and rank 2 vector bundles (up to isomorphism) on C with
certain properties. This well known result is summed up in the following theorem
of Beauville [3, Corollary 2.4].

Theorem 1.1. Let C be a smooth plane curve defined by a polynomial F of degree d
and let E be a rank 2 bundle on C with determinant OC(d−1) and H0(C, E(−1)) = 0.
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Then there exists a 2d× 2d skew-symmetric linear matrix A with Pf A = F and an

exact sequence

0→

2d
⊕

i=1

OP2(−1)
A
−→

2d
⊕

i=1

OP2 → E → 0.(1)

Conversely, let A be a linear skew-symmetric 2d×2d matrix with Pf A = F . Then

its cokernel is a rank 2 bundle with det E ∼= OC(d− 1) and H0(C, E(−1)) = 0.

The condition H0(C, E(−1)) = 0 implies that E(−1) and E are semistable.

Using this, in [5] all linear pfaffian representations of C (up to equivalence) were
found and related to the moduli space MC(2, ωC) of semistable rank 2 vector bundles
on C with canonical determinant. In particular, pfaffian representations of C can
be parametrised by the open set MC(2, ωC) − {K : h0(C,K) > 0}. The standard
notation for {K : h0(C,K) > 0} is Θ2,ωC

, since Drezet and Narasimhan [9] proved
that it is a Cartier divisor in the moduli space. The properties of the moduli space
were extensively studied in [20], [24] and [23]; for example it is an irreducible, normal
projective variety and for C of genus g ≥ 2 it has dimension 3(g − 1).

Study of pfaffian representations is strongly related to and motivated by determi-
nantal representations. A linear determinantal representation of C is a d× d matrix
M(x0, x1, x2) of linear forms such that

detM(x0, x1, x2) = cF (x0, x1, x2) for some c ∈ k, c 6= 0.

Determinantal representations M and M ′ are equivalent if there exists X,Y ∈
GLd(k) such that

M ′ = XMY.

By [26] all linear determinantal representations of C (up to equivalence) can be
parametrised by the open set in the Jacobian variety

{line bundle L : degL =
1

2
d(d− 3), h0(C,L) = 0}.

Determinantal representations can be seen as a special case of pfaffian represen-
tations. Indeed, every determinantal representation M induces a decomposable

pfaffian representation

(2)

[

0 M
−M t 0

]

.

The corresponding cokernel equals Coker M ⊕ (Coker−1 M ⊗O(d− 1)) as described
in [5] and [7]. In the moduli space, decomposable pfaffian representations correspond
to an open subset of the singular locus of MC(2, ωC). Note that the equivalence
relation is also well defined since

[

0 XMY
−(XMY )t 0

]

=

[

X 0
0 Y t

] [

0 M
−M t 0

] [

Xt 0
0 Y

]

.

Elementary transformations of determinantal representations were introduced by
M. S. Livsic and Kravitsky in operator theory. Vinnikov et al generalised these
ideas in [25], [2] using notions of vessels and Cauchy kernels. An explicit and com-
plete description of elementary transformations of determinantal representations
can be found in [27]. Elementary transformations of vector bundles are due to
Maruyama [18]. For a modern exposition and proofs we refer to Abe [1]. The most
traditional example of elementary transformations is that of ruled surfaces (i.e., of
rank 2 bundles). A good reference on ruled surfaces is [12, Chapter V. 2].

2



Throughout the paper we will be using the following properties of the wedge
product. It is well known that

∧2 k2d can be identified with 2d×2d skew-symmetric

matrices. Let Ωn denote the set of vectors
∑n

i=1 wi ∧ w′
i in

∧2 k2d, where
dim{w1, . . . , wn, w′

1, . . . , w
′
n} = 2n. Elements of Ωn are said to have irreducible length

n since they can be written as a sum of n and not less than n pure nonzero products.
In [17] it is shown that Ωn is isomorphic to the set of all rank 2n skew-symmetric
matrices. The isomorphism equals

(3)

2d
∑

i=1

αiei ∧

2d
∑

j=1

βjej 7→

2d
∑

i,j=1

(αiβj − αjβi)(Eij − Eji),

where {e1, . . . , e2d} is the standard basis for k2d and {Eij} is the standard basis for
2d× 2d matrices. Note that these are the Plücker coordinates in Gr(2, 2d).

A brief outline of the paper is the following. In section 2 we present pfaffian repre-
sentations in canonical forms. This enables us to write an algorithm which computes
all the pfaffian representations of C and thus gives a description of MC(2, ωC). For
suitable choices of vectors in the cokernel bundles discussed in Section 3, we define
elementary transformations of pfaffian representations in Section 4. In Section 6
elementary transformations of pfaffian representations are related to elementary
transformations of vector bundles. The main Theorem 7.3 in Section 7 proves that
any two pfaffian representations can be bridged by a finite sequence of elementary
transformations of Type I and II. In other words, we can explicitly construct all
pfaffian representations of C from a given one (for example, from a decomposable
representation with symmetric blocks induced by one of the 2g−1(2g + 1) even theta
characteristics). Section 8 is an exposition on plane quartics. Concrete examples
and algorithms for computing Aronhold bundles and theta characteristics are given.

2. The Canonical Form

Canonical forms play an important role in explicit descriptions of the moduli
space MC(2, ωC). In the sequel we outline an algorithm for such computation.

Let A = x0A0 + x1A1 + x2A2 be a pfaffian representation of C. We can always
assume that after a projective change of coordinates C intersects the line L : x0 =
0 in distinct points P1 = (0, p1, 1), . . . , Pd = (0, pd, 1). We will prove that A is
equivalent to a representation in the canonical form.

Proposition 2.1. For every pfaffian representation A of C there exists a basis of

k2d in which A has the canonical form

(4) A = x1











I 0 · · · 0
0 I · · · 0
...

. . .
...

0 0 · · · I











− x2











D1 0 · · · 0
0 D2 · · · 0
...

. . .
...

0 0 · · · Dd











+ x0A0,

where

I =

[

0 1
−1 0

]

and Di =

[

0 pi

−pi 0

]

.

Proof. As above, let Pi = (0, pi, 1) be d distinct points in the intersection of F (x0, x1, x2) =
0 with the line L : x0 = 0. By restricting to L, we obtain the pencil of skew-
symmetric matrices

AL = x1A1 + x2A2
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with Pf AL = F |L = F (0, x1, x2) =
∏d

i=1(x1 − pix2). Since all the matrices in the
representation are skew-symmetric, Coker A and Ker A define the same rank 2 vector
bundle E . For E and the point Pi, let E(Pi) denote the residued vector space, which
means the kernel of piA1 +A2. Thus E(Pi), i = 1, . . . , d are 2-dimensional subspaces
in k2d. In the proof of [5, Proposition 3.4] we showed that h0(C, E(−1)) = 0 implies
the following important fact: the union of bases of the vector spaces E(Pi) span the
whole space k2d. In this basis AL is equivalent to

J =











J1 0 · · · 0
0 J2 · · · 0
...

. . .
...

0 0 · · · Jd











where

Ji =

[

0 x1 − pix2

−x1 + pix2 0

]

.

No 2 × 2 block Ji is identically equal to 0, otherwise the rank of A at Pi would be
at most 2d− 4. �

Let A be a representation of C and E its cokernel. Choose the basis of k2d

∪d
i=1 {2–dimensional basis of E(Pi)} .

and denote by P ∈ GL(2d, k) the change of basis matrix. Then P acts on the
representation by A 7→ P AP t. Thus A is equivalent to a representation in the
canonical form by Proposition 2.1.

In [5] we established a one to one correspondence between the pfaffian represen-
tations (up to equivalence) of C and the open set

(5) MC(2, ωC)− {K : h0(C,K) > 0}.

It thus suffices to find all pfaffian representations of C in the canonical form, which
will yield a set of equations describing the open subset (5) in the moduli space.

There are d(2d − 1) parameters in the representation (4), namely the entries of
the 2d×2d skew-symmetric matrix A0 = [a0

ij ]. Since Pf A equals F , we get 1
2d(d+1)

relations among a0
ij. Indeed, every monomial xα

0 xβ
1xγ

2 , α 6= 0, α+β+γ = d in F gives

one equation. By the implicit function theorem we are left with d(2d−1)− 1
2d(d+1) =

3
2d(d − 1) parameters a0

ij. Recall that pfaffian representations are equivalent under
the action

A 7→ R ARt, R ∈ GL(2d, k).

By a suitable R we can further reduce the number of parameters in A0. Of course
we only consider R whose action preserves the canonical form. This way we will
reduce the number of equivalent representations in each equivalence class to 1. The
following lemma is an elementary exercise in linear algebra.

Lemma 2.2. The action A 7→ R ARt preserves the canonical form of the first two

matrices in the representation if and only if R equals










R1 0 · · · 0
0 R2 0
...

. . .
...

0 0 · · · Rd











,

where every Ri is an invertible 2× 2 matrix with determinant 1.
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Matrix R in Lemma 2.2 acts on the third matrix in the representation by

R A0 Rt =















0
. . . Ri

[

a0
2i−1,2j−1 a0

2i−1,2j

a0
2i,2j−1 a0

2i,2j

]

Rt
j

. . .

0















, i, j = 1, . . . , d.

In other words, view A0 as d × d matrix of 2 × 2 blocks. Then R acts on i, j−th
block by ∗ 7→ Ri ∗ Rt

j . In every Ri we have a choice of 3 independent parameters

since its determinant is 1. Thus each Ri reduces the number of a0
ij’s by 3.

For a general F (x0, x1, x2) this sequence of reductions can be performed explicitly.
We are left with

3(g − 1) = 3
2d(d− 3) =

d(2d − 1) [number of parameters a0
ij in A in the canonical form] −

1
2d(d + 1) [relations since Pf A = F ]−
3d [parameters reduced by the action of equivalence relation R · A ·Rt]

independent variables a0
ij. As expected, this represents the open subset (5) of the

moduli space in P
d(2d−1)−1.

Remark 2.3. In the above considerations we could take any other canonical form
of the matrix pair A1, A2. For example, the equivalence relation action QAQt of

Q =



























1 −1 0 0 · · · 0
0 0 1 −1 0
...

. . .
...

0 0 · · · 1 −1
0 1 0 0 · · · 0
0 0 0 1 0
...

. . .
...

0 0 · · · 0 1



























brings the first two matrices in (4) into

(6)

[

0 Id
− Id 0

]

,

[

0 D
−D 0

]

,

where D is the diagonal matrix {p1, . . . , pd}. This canonical form is particularly
useful since it naturally includes all the decomposable representations (2). The
same canonical form was obtained in [13] , where canonical forms for matrix pairs
were classified purely by the methods of linear algebra.

3. Tangents

In this section we explain how tangents or lines through two points λ, µ on C can
be read from pfaffian representations. Moreover, for any pfaffian representation A
we relate vectors in Coker A(λ) and Coker A(µ).

Since our aim is to do concrete calculations, we describe the correspondence in
Theorem 1.1 explicitly: Denote by Pfij A the pfaffian of the (2d − 2) × (2d − 2)
skew-symmetric matrix obtained by removing the ith and jth rows and columns
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from A. It is easy to prove the following analogue of the Jacobi’s formula for the
derivative of determinants:

(7)
∂F (x0, x1, x2)

∂xk
=
∑

i,j

ak
ij (−1)i+j Pfij A(x0, x1, x2).

If for some x = (x0, x1, x2) ∈ C all 2d − 2 pfaffian minors vanish, then x must be
a singular point of F . By our assumption F is smooth, thus rankA(x) ≥ 2d − 2
for all x ∈ C. Rank of skew-symmetric matrices is even and detA = F 2 = 0, thus
equality holds. Therefore Coker A(x) defines a rank 2 bundle over C. Define the
pfaffian adjoint of A to be the skew-symmetric matrix

Ã =











0
. . . (−1)i+j Pfij A

. . .

0











,

with (−1)i+j Pfij A being its (i, j)th entry for 1 ≤ i < j ≤ 2d. Again, by analogy
with determinants, the following holds

(8) ÃA = PfA Id2d.

More properties and linear algebra of pfaffians can be found in [11, Appendix D].

Since PfA = cF , the cokernel can be obtained from Ã by using (8). Indeed, for

any point x ∈ C every column (or row) of Ã(x) is in Coker A(x). Since A(x) is a
skew-symmetric matrix with linear entries, we have

Coker A(x) ∼= Ker A(x)

which we denote by E(x). We will often view E as a P
1–bundle, or equivalently as a

ruled surface PE .

Lemma 3.1. Every representation of C yields tangents and lines through λ, µ ∈ C
in the following way:

• Let vλ ∈ E(λ), uµ ∈ E(µ) be independent vectors. Then ut
µA(x)vλ is either

identically 0 or defines a line through λ and µ.

• Let uλ, vλ ∈ E(λ) be independent vectors. Then ut
λA(x)vλ = 0 is an equation

of the tangent line at λ ∈ C.

Proof. The first assertion is obvious as ut
µA(x)vλ is linear and equals 0 at the points

λ = (λ0, λ1, λ2) and µ = (µ0, µ1, µ2).

The linear span Lin{uλ, vλ} equals E(λ). By (8), Ã is a rank 2 skew-symmetric
matrix at the points of C. Using the Plücker coordinates in (3), uλ ∧ vλ equals to a

multiple of Ã(λ). Then by (7)

2
∑

k=0

xk
∂F

∂xk
(λ) =

2
∑

k=0

xk

∑

i,j

ak
ij (−1)i+j Pfij A(λ)

=
∑

i,j

(a0
ijx0 + a1

ijx1 + a2
ijx2) (−1)i+j Pfij A(λ)

= Trace
[

A(x) · Ã(λ)
]

,

which equals to a nonzero multiple of Trace [A(x) · (uλ ∧ vλ)] = 2 ut
λA(x)vλ. In

particular we proved that ut
λA(x)vλ is not identically 0. �
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E(x) can be viewed as pairs of independent vectors [ux, vx] modulo right–hand–
side multiplications by invertible 2 × 2 matrices. Then T, T ′ ∈ GL(2, k) can be
chosen so that

T [uλ, vλ]t A(x) [uµ, vµ]T ′ = T

[

ut
λA(x)uµ ut

λA(x)vµ

vt
λA(x)uµ vt

λA(x)vµ

]

T ′

equals either

L(x)

[

0 0
0 0

]

, L(x)

[

0 0
0 1

]

or L(x)

[

0 1
1 0

]

,

where L(x) is the defining equation of the line through λ and µ. This enables us to
relate points on C. A pair of points λ, µ on C with respect to representation A(x)
is either:

• inadmissible if ut
µA(x)vλ ≡ 0 on P

2 for all vλ ∈ PE(λ), uµ ∈ PE(µ);
• semiadmissible if there exists a unique pair of vectors uλ ∈ PE(λ), uµ ∈

PE(µ) such that wt
µA(x)uλ ≡ 0 and ut

µA(x)wλ ≡ 0 for all wλ ∈ PE(λ), wµ ∈
PE(µ);
• admissible if for every vλ ∈ PE(λ) there exists exactly one vµ ∈ PE(µ) for

which vt
µA(x)vλ ≡ 0 on the whole P

2.

For admissible λ, µ we thus obtain a one to one correspondence between vectors
in PE(λ) and PE(µ). Namely, vλ corresponds to vµ iff vt

µA(x)vλ ≡ 0. Consider
next a semiadmissible pair λ, µ ∈ C and vλ ∈ PE(λ), vµ ∈ PE(µ). We claim that
vt
µA(x)vλ ≡ 0 if and only if either vλ = uλ or vµ = uµ. Indeed, assume that

vλ 6= uλ, then by linearity vt
µA(x)wλ ≡ 0 for any wλ ∈ Lin{vλ, uλ} = E(λ). Thus

by uniqueness in the definition vµ = uµ.

In the proof of Lemma 3.1 we showed

Corollary 3.2. A bitangent line through λ, µ ∈ C is defined by either ut
µA(x)vλ,

ut
λA(x)vλ or ut

µA(x)vµ.

Corollary 3.3. Let uλ, vλ ∈ PE(λ). Then ut
λA(x)vλ ≡ 0 if and only if uλ = vλ.

This means that λ, λ can be always considered as an admissible pair of points on
C.

4. Elementary Transformations

In this section we define elementary transformations of pfaffian representations of
the curve C : F (x0, x1, x2) = 0 in P

2, which is not necessarily smooth or irreducible.
The standard notation of vessels [2] will be used.

Choose the coordinates of F so that the line {x0 = 0} and the curve intersect in d
distinct smooth points. For the sake of clearer notation we move to the affine plane.
Consider a linear pfaffian representation

Pf(y1σ2 − y2σ1 + γ) = c f(y1, y2) c 6= 0,

where y1 = x1

x0
, y1 = x1

x0
are the affine coordinates f(y1, y2) = F (1, y1, y2) and

σ1, σ2, γ are 2d× 2d skew-symmetric matrices. Denote

Coker(y1σ2 − y2σ1 + γ) ∼= Ker(y1σ2 − y2σ1 + γ)

by E(y1, y2).
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Pick distinct regular affine points λ = (λ1, λ2) and µ = (µ1, µ2) on C. Then each
E(λ), E(µ) is a 2 dimensional vector space in k2d. For all vλ ∈ E(λ), uµ ∈ E(µ)

(9)
(λ1σ2 − λ2σ1 + γ)vλ = 0
(µ1σ2 − µ2σ1 + γ)uµ = 0

and

(10)
(y1σ2 − y2σ1 + γ)vλ = ((y1 − λ1)σ2 − (y2 − λ2)σ1)vλ

(y1σ2 − y2σ1 + γ)uµ = ((y1 − µ1)σ2 − (y2 − µ2)σ1)uµ

hold. Thus

vt
λ(λ1σ2 − λ2σ1 + γ)uµ = 0 and vt

λ(µ1σ2 − µ2σ1 + γ)uµ = 0,(11)

which implies

(λ1 − µ1)v
t
λσ2uµ = (λ2 − µ2)v

t
λσ1uµ.

In other words, for any pair of complex parameters t1, t2,

1

t1(λ1 − µ1) + t2(λ2 − µ2)
vt
λ(t1σ1 + t2σ2)uµ(12)

is constant whenever the denominator is nonzero. Denote this constant by Kvλuµ .

The pair of vectors vλ ∈ E(λ), uµ ∈ E(µ) is called admissible if Kvλuµ is not 0.
Define

γ̃ = γ +
1

Kvλuµ

(

σ1(uµvt
λ + vλut

µ)σ2 − σ2(uµvt
λ + vλut

µ)σ1

)

= γ +
1

Kvλuµ

(

σ1(uµvt
λ + vλut

µ)σ2 − (σ1(uµvt
λ + vλut

µ)σ2)
t
)

,

and

γ̄ = γ + 2ρ
(

σ1vλvt
λσ2 − σ2vλvt

λσ1

)

= γ + 2ρ
(

σ1vλvt
λσ2 − (σ1vλvt

λσ2)
t
)

,

where uµvt
λ, vλut

µ and vλvt
λ are rank 1 matrices and ρ is an arbitrary constant. It

is obvious that γ̃ = −γ̃t and γ̄ = −γ̄t are skew-symmetric.

In the sequel the following properties of the wedge product will be useful: for any
skew-symmetric matrix σ and vectors w, v hold (σw)t = −wtσ, wtσv = −vtσw and
w ∧ v = 2(wvt − vwt).

Using the above, we can rewrite γ̃ into

γ̃ = γ −
1

2Kvλuµ

σ1uµ ∧ σ2vλ +
1

2Kvλuµ

σ2uµ ∧ σ1vλ(13)

and γ̄ into

γ̄ = γ + ρ σ2vλ ∧ σ1vλ.(14)

Theorem 4.1. Let y1σ2−y2σ1+γ be a representation of C and E(y1, y2) its cokernel.

Choose vλ ∈ E(λ), uµ ∈ E(µ) such that Kvλuµ 6= 0. Then y1σ2 − y2σ1 + γ̃ and

y1σ2 − y2σ1 + γ̄ are pfaffian representations of C since

Pf(y1σ2 − y2σ1 + γ̃) = Pf(y1σ2 − y2σ1 + γ) = Pf(y1σ2 − y2σ1 + γ̄).
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Proof. For any T and skew-symmetric S holds

Pf(TST t) = detT Pf S

by [11, Appendix D]. Recall also that for any two square matrices T ′, T ′′

det(Id +T ′T ′′) = det(Id +T ′′T ′).

Therefore proving the equality
(15)
(

Id +
(t1σ1+t2σ2)uµvt

λ
Kvλuµ(t1(y1−λ1)+t2(y2−λ2))

)

(y1σ2 − y2σ1 + γ)
(

Id−
vλut

µ(t1σ1+t2σ2)

Kvλuµ (t1(y1−λ1)+t2(y2−λ2))

)

‖
(

Id−
(t1σ1+t2σ2)vλut

µ

Kvλuµ(t1(y1−λ1)+t2(y2−λ2))

)

(y1σ2 − y2σ1 + γ̃)
(

Id+
uµvt

λ(t1σ1+t2σ2)

Kvλuµ (t1(y1−λ1)+t2(y2−λ2))

)

will imply the first statement. (15) equals

y1σ2 − y2σ1 + γ +
1

2Kvλuµ

(y1σ2 − y2σ1 + γ)vλ ∧
t1σ1 + t2σ2

t1(y1 − λ1) + t2(y2 − λ2)
uµ =

y1σ2 − y2σ1 + γ̃ −
1

2Kvλuµ

(y1σ2 − y2σ1 + γ̃)uµ ∧
t1σ1 + t2σ2

t1(y1 − λ1) + t2(y2 − λ2)
vλ.

From (12) we obtain that

−
1

2Kvλuµ

(σ1uµ ∧ σ2vλ − σ2uµ ∧ σ1vλ)uµ =

1

Kvλuµ

(

σ1uµvt
λσ2 − σ2vλut

µσ1 − σ2uµvt
λσ1 + σ1vλut

µσ2

)

uµ =

1

Kvλuµ

(

σ1uµ vt
λσ2uµ − σ2uµ vt

λσ1uµ

)

= (λ2 − µ2)σ1uµ − (λ1 − µ1)σ2uµ.

Analogously

1

2Kvλuµ

(σ1uµ ∧ σ2vλ − σ2uµ ∧ σ1vλ) vλ = (λ2 − µ2)σ1vλ − (λ1 − µ1)σ2vλ.

Together with (10) this implies

(16)
(λ1σ2 − λ2σ1 + γ̃)uµ = 0
(µ1σ2 − µ2σ1 + γ̃)vλ = 0

and

(17)
(y1σ2 − y2σ1 + γ̃)vλ = ((y1 − µ1)σ2 − (y2 − µ2)σ1)vλ

(y1σ2 − y2σ1 + γ̃)uµ = ((y1 − λ1)σ2 − (y2 − λ2)σ1)uµ

In other words, uµ ∈ Ẽ(λ) and vλ ∈ Ẽ(µ), where Ẽ(y1, y2) = Coker(y1σ2− y2σ1 + γ̃).

Now it is easy to verify that

((y1 − λ1)σ2 − (y2 − λ2)σ1)vλ ∧
t1σ1 + t2σ2

t1(y1 − λ1) + t2(y2 − λ2)
uµ =

−σ1uµ ∧ σ2vλ + σ2uµ ∧ σ1vλ−

((y1 − λ1)σ2 − (y2 − λ2)σ1)uµ ∧
t1σ1 + t2σ2

t1(y1 − λ1) + t2(y2 − λ2)
vλ.

which together with (10) and (17) finishes the proof of (15).
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The second statement will be proved if we show
(18)

(y1σ2 − y2σ1 + γ)
‖

(

Id−2ρ t1σ1+t2σ2

t1(y1−λ1)+t2(y2−λ2)
vλvt

λ

)

(y1σ2 − y2σ1 + γ̄)
(

Id +2ρvλvt
λ

t1σ1+t2σ2

t1(y1−λ1)+t2(y2−λ2)

)

‖
y1σ2 − y2σ1 + γ̄ − ρ (y1σ2 − y2σ1 + γ̄)vλ ∧

t1σ1+t2σ2

t1(y1−λ1)+t2(y2−λ2)
vλ.

Note that

(σ2vλ ∧ σ1vλ) vλ =
(

−σ2vλvt
λσ1 + σ1vλvt

λσ2

)

vλ = 0

implies

(λ1σ2 − λ2σ1 + γ̄)vλ = 0(19)

(y1σ2 − y2σ1 + γ̄)vλ = ((y1 − λ1)σ2 − (y2 − λ2)σ1)vλ.

This means that vλ ∈ Ē(λ), where Ē(y1, y2) denotes the cokernel of y1σ2− y2σ1 + γ̄.

The above and the obvious equality

−σ2vλ ∧ σ1vλ =

−((y1 − λ1)σ2 − (y2 − λ2)σ1)vλ ∧
t1σ1 + t2σ2

t1(y1 − λ1) + t2(y2 − λ2)
vλ.

finish the proof of (18). �

By performing elementary transformations of y1σ2−y2σ1+γ, we constructed new
pfaffian representations of C:

Definition 4.2.

• The Type I elementary transformation based on the admissible vectors vλ ∈
E(λ), uµ ∈ E(µ) is defined by y1σ2 − y2σ1 + γ̃.
• The Type II elementary transformation based on vλ ∈ E(λ) and the constant

ρ 6= 0 is defined by y1σ2 − y2σ1 + γ̄.

The fact that vλ ∈ Ẽ(µ), uµ ∈ Ẽ(λ) and vλ ∈ Ē(λ) implies the following:

Corollary 4.3. The Type I elementary transformation of y1σ2 − y2σ1 + γ̃ based on

uµ ∈ Ẽ(λ), vλ ∈ Ẽ(µ) brings us back to y1σ2 − y2σ1 + γ. The same way the Type II

elementary transformation of y1σ2 − y2σ1 + γ̄ based on vλ ∈ Ē(λ) and −ρ brings us

back to y1σ2 − y2σ1 + γ.

It can be easily seen that the Type I and II elementary transformations are special
rank 2 cases of ”the concrete interpolation problem for meromorphic bundle maps”
studied in [2]: For a given array of m constants ρi ∈ k, m distinct points λi ∈ C
and vectors wi ∈ E(λ

i) define the Type CONINT elementary transformation of
y1σ2 − y2σ1 + γ by

γ̌ = γ + σ1wΓ−1wtσ2 − σ2wΓ−1wtσ1,

where w = [w1, . . . , wm] and −Γ equals the m×m symmetric matrix with ρi’s along
the diagonal and Kwi wj at the (i < j)–th position. Then y1σ2 − y2σ1 + γ̌ is indeed

a pfaffian representation of C since y1σ2 − y2σ1 + γ = Zt(y) (y1σ2 − y2σ1 + γ̌)Z(y)
for

Z(y) = Id +w Diagonal
[

t1(y1 − λi
1) + t2(y2 − λi

2)
]−1

i=1...m
Γ−1 wt (t1σ1 + t2σ2).
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An easy exercise in linear algebra shows that

Z−1(y) = Id−w Γ−1 Diagonal
[

t1(y1 − λi
1) + t2(y2 − λi

2)
]−1

i=1...m
wt (t1σ1 + t2σ2)

and detZ(y) = det Z−1(y) = 1. Observe that the only condition for γ̌ to exist is
that Γ is invertible.

In Section 7 we will show that any two pfaffian representations of C can be bridged
by a finite sequence of Type I and Type II elementary transformations. Thus it is
enough to restrict our study to these two types.

5. Admissible arrays

We briefly relate the definitions of admissible pairs of points and admissible pairs
of vectors. Let

A(x0, x1, x2) = x1A1 + x2A2 + x0A0

= x1σ2 − x2σ1 + x0γ

be a representation of C with the cokernel E(x). As before, let vλ ∈ E(λ), uµ ∈ E(µ)
for distinct λ, µ ∈ C. We claim that

Kvλuµ = 0 if and only if vt
λ (x1σ2 − x2σ1 + x0γ)uµ ≡ 0 for all x ∈ P

2.

Indeed, Kvλuµ = 0 implies vt
λ σ1 uµ = vt

λ σ2 uµ = 0 by (12) and moreover vt
λ γ uµ = 0

by (11). The converse is obvious.

We mention few more implications of the definition of Kvλuµ :

i) If λ, µ are admissible points on C then for every vλ ∈ E(λ) there exists
exactly one vµ ∈ E(µ) for which Kvλvµ = 0.

ii) For any λ and vλ ∈ E(λ) there exists µ and uµ ∈ E(µ) such that vλ, uµ are
admissible vectors.

iii) Let vλ ∈ E(λ). Given any vector u such that Kvλu 6= 0 there exist at most d
distinct points µj ∈ C for which u ∈ E(µj) and vλ, u are admissible vectors.

Claim i) is obvious. For ii) recall that Span {Coker A(µ); µ ∈ C} = k2d. If µ didn’t
exist it would thus hold vt

λ σ1 u = vt
λ σ2 u = 0 for all u ∈ k2d. This contradicts

dim{vt
λ σ1, vt

λ σ2}
⊥ = 2d− 2. Claim iii) will follow from (12). For any t ∈ k

µj
i = λi −

vt
λ σi tu

Kvλ tu
, i = 1, 2

we obtain the affine coordinates of µj. But the defining polynomial of C evaluated

in (1, µj
1, µ

j
2) has at most d solutions for t

Kvλ tu
.

Corollary 5.1. For every λ ∈ C there are at most finitely many µ that do not form

an admissible pair of points.

6. Elementary transformations act on the cokernel bundle of

representation

In this section we relate elementary transformations of vector bundles with the
elementary transformations of pfaffian representations considered in Section 4.

Definition 6.1. Let E be a rank 2 vector bundle over a smooth and irreducible C.
Take an effective reduced divisor Z on C and consider the canonical surjection

E → k(Z)→ 0,
11



where k(Z) is a skyscraper sheaf at Z, i.e. rank 1 OZ–module. Its kernel is a rank
2 vector bundle on C called the elementary transformation of E at Z. We denote
it by E ′ = elemZ(E).

On C it is equivalent to consider:

(a) Ruled surface π : S → C together with a base-point-free unisecant complete
linear system |H|;

(b) Rank 2 vector bundle E over C for which S = PE and E ∼= π∗OPE(H);
(c) Linearly normal scroll R obtained as the image of the birational map φH :

S → R ⊂ P
N defined by |H|.

Analogously we can define elementary transformation at a point x ∈ C on each of
the above:

(a) On the ruled surface S we choose a point s ∈ π−1(x). Denote by B the
blow-up of S at s. By Castelnuovo theorem we can contract the starting
fibre π−1(x) in B and obtain a new ruled surface π′ : S′ → C;

(b) E ′ = elemx(E) is obtained as the elementary transformation of E at the
divisor x on C, i.e. as the kernel of E → k(x)→ 0;

(c) Pick a point r = φH(s) on the scroll R such that π(s) = x. Projection from
r yields a scroll R′ ⊂ P

N−1.

Fuentes and Pedreira [10] checked that these definitions are compatible, namely
S′ = PE ′. Moreover, R′ is the image of S′ under the birational map defined by |H ′|,
where H ′ = ν∗(H)− π−1(x). Here ν : S′ → S denotes the inverse of the elementary
transformation of S at s. In particular E ′ ∼= π′

∗OPE ′(H ′).

The inverse of an elementary transformation of a ruled surface is again an el-
ementary transformation: if S′ is elementary transformation of S at s, then S is
elementary transformation of S′ at s′, where s′ is the contraction of
(the exceptional divisor of the blow-up) ∩ (the original fibre π−1(x)) ∈ B.
Up to tensoring line bundles, we can view the elementary transformation of a vector
bundle in Definition 6.1 at Z = x1 + · · · + xm as an elementary transformation of
PE at m points si ∈ π−1(xi). More precisely, there exists a skyscraper sheaf k(Z)′

that fits into the commutative diagram

(20)

E ⊗ OC(−Z)
↓g

E ′
e
−→ E → k(Z) .
↓

k(Z)′

Here E ⊗ OC(−Z) is the following elementary transformation of E ′ at Z: Take a
point x ∈ C and free basis {X ′

1,X
′
2}, {X1,X2} for E ′(x), E(x) respectively. Denote

by Yi = e(X ′
i) = e1iX1 + e2iX2, i = 1, 2 the image of the morphism e. At every xi ∈

C, i = 1, . . . ,m the determinant of e is 0, thus projectively Y1 = Y2 = si ∈ π−1(xi)
are the points of the blow up of PE . Locally k(Z) = kX1⊕kX2 / kY1+kY2, therefore
k(Z) is 0 whenever e is invertible and is a rank 1 bundle over the points xi. Analo-
gously g, given by the 2×2 adjoint matrix of e, defines an elementary transformation
of E ′. It is easy to check that it equals E ⊗ OC(−Z). For xi ∈ C, i = 1, . . . ,m the
points of the blow up of PE ′ equal g11X

′
1 + g21X

′
2 = g12X

′
1 + g22X

′
2. Observe that

e(g11X
′
1 + g21X

′
2) = 0. On the level of ruled surfaces e−1 and g−1 induce elemen-

tary transformations of P(E⊗OC(−Z)) = PE and PE ′ that are inverse to each other.
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In the sequel we establish the explicit relation between elementary transforma-
tions of pfaffian representations and elementary transformations of the corresponding
cokernel vector bundles. We use the notation of Definition 4.2. Again we work in
projective coordinates x = (x0, x1, x2) in P

2. For any parameters t1, t2 we define
matrices with rational elements T (x), S(x), P (x), R(x) and Q(x) by:

T (x) = Id +
x0

Kvλuµ (t1(x1 − λ1x0) + t2(x2 − λ2x0))
(t1σ1 + t2σ2)uµvt

λ,

S(x) = Id +
x0

Kvλuµ (t1(x1 − λ1x0) + t2(x2 − λ2x0))
uµvt

λ(t1σ1 + t2σ2),

P (x) = Id+
x0

Kvλuµ (t1(x1 − µ1x0) + t2(x2 − µ2x0))
vλut

µ(t1σ1 + t2σ2),

R(x) = Id+
x0

Kvλuµ (t1(x1 − µ1x0) + t2(x2 − µ2x0))
(t1σ1 + t2σ2)vλut

µ

and Q(x) = Id+
2ρx0

t1(x1 − λ1x0) + t2(x2 − λ2x0)
vλvt

λ(t1σ1 + t2σ2).

Theorem 6.2. Let C be a curve defined by F = Pf(x1σ2 − x2σ1 + x0γ) = 0 and

let x1σ2 − x2σ1 + x0γ̃, x1σ2 − x2σ1 + x0γ̄ be elementary transformations of Type I

and II respectively. Denote by E(x), Ẽ(x), Ē(x) the corresponding cokernels that are

rank 2 vector bundles over C. The relating morphisms in the below diagrams can be

expressed by elementary transformations of vector bundles

Ẽ
S ↑ Rt ↓
E ′

P ↑ T t ↓
E

and

Ē

Q

x











E

.

Proof. We will prove that S(x)P (x) maps E(x) into Ẽ(x) and Q(x) maps E(x) into
Ē(x).

First consider Type I transformations. Observe that for x different from λ and
µ (12) implies

P (x)T t(x) = T t(x)P (x) = Id and

St(x)R(x) = R(x)St(x) = Id .

Using this, rewrite (15) into

T (x)(x1σ2 − x2σ1 + x0γ)T t(x) = St(x)(x1σ2 − x2σ1 + x0γ̃)S(x),

or equivalently

(21) R(x)T (x)(x1σ2 − x2σ1 + x0γ) = (x1σ2 − x2σ1 + x0γ̃)S(x)P (x).

Therefore

(22) S(x)P (x) E(x) ⊆ Ẽ(x).

Transposing (21) and multiplying by the inverse matrices yields the reverse inclu-
sions. This means that the rational matrix function S(x)P (x) maps the vector
bundle corresponding to the starting representation to the cokernel bundle of the
new representation of Type I.

Similarly, Id + 2ρx0

t1(x1−λ1x0)+t2(x2−λ2x0)(t1σ1 + t2σ2)vλvt
λ is the inverse of Qt(x) for

x 6= λ. For Type II elementary transformations, (18) becomes

Qt(x)−1(x1σ2 − x2σ1 + x0γ) = (x1σ2 − x2σ1 + x0γ̄)Q(x)
13



and

(23) Q(x) E(x) = Ē(x).

Thus the rational matrix function Q(x) maps E(x) to the cokernel bundle Ē(x) of
the representation obtained by the Type II transformation.

An attentive reader will notice that the matrices S(x), T (x), P (x), R(x), Q(x) also
depend on parameters t1, t2. But for x such that t1(x1 − λ1x0) + t2(x2 − λ2x0) 6=

0, t1(x1 − µ1x0) + t2(x2 − µ2x0) 6= 0 and for every ε(x) ∈ E(x), ε̃(x) ∈ Ẽ(x), ε̄(x) ∈
Ē(x) the following vectors

P (x)ε(x), ε̃t(x)T (x), S(x)ε(x), ε̃t(x)R(x) and Q(x)ε(x), Q−1(x)ε̄(x)

are independent of t1, t2. This is a corollary of (10), (17) and (19) since

0 = ut
µ(x1σ2 − x2σ1 + x0γ)ε(x) = ut

µ ((x1 − µ1x0)σ2 − (x2 − µ2x0)σ1) ε(x),

0 = ε̃t(x)(x1σ2 − x2σ1 + x0γ̃)uµ = ε̃t(x) ((x1 − λ1x0)σ2 − (x2 − λ2x0)σ1)uµ,

0 = vt
λ(x1σ2 − x2σ1 + x0γ)ε(x) = vt

λ ((x1 − λ1x0)σ2 − (x2 − λ2x0)σ1) ε(x),

0 = ε̃t(x)(x1σ2 − x2σ1 + x0γ̃)vλ = ε̃t(x) ((x1 − µ1x0)σ2 − (x2 − µ2x0)σ1) vλ

and 0 = vt
λ(x1σ2 − x2σ1 + x0γ̄)ε̄(x) = vt

λ ((x1 − λ1x0)σ2 − (x2 − λ2x0)σ1) ε̄(x).

Indeed, rewrite the top equality into

(24)
ut

µ σ1 ε(x)

x1 − µ1x0
=

ut
µ σ2 ε(x)

x2 − µ2x0
.

The only factor in P (x)ε(x) depending on t1, t2 is

ut
µ(t1σ1 + t2σ2)ε(x)

t1(x1 − µ1x0) + t2(x2 − µ2x0)
.

By making the cross products of the above fractions, it can be immediately verified,
that this factor equals to (24) and is thus independent from t1, t2. The independency
of other cases can be computed analogously.

Hence P (x), R(x), S(x), T (x) and Q(x) do not depend on t1, t2 when restricted

to E(x), Ẽ(x) and Ē(x) respectively. Moreover, by using (12) for the admissible pair

of vectors vλ ∈ E(λ) ∩ Ẽ(µ), uµ ∈ E(µ) ∩ Ẽ(λ), we get

(25) P (λ)vλ = 0, vt
λT (µ) = 0, ut

µR(λ) = 0, S(µ)uµ = 0.

Next we analyse how elementary transformations act on rational sections of the
cokernel bundles. Let q(x) be a rational section of E(x). This is a 2d−tuple of
rational functions along C with the property q(x) ∈ E(x). For example, by (8) it
can be obtained by dividing a column in the adjoint matrix of the representation by
a degree d− 1 polynomial. Then by (22) and (23)

q̃(x) = S(x)P (x) q(x) and q̄(x) = Q(x) q(x)(26)

are rational sections of Ẽ(x) and Ē(x) respectively. Additionally, denote by q′(x) =

P (x) q(x) = Rt(x) q̃(x) sections in the auxiliary bundle E ′(x) = P (x) E(x) = Rt(x) Ẽ(x).
Proposition 6.3 will discuss the order of these rational sections at various points on
C. This will describe P, S and Q in terms of elementary transformations of vector
bundles considered in (20). In other words,
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• P at λ equals the morphism in the diagram

E ′ ⊗OC(−λ)
↓

E
P
−→ E ′ → k(λ).

E ′ ⊗ OC(−λ) (the induced elementary transformation of E at λ) is by (25)
obtained through the blow–up of vλ ∈ PE(λ);
• P at µ equals the elementary transformation of E at µ in the diagram

E ⊗ OC(−µ)
↓

E ′
T t

−→ E → k(µ).

Again by (25), E ⊗OC(−µ) is obtained through the blow–up of vλ ∈ PE ′(µ).

The same way S consists of the following:

• S at λ equals the elementary transformation of E ′ at λ in the diagram

E ′ ⊗OC(−λ)
↓

Ẽ
Rt

−→ E ′ → k(λ),

where E ′ ⊗OC(−λ) is obtained through the blow–up of uµ ∈ PẼ(λ);
• S at µ equals the morphism in the diagram

Ẽ ⊗ OC(−µ)
↓

E ′
S
−→ Ẽ → k(µ),

where Ẽ ⊗ OC(−µ) is obtained through the blow–up of uµ ∈ PE ′(µ).

On the other hand, Q and Q−1 are described by the following diagram of elementary
transformations at λ ∈ Pic C:

Ē ⊗ OC(−λ) E ⊗OC(−λ)
ց ւ

k(λ)←− Ē ←− E ′′ −→ E −→ k(λ),

where E ′′ is an elementary transformation of both E and Ē . This will conclude
the proof of Theorem 6.2. Figure [1] describes P, S and Q in terms of elementary
transformations of ruled surfaces. �

Proposition 6.3. Let q(x) be a rational section of E(x) and oξ(q) its order at ξ and

let q̃(x), q̄(x), q′(x) be sections of Ẽ(x), Ē(x), E ′(x) respectively.

If ξ is different from λ and µ then oξ(q) = oξ(q
′) = oξ(q̃) = oξ(q̄).

If ξ = λ then:

oλ(q′) = oλ(q) + 1 iff q at λ passes through vλ, otherwise oλ(q) = oλ(q′);
oλ(q′) = oλ(q̃) + 1 iff q̃ at λ passes through uµ, otherwise oλ(q̃) = oλ(q′);
oλ(q) = oλ(q̄) iff q and q̄ at λ both pass through vλ, otherwise either oλ(q) = oλ(q̄)+1
or oλ(q̄) = oλ(q) + 1 .

If ξ = µ then:

oµ(q) = oµ(q′) + 1 iff q′ at µ passes through vλ, otherwise oµ(q) = oµ(q′);
oµ(q̃) = oµ(q′) + 1 iff q′ at µ passes through uµ, otherwise oµ(q̃) = oµ(q′).
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⇑
‖
‖
‖
‖
‖
‖

Figure 1. Elementary transformations of Type I and II

Proof. Pick a local parameter t at ξ = (ξ0, ξ1, ξ2) ∈ C and expand x and q(x) into
the power series with center ξ. We can assume that ξ0 = 1 and ∂F

∂x0
(ξ) = 0. Thus

x(t) =

(

1 + · · · , ξ1 + t
∂F

∂x1
(ξ) + · · · , ξ2 + t

∂F

∂x2
(ξ) + · · ·

)

,

q(x) = cot
o + co+1t

o+1 + · · · ,

where o = oξ(q) and · · · denote higher order terms. By definition co 6= 0. Since
(x1σ2 − x2σ1 + x0γ) q(x) = 0 for all x ∈ C, in terms of the local parameter t we get
to ((ξ1 + · · · )σ2 − (ξ2 + · · · )σ1 + (ξ0 + · · · )γ) (co + co+1t + · · · ) ≡ 0 which implies

co ∈ E(ξ).

Analogously we expand

q′(x) = co′t
o′ + · · · , q̃(x) = cõt

õ + · · · , q̄(x) = cōt
ō + · · · ,

where o′ = oξ(q
′), õ = oξ(q̃), ō = oξ(q̄) and cõ ∈ Ẽ(ξ), cō ∈ Ē(ξ).

Let ξ 6= λ, µ. Then S(x), P (x) and Q(x) are defined at ξ and can be expanded
along t. Thus (26) gives

q′(x) = P (ξ) co to + · · · , q̃(x) = S(ξ)P (ξ) co to + · · · and q̄(x) = Q(ξ) co to + · · · .

This proves o′ ≥ o, õ ≥ o and ō ≥ o. The power series for q′(x), q̃(x), q̄(x) and
q(x) = T t(x) q′(x), q(x) = T tRt(x)(x) q̃(x), q(x) = Q(x)−1q̄(x) analogously imply
o ≥ o′, o ≥ õ, o ≥ ō.

Let now ξ = λ. P (x) and R(x) are defined at λ since λ 6= µ. By the considerations
in the proof of (25) we notice that P (λ) co = 0 if and only if co is a multiple
of vλ and that Rt(λ) cõ = 0 if and only if cõ is a multiple of uµ. Like above,
q′(x) = P (λ) co to+ · · · implies o′ ≥ o. Moreover, the strict inequality holds iff co is a
multiple of vλ (i.e., q at λ passes through vλ). The same way q′(x) = Rt(λ) cõ tõ+ · · ·
implies o′ ≥ õ and the strict inequality holds iff q̃ at λ passes through uµ.
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Recall that λ = (1, λ1, λ2) is a regular point on C, therefore one of ∂F
∂x1

(λ), ∂F
∂x2

(λ)
must be nonzero. Then

T (x) = Id+
1

t Kvλuµ

(

t1(
∂F
∂x1

(λ) + · · · ) + t2(
∂F
∂x2

(λ) + · · · )
)(t1σ1 + t2σ2)uµvt

λ,

S(x) = Id+
1

t Kvλuµ

(

t1(
∂F
∂x1

(λ) + · · · ) + t2(
∂F
∂x2

(λ) + · · · )
)uµvt

λ(t1σ1 + t2σ2)

imply

q(x) = T t(x) q′(x) =
−1

Kvλuµ

(

t1
∂F
∂x1

(λ) + t2
∂F
∂x2

(λ)
) vλut

µ (t1σ1 + t2σ2) co′ to
′−1 + · · ·,

q̃(x) = S(x) q′(x) =
1

Kvλuµ

(

t1
∂F
∂x1

(λ) + t2
∂F
∂x2

(λ)
) uµvt

λ (t1σ1 + t2σ2) co′ to
′−1 + · · ·.

This proves o ≥ o′ − 1 and õ ≥ o′ − 1.
Apply the same arguments to

q̄(x) = Q(x) q(x) =
2ρ

t1
∂F
∂x1

(λ) + t2
∂F
∂x2

(λ)
vλvt

λ(t1σ1 + t2σ2) co to−1 + · · · ,

q(x) = Q(x)−1 q̄(x) =
−2ρ

t1
∂F
∂x1

(λ) + t2
∂F
∂x2

(λ)
vλvt

λ(t1σ1 + t2σ2) cō tō−1 + · · · ,

which proves ō ≥ o− 1 and o ≥ ō− 1. Observe also that at least one of q, q̄ passes
through vλ, which is equivalent to co or cō being a multiple of vλ. More precisely,
o = ō iff q and q̄ at λ both pass through vλ, ō = o− 1 iff co 6= vλ ∈ PE and o = ō− 1
iff cō 6= vλ ∈ PĒ .

It remains to consider the point ξ = µ. Since T t(x) and S(x) are defined at µ,
q(x) = T t(x) q′(x) and q̃(x) = S(x) q′(x) imply o ≥ o′ and õ ≥ o′. Moreover, by (25)
o > o′ iff q′ passes through vλ and õ > o′ iff q′ passes through uµ. Since P (x)
and Rt(x) have poles at µ, q′(x) = P (x) q(x) = Rt(x) q̃(x) imply o′ ≥ o − 1 and
o′ ≥ õ− 1. �

7. Pfaffians arising from decomposable vector bundles

The Kummer variety KC of C is by definition the quotient of the Jacobian JC
by the involution L 7→ L−1 ⊗ OC(d − 3). For g ≥ 3 it is standard [15], that
MC(2,OC(d − 3)) is singular along the Kummer variety. Note that the canonical
line bundle ωC

∼= OC(d− 3), by the adjunction formula for degree d curves in P
2.

In [5, Theorem 5.1] we established a one to one correspondence between decom-
posable vector bundles in MC(2,OC(d − 3)) − Θ2,OC(d−3) and the open subset of

Kummer variety KC −W , where W = {line bundles of degree 1
2d(d − 3) with no

sections}. On the other hand, by [5, Section 5], the cokernel E of a pfaffian repre-
sentation is decomposable if and only if it is of the form

E ∼= Coker M ⊕
(

(Coker M)−1 ⊗OC(d− 1)
)

for M a determinantal representation of C. The line bundle Coker M is of degree
1
2d(d − 1) with H0(C,Coker M ⊗OC(−1)) = 0 and E is the cokernel of the decom-

posable matrix
[

0 M
−M t 0

]

mentioned in (2) .
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Denote L = Coker M⊗OC(−1) and Lt = Coker M t⊗OC(−1) that both have degree
1
2d(d − 3). Then

L ⊕ Lt ∈ MC(2,OC (d− 3))−Θ2,OC(d−3)

and by the above

Lt
∼= L−1 ⊗OC(d− 3),

which explains the involution on the Kummer variety. The involution appears,
because in general M and M t are not equivalent determinantal representations, but
[

0 M
−M t 0

]

and

[

0 M t

−M 0

]

=

[

0 Id
− Id 0

] [

0 M
−M t 0

] [

0 − Id
Id 0

]

are equivalent pfaffian representations.

The proof of Theorem 6.2 and [27, Theorem 4] imply the following

Corollary 7.1. Let E be the decomposable cokernel of a decomposable pfaffian repre-

sentation and let D = div Coker M and D′ = div Coker M t. Pick admissible vectors

of the form
[

v
0

]

∈ E(λ),

[

0
u

]

∈ E(µ)

and perform the Type I elementary transformation. Then

E ∼= OC(D)⊕OC(D′)
P ↓

E ′ ∼= OC(D + λ− µ)⊕OC(D′)
S ↓

Ẽ ∼= OC(D + λ− µ)⊕OC(D′ + µ− λ).

Example 7.2. Recall the explicit calculation of pfaffian representations in the
canonical form (6) in Remark 2.3. Using local parameters and the implicit func-
tion theorem, it is easy to see that by setting the entries a0

ij for 1 ≤ i < j ≤ d
and d ≤ i < j ≤ 2d in A0 to zero, we obtain the singular locus of the set of pfaf-
fian representations of C in the canonical form (6). Note that these representations
are decomposable and non-equivalent to each other. Moreover, Vinnikov’s explicit
parametrisation of determinantal representations of C in [26] proves that these are
all the decomposable pfaffian representations.

We will conclude this section by

Theorem 7.3. From any given pfaffian representation of C we can build all the

nonequivalent pfaffian representations of C by finite sequences of Type I and Type

II elementary transformations.

Proof. A finite sequence of Type I and Type II elementary transformations gives us
a new pfaffian representation of C that is in general not equivalent to the starting
one, since the cokernel bundles E(x), Ẽ(x), Ē(x) are in general not isomorphic. The
auxiliary bundles E ′(x) and E ′′(x) have determinants different to OC(d−1) and thus
are not cokernels of pfaffian representations.

Pick the cokernel bundle E of x1σ2 − x2σ1 + x0γ. We will assume that the repre-
sentation is in the canonical form (6).

In the first step we bridge E with a decomposable vector bundle by applying a
finite number of Type II elementary transformations. A finite sequence of m Type II
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elementary transformations by recursion yields a new representation x1σ2 − x2σ1 +
x0γm, where

γm = γ +

m
∑

j=1

ρj σ2vλj ∧ σ1vλj .

The above constants ρj ∈ k and points λj ∈ C are arbitrary and vλj ∈ Ej−1(λ
j) :=

Coker(λj
1σ2 − λj

2σ1 + λj
0γj−1) with γ0 = γ. Since every union {Ej(x)}x∈C spans the

whole k2d, we can (by suitable choices of vλj ) generate enough independent rank 2
matrices σ2vλj ∧ σ1vλj whose linear combination will yield a decomposable matrix
γm. Indeed,

σ2vλj ∧ σ1vλj =



















0
. . . vd+nvd+l(pl−pn)

0

∗

−∗t
0

. . . vnvl(pl−pn)

0



















form a basis for the two diagonal square blocks of 2d×2d skew–symmetric matrices.
Here vi, i = 1, . . . , 2d are the components of vλj and pi, i = 1, . . . , d are the distinct
entries in the diagonal matrix D in σ1.

In the second step we bridge any two decomposable cokernel bundles dĖ , dË by
applying a finite number of Type I elementary transformations. We can write

dĖ = OC(Ḋ)⊕OC(H − Ḋ),

dË = OC(D̈)⊕OC(H − D̈),

where H is the divisor of a degree d− 1 polynomial in P
2. Let g be the genus of C.

For general points λ1, . . . , λg ∈ C the Riemann–Roch theorem implies

Ḋ − D̈ + λ1 + · · ·+ λg ≡ µ1 + · · ·+ µg

for some distinct points µ1, . . . , µg ∈ C. Vinnikov [27, Theorems 5 and 6] proved
that the indices of µi’s can be permuted in such a way that for n = 1, . . . , g every

dEn := OC

(

Ḋ +

n
∑

i=1

(λi − µi)

)

⊕OC

(

H − Ḋ +

n
∑

i=1

(µi − λi)

)

is the cokernel bundle of a decomposable pfaffian representation of C. By recursion
and Corollary 7.1, dEn is obtained from dEn−1 by the Type I elementary transfor-
mation based on

[

vn

0

]

∈ dEn−1(λ
n),

[

0
un

]

∈ dEn−1(µ
n),

where we put dE0 = dĖ .

Recall that the inverses of elementary transformations are again elementary trans-
formations of the same type. This concludes the proof. �

8. Plane quartic

A nonsingular plane quartic C is a non-hyperelliptic genus 3 curve embedded
by its canonical linear system |KC |. We parametrised MC(2,OC (1)) − Θ2,OC(1) by
pfaffian representations of C. The moduli space MC(2,OC (1)) ∼= MC(2,OC ) can
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be embedded as a Coble quartic hypersurface in P
7 with singularities along the

3–dimensional Kummer variety KC . For references check [19], [15], [4].

In this section we establish the connection between two distinguished kinds of
rank 2 vector bundles on C, namely decomposable bundles corresponding to even
theta characteristics and indecomposable Aronhold bundles.

A theta characteristic of C is a line bundle Lϑ with the property

L⊗2
ϑ
∼= ωC

∼= OC(1).

A theta characteristic is called even (odd) if dimH0(C,Lϑ) is even (odd). By [7]
there are exactly 36 even theta characteristics on a smooth plane quartic. Since C is
not hyperelliptic no even theta characteristic vanishes, which means H0(C,Lϑ) = 0.
Therefore

H0(C,Lϑ ⊕ Lϑ) = 0 and det(Lϑ ⊕ Lϑ) ∼= ωC .

In our notation
Lϑ ⊕ Lϑ ∈ MC(2,OC (1)) −Θ2,OC(1)

and thus every even theta characteristic induces a decomposable pfaffian represen-
tation of C. By Section 7 the corresponding pfaffian representations are

[

0 Mϑ

−Mϑ 0

]

,

where Lϑ = Coker Mϑ ⊗OC(−1) and Mϑ = M t
ϑ.

Example 8.1. An easy computation in Wolfram Mathematica shows that, if we
add a0

i d+j = a0
j d+i for 1 ≤ i < j ≤ d to the equations describing the decomposable

representations of Example 7.2 in the canonical form (6) , we get exactly 36 solutions.
As expected, they are the 36 Mϑ.

These considerations are generalised to the following proposition.

Proposition 8.2. For a line bundle L on a nonsingular plane quartic C with

H0(C,L) = 0 the following are equivalent:

• L is an even theta characteristics on C,

• L ∼= L−1 ⊗OC(1),
• L = Coker M ⊗OC(−1) where M is a symmetric determinantal representa-

tion of C with the property Coker M ∼= Coker M t.

To every symmetric determinantal representation Mϑ of C one can associate a
net of quadrics Mϑ in P

3. The base locus of Mϑ consists of 8 points b1, . . . , b8, called
the Cayley octad. We refer to [7, Theorem 6.3.2] that bi Mϑ bj for distinct i, j =
1, . . . , 8 define the 28 bitangents to C, arranged in Aronhold sets. A recent result
by Lehavi [16] shows, that the set of bitangents uniquely determines C. Moreover,
there is a bijection between the 28 odd theta characteristics Lϑij

and bitangents.
Any even theta characteristic different from Lϑ can be represented by the divisor
class

(27) ϑi,jkl = ϑij + ϑik + ϑil −KC for distinct i, j, k, l.

Next we define Aronhold bundles on C following [22]. Given J ∈ Pic1 C we
define the 3–dimensional projective space P(J ) := P Ext1(ωCJ

−1,J ) = |ω2
CJ

−2|∗.
A point in P(J ) defines an isomorphism class of extensions

0 −→ J −→ K −→ ωCJ
−1 −→ 0.

On C pick the following data:
20



• an even theta characteristic Lϑ,
• a line bundle Jϑ ∈ Pic1 C such that J 2

ϑ = Lϑ,
• a base point b of the net of quadrics Mϑ.

The stable (thus indecomposable) rank 2 bundle with canonical determinant OC(1)
defined by the point b ∈ P(Jϑ) is called the Aronhold bundle Kb,ϑ. Up to 2–torsion
points of JC, the bundles Kb,ϑ are in 1-to-1 correspondence with the 288 unordered
Aronhold sets.

We mention a useful characterisation of Aronhold bundles: Let K be a stable
noneffective rank 2 vector bundle with canonical determinant. By [14] the set of line
subbundles of maximal degree has cardinality 8

{J ∈ Pic1 C : J →֒ K, i.e. h0(J −1 ⊗K) > 0} = {J1, . . . ,J8}.

Since K ∈ P(Ji) for i = 1, . . . , 8, there exist 28 effective divisors Dij of degree 2
satisfying

(28) Ji ⊗ Jj = OC(Dij) for distinct i, j = 1, . . . , 8.

Conversely, K is uniquely determined by eight line bundles with property (28) by [6].
Finally, K is an Aronhold bundle if and only if the 28 effective divisors Dij corre-
spond to bitangents on C.

Ottaviani [21] gives a nice description of the Aronhold invariant as a pfaffian which
we briefly recall. The Aronhold invariant of plane cubics is a quartic equation of
σ3(P

2,OP2(3)), which deals with the condition to express an equation of a plane
cubic as the sum of three cubes. Here

σ3(P
2,OP2(3)) = Zariski closure of {g3

1 + g3
2 + g3

3 ; gi linear forms}

denotes the 3-secant of the Veronese variety. Explicitly, the Aronhild invariant
evaluated in

w000x
3 + w111y

3 + w222z
3 + 6w012xyz +

3w001x
2y + 3w002x

2z + 3w011xy2 + 3w022xz2 + 3w112y
2z + 3w122yz2

equals Pf Ar for

(29) Ar =

























0 w222 −w122 0 w112 0 w022 −w012

0 w022 w122 −w012 −w022 0 w002

0 −w112 0 w012 −w002 0
0 −w111 0 −w012 w011

0 −w011 w001 0
0 w002 −w001

0 w000

0

























.

On the other hand recall the Scorza map between plane quartics [8]:

F 7→ the Clebsch covariant quartic S(F )

which is by definition

F 7→ polar cubic Px(F ) at x ∈ P
2 7→ Aronhold invariant(Px(F )) .

Note that in this notation the coefficients wijk of the cubic P(x0,x1,x2)(F ) are linear in
x0, x1, x2. By [8, Section 7] the curve S(F ) carries a unique even theta characteristic
ϑ, more precisely, the Scorza map

F 7→ (S(F ), ϑ)
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is an injective birational isomorphism and the natural projection to the first com-
ponent is an unramified covering of degree 36.

Proposition 8.3. From the Aronhold pfaffian representation of S(F ) we can recover

the unique theta characteristic on S(F ).

Proof. Our main tool will be the Scorza correspondence relating points on S(F ).
On a nonsingular projective curve X of genus g > 0 and a non–effective theta
characteristic ϑ we introduce the Scorza correspondence

Rϑ := {(x, y) ∈ X ×X : h0(ϑ + x− y) > 0}.

Dolgachev [7] proved that for X non–hyperelliptic, Rϑ are the only symmetric corre-
spondences of type (g, g) without united points and some valence. For a correspon-
dence R define R(x) = {y ∈ X : (x, y) ∈ R}. R has valence υ if the divisor class
of R(x) + υ x does not depend on x. Therefore, on S(F ) there are 36 symmetric
correspondences of type (3, 3).

We are able to explicitly determine which points on S(F ) are Rϑ related in two
essentially different ways:

(i) from a symmetric determinantal representation of S(F ),
(ii) from an Aronhold pfaffian representation of S(F ).

The two ways which induce the same Scorza correspondence on S(F ) will relate the
Aronhold pfaffian representation with the unique theta characteristic.

In step (i) we will use Mϑ, the symmetric determinantal representation of S(F )
from Proposition 8.2. By definition λ, µ ∈ S(F ) are NOT Rϑ related if and only if
h0(ϑ+λ−µ) = 0. This means that OS(F )(ϑ+λ−µ)⊕OS(F )(ϑ+µ−λ) has canonical
determinant and no sections. Therefore, after tensoring by OS(F )(1), it equals the
cokernel of another decomposable pfaffian representation of S(F ). By Corollary 7.1
it is obtained from

(Lϑ ⊕ Lϑ)⊗OS(F )(1) ∼= Coker Mϑ ⊕ Coker Mϑ

by the Type I elementary transformation based on the admissible vectors
[

v
0

]

,

[

0
u

]

, where v ∈ Coker Mϑ(λ), u ∈ Coker Mϑ(µ).

The definition of admissible vectors (12) thus proves that λRϑ µ if and only if

vt Mϑ(x)u ≡ 0 for all v ∈ Coker Mϑ(λ), u ∈ Coker Mϑ(µ), x ∈ P
2.

Step (ii): Given an Aronhold pfaffian representation (29), we can retrieve F (x, y, z)
from wijk(x0, x1, x2) by integrating

P(x0,x1,x2)(F ) = x0
∂F

∂x
(x, y, z) + x1

∂F

∂y
(x, y, z) + x2

∂F

∂z
(x, y, z).

The definition of the Aronhold invariant implies that, for any λ ∈ S(F ) there exist
linear forms g1, g2, g3 such that Pλ(F ) = g3

1 + g3
2 + g3

3 . This defines another (3, 3)
correspondence without united points on S(F ), which must by the above equal
to some Rϑ: λ, µ ∈ S(F ) are related if the second polar Pλ,µ(F ) = g2

i for some
i = 1, 2, 3. Obviously µ equals one of the vertices of the polar triangle spanned
by the lines g1, g2, g3. In [8, Theorem 7.8] Dolgachev and Kanev gave a beautiful
construction of F from the polar triangles in S(F ) and thus reconstructed F from
(S(F ), ϑ). �
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Remark 8.4. Pauly’s construction [22, §4.2] assigns to every stable noneffective K
with canonical determinant a net of quadrics whose bitangents correspond to Dij

in (28). This gives another proof of Proposition 8.3 since the Aronhold bundle Kb,ϑ

induces exactly the net of quadrics Mϑ. We are however not able to implement this
construction explicitly.

Corollary 8.5. Denote by Rϑ(λ) the polar triangle to λ ∈ S(F ). By [8], Rϑ(λ)− λ
equals the divisor class of Lϑ and is thus independent of λ. Then all the symmetric

determinantal representations of S(F ) can be obtained from Mϑ by a sequence of

three Type I elementary transformations, by applying the second part of Proof 7.3

on the divisor ϑi,jkl − ϑ = Rϑi,jkl
(λ)− λ−Rϑ(λ) + λ = Rϑi,jkl

(λ)−Rϑ(λ).

Example 8.6. The Scorza map sends F = x4 + x3y − y4 − yz3 + 1071/3xy2z to

S(F ) = Pf[Ar] = 27x3
0x1 − 432x0x

3
1 − x4

1 − 72 1071/3x2
0x1x2−

9 1071/3x0x
2
1x2 + 81107−1/3x2

0x
2
2 − 108x0x

3
2 − 27x1x

3
2

for Ar defined in (29) with

w000 = 4x0 + x1, w001 = x0, w011 = 1/3x2, w111 = −4x1, w002 = 0,
w012 = 1/3x1, w112 = 1/3x0, w022 = 0, w122 = −x2, w222 = −x1.

Following the proof of Proposition 8.3 we will compute the unique theta charac-
teristic on S(F ). We calculate in Wolfram Mathematica to precision 10−10. For

λ = (1, 0, 3
4107−1/3) ∈ S(F ) we get Pλ(F ) = g3

1 + g3
2 + g3

3 for

g1 = (4x + y)(−0.198‘ − 0.344‘i),
g2 = (0.002‘ − 2.089‘i)y + (−0.181‘ + 0.104‘i)z,
g3 = (0.002‘ + 2.089‘i)y + (−0.181‘ − 0.104‘i)z,

which is explicitly obtained from the equality det Hess (Pλ(F )) = g1g2g3. The inter-
sections

µ1 = g2 ∩ g3 = (1, 0, 0),
µ2 = g1 ∩ g3 = (1,−4,−20.034‘ + 34.609‘i),
µ3 = g1 ∩ g2 = (1,−4,−20.034‘ − 34.609‘i)

determine the polar triangle R(λ) of λ. This proves that λ is in relation with µ1, µ2

and µ3 on S(F ).

On the other hand it is easy to compute all the 36 symmetric determinantal
representations of S(F ). For example, for

Mϑ = x1 Id4−x2 Diag [0,−3,3(−1)1/3,−3(−1)2/3]+

x0









4 −24.296‘ 23.685‘+0.336‘i −23.685‘+0.336‘i
428

3
−1071/3 −141.449‘+2.004‘i 141.449‘+2.004‘i

428

3
−1071/3(−1)2/3 −145.099‘

428

3
+1071/3(−1)1/3









we have

vλ = [−0.006−0.009i,−0.335−0.482i,−0.571+0.04i,−0.236+0.521i]t ∈ Coker Mϑ(λ),
vµ1 = [0,−0.543−0.164i,−0.419+0.404i,0.124+0.569i]t ∈ Coker Mϑ(µ1),
vµ2 = [0.602−0.73i,−0.186−0.025i,−0.124+0.147i,0.062+0.172i]t ∈ Coker Mϑ(µ2),
vµ3 = [0.613+0.72i,−0.185+0.028i,−0.059+0.173i,0.127+0.145i]t ∈ Coker Mϑ(µ3).

We check that

vt
λ Mϑ(x0, x1, x2) vµi = 0 for any (x0, x1, x2) ∈ P

2, i = 1, 2, 3.

This proves that the corresponding Lϑ is the unique theta characteristic on S(F )
that we were looking for.
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The question, whether the unique even theta characteristic on S(F ) can be re-
covered from the cokernel bundle, was first asked by Ottaviani [21, Remark 2.3].
Proposition 8.3 gives a positive answer with a concrete construction done in Exam-
ple 8.6. However, for no even theta characteristic Lϑ on S(F ) holds

h0(Coker Ar ⊗OS(F )(−1)⊗ L−1
ϑ ) > 0.

Indeed, if Coker Ar⊗OS(F )(−1)⊗L−1
ϑ is effective, it is not stable since it has trivial

determinant. Then Coker Ar is also not stable and thus isomorphic to a direct
sum of two line bundles. This is in contradiction with Ar being an indecomposable
representation of S(F ).
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[5] A. Buckley and T. Košir. Plane Curves as Pfaffians, eprint arXiv:math/0805.2831v1.
[6] I.Choe, J. Choy and S. Park. Maximal line subbundles of stable bundles of rank 2 over an

algebraic curve, Geom. Dedicata 125 (2007), 191–202.
[7] I. Dolgachev. Topics in classical algebraic geometry, Lecture Notes

http://www.math.lsa.umich.edu/∼idolga/lecturenotes.html.
[8] I. Dolgachev and V. Kanev. Polar covariants of plane cubics and quartics, Adv. Math. 98

(1993), 216–301.
[9] J.M. Drezet and M.S. Narasimhan. Groupe de Picard des varietes de modules de fibres semi-

stables sur les courbes algebriques, Invent. Math. 97 (1989), 53–94.
[10] L. Fuentes and M. Pedreira. The projective theory of ruled surfaces, Note Mat. (1) 24 (2005),

25-63.
[11] W. Fulton and P. Pragacz. Shubert varieties and degeneracy loci, Lecture notes in Mathe-

matics 1689, Springer-Verlag, 1998.
[12] R. Hartshorne. Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag,

1977.
[13] P. Lancaster and L. Rodman. Canonical forms for symmetric / skew-symmetric real matrix

pairs under strict equivalence and congruence, Linear Algebra Appl. 406 (2005), 1–76.
[14] H. Lange and M.S.Narasimhan. Maximal subbundles of rank 2 vector bundles on curves,

Math. Ann. 266 (1984) 55–72.
[15] Y. Laszlo. A propos de l’espace des modules des fibres de rang 2 sur une courbe, Math.

Annalen 299 (1994), 597–608.
[16] D. Lehavi. Any smooth plane quartic can be reconstructed from its bitangents, Israel J. Math.

146 (2005), 371-379.
[17] M. Marcus and R. Westwick. Linear maps on skew-symmetric matrices: The invariance of

elementary symmetric functions, Pacific J. Math. (3) 14 (1960).
[18] M. Maruyama. On a family of algebraic vector bundles, Number Theory, Algebraic Geometry

and Commutative Algebra, Kinokuniya (1973), 95–149.
[19] M.S. Narasimhan and S. Ramanan. 2Θ linear systems on Abelian varieties, Vector bundles

on algebraic varieties, Oxford University Press (1987), 415–427.
[20] P. E. Newstead. Introduction to moduli problems and orbit spaces, Tata Institute of Funda-

mental Research, Bombay, Springer-Verlag, 1978.
[21] G. Ottaviani. An invariant regarding Waring’s problem for cubic polynomials, Nagoya Math.

J. 193 (2009), 95–110.
[22] C. Pauly. Self–Duality of Coble’s Quartic Hypersurface and Applications, Michigan Math. J.

50 (2002), 551–574.
[23] J. Le Potier. Lectures on Vector Bundles, Cambridge studies in advanced mathematics 54,

Cambridge University Press, 1997.

24



[24] C. S. Seshadri. Fibres vectoriels sur les courbes algebriques, Asterisque 96, 1982.
[25] A. Shapiro and V. Vinnikov. Rational transformations of algebraic curves and elimination

theory, eprint arXiv:math/0507233.
[26] V. Vinnikov. Complete description of determinantal representations of smooth irreducible

curves, Lin. Alg. Appl., 125 (1989), 103–140.
[27] V. Vinnikov. Elementary transformations of determinantal representations of algebraic

curves, Lin. Alg. Appl., 135 (1990), 1–18.

Department of Mathematics, Jadranska 19, 1000 Ljubljana, Slovenia, Tel: +38631810619,

Fax: +38612517281

E-mail address: anita.buckley@fmf.uni-lj.si

25


